
A VECTOR MOMENTA FORMULATION OF DIFFEOMORPHISMS FOR IMPROVED
GEODESIC REGRESSION AND ATLAS CONSTRUCTION

Nikhil Singh, Jacob Hinkle, Sarang Joshi, P. Thomas Fletcher∗

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah

ABSTRACT
This paper presents a novel approach for diffeomorphic image
regression and atlas estimation that results in improved con-
vergence and numerical stability. We use a vector momenta
representation of a diffeomorphism’s initial conditions in-
stead of the standard scalar momentum that is typically used.
The corresponding variational problem results in a closed-
form update for template estimation in both the geodesic
regression and atlas estimation problems. While we show
that the theoretical optimal solution is equivalent to the scalar
momenta case, the simplification of the optimization problem
leads to more stable and efficient estimation in practice. We
demonstrate the effectiveness of our method for atlas esti-
mation and geodesic regression using synthetically generated
shapes and 3D MRI brain scans.

Index Terms— LDDMM, Geodesic regression, Atlas,
Vector Momentum

1. INTRODUCTION

Within the last 15 years, there has been extensive research
in developing methods for representing shapes and their vari-
ability across a population [1] and along time [2] as diffeo-
morphic deformations of a template image. In particular, the
optimization methods [2, 3, 4] based on initial deformation
momenta, which encode full geodesic paths in the space of
diffeomorphisms, have improved the state-of-the-art methods
for shape statistics [5].

Previous approaches [2, 3, 4] represent the momenta as a
scalar field multiplied by the initial image gradient. In these
approaches, the forward evolution of a geodesic and the asso-
ciated backward adjoint system involve imprecise finite dif-
ference gradients of a noisy image. Furthermore, the template
and momenta must both be jointly estimated by iterative op-
timization, leading to poor convergence.

Instead of scalar momenta, we use vector momenta. In
our formulation, the evolution of the geodesic and adjoint sys-
tem is decoupled from the template image. We also derive a
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closed-form update for the optimal template, which results in
more efficient optimization. This novel framework for tem-
plate estimation applies to both the atlas estimation and the
geodesic regression.

2. METHODOLOGY

2.1. Preliminaries

We follow the well-established framework of large defor-
mation diffeomorphic metric mapping (LDDMM) [6, 9], in
which anatomical variability is represented by maps of diffeo-
morphisms, which are topology-preserving smooth invertible
transformations of the underlying coordinate system. We
briefly review the mathematical framework of LDDMM.

Let Ω be the coordinate space of the image, I . A diffeo-
morphism, φ(t), is constructed by the integration of an ordi-
nary differential equations (ODE) on Ω defined via a smooth,
time-indexed velocity field, v(t). The deformation of an im-
age I by φ is defined as the action of the diffeomorphism,
given by φ · I = I ◦ φ−1.

A right-invariant Riemannian metric on the space of dif-
feomorphisms is obtained by choosing a positive-definite,
self-adjoint differential operator L, which acts on velocity
fields. This operator induces the structure of a Sobolev space
on the collection of velocity fields and determines the norm
of a velocity field, ‖v‖2 =

∫
Ω

(Lv(x), v(x))dx.
Deformation momenta: The tangent space at identity, V =
TIdDiff(Ω) consists of all vector fields with finite norm. Its
dual space, V ∗ = T ∗

IdDiff(Ω) consists of vector-valued dis-
tributions over Ω. The velocity, v ∈ V , maps to its dual de-
formation momenta, m ∈ V ∗, via the operator L such that
m = Lv and v = Km. The operator K : V ∗ → V denotes
the inverse of L.

In the diffeomorphic image pair registration problem, it
has been shown that the optimal initial momentum is orthog-
onal to the level sets of the deforming image [7]. That is
m(x) = α(x)∇I(x) for a scalar function α at all times. Note
that constraining φ to be a geodesic with initial momentum
m0 = m(0) implies that φ,m, I , and α all evolve in a way en-
tirely determined by the metric L, and that the deformation is
determined entirely by the initial scalar function α0 = α(0).
EPDiff for geodesic evolution: Given the initial velocity,



v0 ∈ V , or equivalently, the initial momentum,m(0) = m0 ∈
V ∗, the geodesic path φ(t) is constructed as per the following
EPDiff equation [8, 7]:

∂tm = −ad∗
vm = −(Dv)Tm−Dmv − (div v)m (1