9/25/2009

Experimental Flow Vis

2D Vector Field
Visualization

Experimental Flow Vis Experimental Flow Vis

Experimental Flow Vis

Vectors

® Directional information

® Wind, mechanical forces (earthquakes)
* Flows

® Harder: more than one pixel per vector

& Clutter

Why would we not
stick with these?

Vector Field Visualization

-Avector field: F(U)=V

U: field domain (x,y) in2D
V: vector (u,v)

1S
//}”/

-Like scalar fields, vectors are defined at discrete points:

-interpolation issues

9/25/2009

http://www.flometrics.com/services/cylinder/slowflowvideo.mpg

Visualization techniques

s Geometry-based methods:
rendering primitives built from
particle trajectories

= Glyphs

= streamlines
= pathlines

= streaklines
= topology

= LIC

9/25/2009

Glyphs

® Place symbols over vector field

® Regularly spaced

® Randomly spaced
® Scale

® Watch out for clutter

9/25/2009

Streamlines

Acurves that connect all the particle positions

9/25/2009

® Local technique - Particle Tracin
Streamlines a 8

® Lines that are everywhere
tangent to the vector field

® f(0) = xo. f(x) = u(x)
® That's a diff. eq.

® Solving for f(x) is an
initial value problem

Visualizing the flow directions by releasing particles and
calculating a series of particle positions based on the vector
field

The motion of particle: dx/dt = v(x)

X: particle position (in 2D (x1, X2) position vector)
Vv(x): the vector (velocity) field

Use numerical integration to compute a new particle position

x(@®)= x(t-dt) + Integration(v(x(t-dt)) dt)

Numerical Integration

First Order Euler method:
X(t) = x(t-dt) + v(x(t-dt)) * dt

- Not very accurate, but fast

- Other higher order methods are avilable: Runge-Kutta
second and fourth order integration methods (more
popular due to their accuracy)

9/25/2009

Numerical Integration (2)

Second Runge-Kutta Method

X(t) = x(t-dt) + % * (K1 +K2)
k1= dt * v(x(t-dt))
k2 = dt * v(x(t-dt)+k1)

x(t+dt)

x(t)

Y * [vx(t)+v(x(t)+dt*v(x(t))]

9/25/2009

Numerical Integration (3)

Standard Method: Runge-Kutta fourth order

ki=dt*v(t-dt); k2 =dt*v(x(t-dt) +k1/2)

k3 = dt * v(x(t-dt) + k2/2); ka =dt * v(x(t-dt) + k3)

What Method to Use? Steady VS. unsteady

* RK2and RK4 aremore * Eulerworks poorly for

accurate for same dt oscillatory systems

than Euler ® Flows change with time

® For every timestep, a different vector

* RK2and RK4 work well « RK2 and RK4 work
for continuous systems poorly with discrete
systems

@ But, what about streamlines, then?

Pathlines, Timelines, and Streaklines

-Extension of streamlines for time-varying data

Pathlings: T
T=4
T=2 T=5

timeline
Timelines: /
_ _\\
T=1 T=2 T=3

When should we expect
self-intersections?

R

- Streamlines
- Pathlines
- Streaklines

Streaklines

- Continuously injecting a new particle at each time step,
advecting all the existing particles and connect them
together into a streakline

bt=2 bt=1
Al
9 pt=3
O ht=4
bt =5

Pathlines and Streaklines

* Streamlines do not cross
* Streaklines still never cross
* Pathlines do cross

9/25/2009

Pathlines and Streaklines

* Streamlines sheuld not cross
* Streaklines still seldem cross
* Pathlines do cross

Streaklines in real life

9/25/2009

Seed Placement

* The placement of seeds directly determinesthe

visualization quality
— Too many: scene cluttering
— Too little: no pattern formed

* Ithas to be the right number at the right places!!!

Streaklines in real life

Line Integral Convolution

® Basic idea: Integrate noise along
streamlines

® demo: http//www.javaview.de/demo/
PaLIC.html

Line Integral Convolution (LIC)

Vector field
LIC:

convolve a
random texture
along the
streamlines

pathline

Input texture

Output mage

* embed a noise
texture under the
vector field

* integrates along a
streamline

Line Integral Convolution (LIC)

Assume input texture, vector

9/25/2009

and output images are all the

same resolution.

For each output pixel/voxel,
generate a streamline both

forwards and backwards of a

fixed length. " \

Integrate the intensity that the

streamline passes through

10

9/25/2009

Line Integral Convolution (LIC) Line Integral Convolution (LIC)

RN
4“,({(

Comparison (LIC and Streamlines)

11

