
9/25/2009

1

Experimental Flow Vis

Experimental Flow Vis Experimental Flow Vis

9/25/2009

2

Experimental Flow Vis

Why would we not
stick with these?

-A vector field: F(U) = V

U: field domain (x,y) in 2D

V: vector (u,v)

-Like scalar fields, vectors are defined at discrete points:

-interpolation issues

Vector Field Visualization

http://www.flometrics.com/services/cylinder/slowflowvideo.mpg

9/25/2009

3

Visualization techniques

 Geometry-based methods:
rendering primitives built from
particle trajectories

 Glyphs

 streamlines

 pathlines

 streaklines

 topology

 LIC

 …….

9/25/2009

4

Streamlines

A curves that connect all the particle positions

9/25/2009

5

Local technique - Particle Tracing

Visualizing the flow directions by releasing particles and

calculating a series of particle positions based on the vector

field

The motion of particle: dx/dt = v(x)

x: particle position (in 2D (x1, x2) position vector)

v(x): the vector (velocity) field

Use numerical integration to compute a new particle position

x(t) = x(t-dt) + Integration(v(x(t-dt)) dt)

Numerical Integration

First Order Euler method:

x(t) = x(t-dt) + v(x(t-dt)) * dt

- Not very accurate, but fast

- Other higher order methods are avilable: Runge-Kutta

second and fourth order integration methods (more

popular due to their accuracy)

Result of first order

Euler method

Euler’s Method
Assume flow = f(t)

X

9/25/2009

6

Euler Integration Error

• Error = X - area under flow curve

XError =

Numerical Integration (2)

Second Runge-Kutta Method

x(t) = x(t-dt) + ½ * (K1 + K2)
k1 = dt * v(x(t-dt))
k2 = dt * v(x(t-dt)+k1)

½ * [v(x(t))+v(x(t)+dt*v(x(t))]

x(t+dt)

x(t)

Runge-Kutta 2
Assume flow = f(t)

Like Trapezoid Method.

X

RK2 Integration Error

• Error = X - area under flow curve

Error =
X

9/25/2009

7

Numerical Integration (3)

Standard Method: Runge-Kutta fourth order

x(t) = x(t-dt) + 1/6 (k1 + 2k2 + 2k3 + k4)

k1 = dt * v(t-dt); k2 = dt * v(x(t-dt) + k1/2)

k3 = dt * v(x(t-dt) + k2/2); k4 = dt * v(x(t-dt) + k3)

Runge-Kutta 4
Assume flow = f(t)

X

What Method to Use?

• RK2 and RK4 are more
accurate for same dt
than Euler

• RK2 and RK4 work well
for continuous systems

• Euler works poorly for
oscillatory systems

• RK2 and RK4 work
poorly with discrete
systems

9/25/2009

8

Pathlines, Timelines, and Streaklines

-Extension of streamlines for time-varying data

Pathlines:

Timelines:

T=1

T=2

T=3 T=4

T=5

T = 1 T = 2 T = 3

timeline

Streaklines

- Continuously injecting a new particle at each time step,

advecting all the existing particles and connect them

together into a streakline

b.t. =5

b.t. =4

b.t. =3

b.t. =2 b.t. =1

When should we expect
self-intersections?

- Streamlines
- Pathlines

- Streaklines

• Streamlines do not cross
• Streaklines still never cross
•Pathlines do cross

9/25/2009

9

• Streamlines not cross
• Streaklines still cross
•Pathlines do cross

Seed Placement

• The placement of seeds directly determines the

visualization quality

– Too many: scene cluttering

– Too little: no pattern formed

• It has to be the right number at the right places!!!

9/25/2009

10

Rendering - LIC

• embed a noise
texture under the
vector field

• integrates along a
streamline

Line Integral Convolution (LIC)

• LIC:
• convolve a
• random texture
• along the
• streamlines

Line Integral Convolution (LIC)

• Assume input texture, vector
and output images are all the
same resolution.

• For each output pixel/voxel,
generate a streamline both
forwards and backwards of a
fixed length.

• Integrate the intensity that the
streamline passes through

9/25/2009

11

Line Integral Convolution (LIC) Line Integral Convolution (LIC)

Comparison (LIC and Streamlines)

