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ABSTRACT

We present a novel algorithm for computing hierarchical
geodesic models (HGMs) for diffeomorphic longitudinal
shape analysis. The proposed algorithm exploits the inherent
parallelism arising out of the independence in the contri-
butions of individual geodesics to the group geodesic. The
previous serial implementation severely limits the use of
HGMs to very small population sizes due to computation
time and massive memory requirements. The conventional
method makes it impossible to estimate the parameters of
HGMs on large datasets due to limited memory available on-
board current GPU computing devices. The proposed parallel
algorithm easily scales to solve HGMs on a large collection
of 3D images of several individuals. We demonstrate its ef-
fectiveness on longitudinal datasets of synthetically generated
shapes and 3D magnetic resonance brain images (MRI).

Index Terms— LDDMM, HGM, Vector Momentum,
Diffeomorphisms, Longitudinal Analysis

1. INTRODUCTION

A longitudinal study of neuroanatomical aging, development,
or disease progression necessitates modeling anatomical
changes over time. A convenient representation of anatom-
ical variability is via maps of diffeomorphisms, which are
topology-preserving, smooth, and invertible transformations
of a template image [1, 2]. Previous work proposes hierarchi-
cal geodesic models (HGMs) as generalizations of classical
hierarchical models to diffeomorphisms [3]. Such models are
effective at describing the longitudinal changes in anatomi-
cal shape within a population. HGMs utilize the metric in
the space of diffeomorphisms to define a group geodesic
given a population of geodesics. They are applicable to
commonly occurring unbalanced designs in medical imag-
ing data, where measurements are staggered, i.e., not every
individual is measured at the same time points. Although
mathematically elegant, estimating the parameters of these
models involves massive computation. Naive implementa-
tions of the algorithm presented in [3] put severe limitations
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on its applicability for population studies. In this paper, we
present an efficient parallel algorithm for estimating the initial
conditions of the group geodesic under the HGM.

2. METHODOLOGY

2.1. Preliminaries

Let Ω be the coordinate space of the image, I . A diffeomor-
phism, φ(t), is constructed by the integration of an ordinary
differential equations (ODE) on Ω defined via a smooth, time-
indexed velocity field, v(t). The deformation of an image I
by φ is defined as the action of the diffeomorphism, given by
φ · I = I ◦ φ−1. The choice of a self-adjoint differential op-
erator, L, determines the right-invariant Riemannian structure
on the collection of velocity fields with the norm defined as,
‖v‖2 =

∫
Ω

(Lv(x), v(x))dx.
The tangent space at identity, V = TIdDiff(Ω), consists

of all vector fields with finite norm. Its dual space, V ∗ =
T ∗

IdDiff(Ω), consists of vector-valued distributions over Ω.
The velocity, v ∈ V , maps to its dual deformation momenta,
m ∈ V ∗, via the operator L such that m = Lv and v = Km.
The operator K : V ∗ → V denotes the inverse of L. Note
that constraining φ to be a geodesic with initial momentum,
m(0), implies that φ, m, and I , all evolve in a way entirely
determined by the metric L, and that the deformation is de-
termined entirely by the initial deformation momenta, m(0).
The initial velocity, v(0) ∈ V , or equivalently, the initial mo-
mentum, m(0) ∈ V ∗, uniquely parameterize the the geodesic
path φ(t) [2, 4, 5].

2.2. Hierarchical Geodesic Model (HGM)

We are given a population ofN individuals withMi measure-
ments for the ith individual. There can be a variable number
of measurements for each individual. Denote Hij as the jth
measured image of the ith individual at time tij .

Figure 1 shows a schematic of the HGM. We model
geodesic trend for an individual with a diffeomorphism, ξi(t)
(brown). The initial image, or intercept, Ji(0), and the initial
momenta, or slope, ni(0), fully parameterize the trajectory
for the ith individual. At the group level, we model the group
geodesic trend with the diffeomorphism, ψ(t), (red) starting



Fig. 1. Hierarchical geodesic modeling in diffeomorphisms.

at identity, parameterized by initial momenta, m(0). Let φi
denote the diffeomorphism that matches individual baseline
Ji(0) from identity and ρi denote the residual geodesic be-
tween ψ(ti) and φi: ρi = φi ◦ ψ−1(ti). The initial momenta
pi(0) parameterizes the residual ρi.

The two stages for parameter estimation of this model are
given as:
Individual level: Given Mi observed images Hij at time
points tij for an individual such that j = 1, . . . ,Mi, the
geodesic that passes closest, in the least squares sense, to the
data minimizes the energy functional

I(Ji(0), ni(0)) =
1

2
‖ni(0)‖2K +

1

2σ2
i

Mi∑
j=1

‖Ji(tij)−Hij‖2L2 ,

where Ji(0) and mi(0) are the initial “intercept” and “slope”
to be estimated that completely parameterize the geodesic for
the ith individual. Here, Ji(t) = ξi(t) ·Ji(0), and ‖.‖K is the
norm defined by the kernel, K, in the dual space of momenta,
as per the metric induced by Sobolev operator, L, on velocity
fields. Geodesic regression [6, 7] solves the initial conditions
of each geodesic to provide estimates of Ji(0) and ni(0) for
i = 1, . . . , N , that minimize each of the N energy function-
als. In the discussion that follows, for clarity and ease of no-
tation, we will use Ji = Ji(0) to denote the initial “intercept”
and ni = ni(0) to denote initial “slope” for an individual.
Group level: At the group level (Figure 1), the idea is to esti-
mate the average geodesic, ψ(t), that is a representative of the
population of geodesic trends denoted by the initial intercept-
slope pair, (Ji, ni), for N individuals, i = 1, . . . , N . The
required estimate for ψ(t) must span the entire range of time
along which the measurements are made for the population
and must minimize residual diffeomorphisms ρi from ψ(t).

The energy functional for group and residual geodesics
based on data log-likelihood takes the form

G(ψ, ρi,m(0), pi(0), I(0)) =
1

2
‖m(0)‖2K

+
1

2σ2
I

N∑
i=1

(‖p(0)i‖2K + ‖ρi · ψ(ti) · I(0)− Ji‖2L2)

+
1

2σ2
S

N∑
i=1

‖ρi · ψ(ti) ·m(0)− ni‖2K . (1)

Here, σ2
I and σ2

S represent the variances corresponding to the
likelihood for the intercept and slope terms respectively. No-
tice, it is a combination of group actions of diffeomorphism
on both the initial image, I(0), and the initial momenta,m(0),
of the group geodesic. This group action on momenta also
coincides with the co-adjoint transport in the group of diffeo-
morphisms. This optimization problem corresponds to jointly
estimating the group geodesic flow, ψ, and residual geodesic
flows, ρi, and the group baseline template, I(0).
Evaluating gradients of G: The gradients of G are evalu-
ated using an optimal control based approach. The dynamics
of this system are controlled by adding time-dependent con-
straints to enforce all paths to be geodesics. In particular, it
results in N + 1 geodesics: 1 for the group, ψ, and N for the
residuals, ρi (for i = 1, . . . , N ).

The variation of the energy functional, G, with respect
to all time dependent variables results in ODEs in the form
of dependent adjoint equations with boundary conditions and
added jump conditions. We refer the reader to the original ar-
ticle by Singh et. al [3] for details about these gradients and
jump conditions. The energy functional at the group level is
jointly minimized such that the group estimates, I(0),m(0),
and all the N residual estimates, ρi(1), pi(0), are updated at
each iteration of gradient descent. The resulting adjoint sys-
tem for the group geodesic takes the form

− ˙̂m+ advm̂+ v̂ = −0

˙̂
I −∇ · (Îv) = −0

ad∗
m̂m+ Î∇I − Lv̂ = 0

 , (2)

with boundary conditions: Î(1) = 0, and m̂(1) = 0, and
with added jumps at measurements, ti, such that,

Î(ti+)− Î(ti−) =
1

σ2
I

|Dρi|(I(ti) ◦ ρ−1
i − Ji) ◦ ρi

m̂(ti+)− m̂(ti−) =
1

σ2
S

Adρ−1
i

(
K ? (Ad∗

ρ−1
i
m(ti)− ni)

)
 .

(3)
Finally, the gradients for update of the initial group momen-
tum is

δm(0)G̃ = K ?m(0)− m̂(0). (4)

The variation of G̃ with respect to the group initial image,
δI0 G̃, can be directly computed from the energy functional, G̃.
Since, ρi ·ψ(ti)·I(0) = I(0)◦ψ−1(ti)◦ρ−1

i (1) = I(0)◦φ−1,
a change of variable for φi followed by taking the derivative
with respect to I(0) results in the closed form solution for
optimum initial image, I(0), for the group geodesic as

I(0) =

∑N
i=1 J

i ◦ φi|Dφi|∑N
i=1 |Dφi|

. (5)



2.3. Parallel Algorithm for the HGM

The estimation of the initial conditions of the group geodesic,
as presented above, is computationally intensive and also has
massive memory requirements. A naive serial computation of
gradient updates results in a very slow algorithm. Addition-
ally, a single GPU-based implementations easily hit the limits
of the available memory in the state-of-the-art computing ar-
chitectures even for a small population study. In this section,
we discuss a fast and parallel GPU-based algorithm that easily
scales to big longitudinal studies.

Equation (4) suggests that the gradient depends upon the
adjoint variable, m̂(0), corresponding to momenta, m at t =
0. At a given iteration of gradient descent, m̂(0) must be com-
puted by the backward integration of the adjoint system (2).
To realize the parallelism in the computation, we must note
that in each iteration of the optimization algorithm: a) The
backward integration of the adjoint system (2) is conditional
on the estimates of geodesic paths, ψ and ρi’s. b) The jumps
added to m̂(t) as per (3) during this integration are indepen-
dent to each other, and c) Integration is a linear operator. In
fact, the objective function in (1) is separable for N individu-
als. Thus, the jumps are also linearly separable.

The above imply that the m̂(0) is a result of accumulating
the integrated jumps that are independent and linearly sepa-
rable, given the current estimates of the group and residual
geodesics. The backward integration thus lends itself to a di-
vision into parallel computations of the jumps independently,
followed by their independent backward integrations along
the group geodesic. This computation is divided over L sub-
sets of the full population. Each of the L processes compute
the adjoint variable for N

L individuals and results in its own
version of m̂(0), denoted as the m̂l(0). This results in m̂l(0)
(for l = 1 . . . L) that represent effects of the pull by only the
respective subset of individuals. Due to linearity of integra-
tion, the m̂(0) is the sum of the adjoints computed over the L
subsets such that: m̂(0) =

∑L
l m̂l(0).

Note that the image update step in (5) is trivially paral-
lel since it does not involve any backward integration and
only relies on current estimates of the geodesics. Both the
numerator and the denominator in (5) can be parallelly com-
puted along with the L sub-processes. If we denote A =∑N
i=1 J

i ◦ φi|Dφi| and B =
∑N
i=1 |Dφi| such that Al and

Bl are the accumulated sums only on the lth subset, the accu-
mulated, A =

∑L
l Al and B =

∑L
l Bl.

Pseudocode for this parallel computation is detailed in Al-
gorithm 1. Step 3 in this algorithm computes the geodesics
all the way to baseline points of the individual subjects along
their respective residual geodesics. Step 4 performs the back-
ward integration of adjoint variables starting from these end
points to the initial baseline time of the group geodesic. Both
of these steps work parallelly as L processes on L subsets of
the population.

Algorithm 1: HGMParallel
input : Individual image and momenta pairs (Ji, ni).
output: Group image and momenta pair (I(0),m(0)).

1 begin
2 while not converged do

// spawn L processes using MPI
3 (ψ(tl), ρl)←FwdEvolveGeodesics(I(0),m(0))
4 (m̂l(0), Al, Bl)←BwdIntegrateAdj(Jl,nl,ψ(tl),ρl)

// E.g. MPIReduce m̂l(0), Al, Bl
5 m̂(0)← SumAcrossProcesses(m̂l(0))
6 A← SumAcrossProcesses(Al)
7 B ← SumAcrossProcesses(Bl)

// Updates as per Eqs. (4),(5)
8 m(0)← UpdateMomenta(m(0),m̂(0))
9 I(0)← UpdateImage(A,B)

10 end
11 return (I(0),m(0))

12 end

3. RESULTS

We present our evaluation and compare the performance of
our proposed parallel algorithm for HGM with its correspond-
ing serial implementation. We report the group estimate re-
sults both a population of 2D synthetic shapes (size 128x128)
and a population of 3D MRI (size 128x128x128).

We generated the synthetic data using the forward model
similar to the procedure presented in [3]. We first generated
a ground truth group geodesic in diffeomorphisms by solving
the image matching problem. We generated random pertur-
bations from the group trend to generate a population of indi-
vidual geodesics. Please see [3] for details. We generated 100
such randomly perturbed trends from the group trend. For the
3D MRI experiments, longitudinal 3D-MRI sequences for 69
cognitively normal (non-demented) individuals were down-
loaded from the OASIS database. The individuals span a total
range of 30 years from the age of 60 to 90 years. Each indi-
vidual is scanned for about 2-4 timepoints with at least one
year difference between their timepoints. At the individual
level of HGM, 69 geodesic regressions are performed inde-
pendently on the time-series of scans for 69 individuals. At
the group level, the initial conditions of the average geodesic
are estimated based on the estimated initial conditions of 69
individuals from individual level.

For fair comparisons we use identical integration schemes
and identical number of iterations of constant stepsize gradi-
ent descent based optimization for all runs. For all our imple-
mentations, we use the message passing interface (MPI) li-
brary of python (mpi4py). The GPU computing devices used
in these tests consists of NVIDIA Tesla 1070’s. The on-device
GPU memory for each Tesla 1070 is 4GB. A multi-node clus-



0 20 40 60 80 100
5000

10000

15000

20000

25000

30000

T
o
ta

l 
E
n
e
rg

y

Serial

Iterations
0 20 40 60 80 100

5000

10000

15000

20000

25000

30000

T
o
ta

l 
E
n
e
rg

y

Parallel

Iterations

Tr
u
th

S
e
ri

a
l

Pa
ra

lle
l

t=0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. Comparison of serial and 100 threads parallel HGM.

ter consisting of computing servers with these Teslas is used
for all our tests. In our experiments, the parallel algorithm
uses 100 parallel processes with 2D synthetic shapes while
69 parallel processes with 3D images. This means that we
assign one individual per process in the group geodesic esti-
mation stage of HGM.

Table 1. Runtime comparison.
Group Serial GPUParallel GPUSerial CPUParallel CPU
2D Toy 288s 19s 2440s 73s
3D Brain — 11m 48s 66h 30m 132m 12s

We notice that the parallel HGM outpaces the serial HGM
for both the CPU as well as the GPU based implementations
(Table 1) on all experiments. This difference in performance
gets especially magnified for our experiments with 3D MR
brain images. Our parallel algorithm using the GPUs impres-
sively finishes within 12 minutes. As we discussed in Sec. 2,
the Tesla 1070 is not able to meet the massive memory re-
quirement for the serial HGM (blank in Table 1). This demon-
strates a severe practical limitation of the previous algorithm.

We also notice that both the implementations result in
identical estimates of group geodesics (Figure 2). Along with
the group estimates, the energies of the objective function dur-
ing gradient descent iterations also matche closely. Figure 3
depicts the initial conditions, i.e., the initial image and mo-
menta directions for the group geodesic estimated at 60 years
of age. The last column shows the smoothly deformed grid
corresponding to 30 years of deformation (from age 60 to 90),

which spans the whole time range for the population. The
deformation momenta at the age of 60 depict realistic direc-
tions of atrophy in the average representation of longitudinal
changes in the population.

Initial Image Initial Momenta 30yr Deformation

S
a
g

it
ta

l 
v
ie

w
A

x
ia

l 
v
ie

w
Fig. 3. Parallel HGM on 3D MRI for 69 individuals.

The source code for our CPU and GPU based implemen-
tations of the parallel HGM can be found at: https://
bitbucket.org/scicompanat/vectormomentum
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groupes de Lie de dimension infinie et ses applications
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[5] M. I. Miller, A. Trouvé, and L. Younes, “Geodesic
shooting for computational anatomy,” Journal of Mathe-
matical Imaging and Vision, vol. 24, pp. 209–228, 2006.

[6] M. Niethammer, Y. Huang, and F-X. Vialard, “Geodesic
regression for image time-series,” in MICCAI 2011, vol.
6892 pp. 655–662. Springer, 2011.

[7] N. Singh, et al.: “A vector momenta formulation of
diffeomorphisms for improved geodesic regression and
atlas construction,” in ISBI 2013 pp. 1219–1222, 2013.

https://bitbucket.org/scicompanat/vectormomentum
https://bitbucket.org/scicompanat/vectormomentum

	 Introduction
	 Methodology
	 Preliminaries
	 Hierarchical Geodesic Model (HGM)
	 Parallel Algorithm for the HGM

	 Results
	 References

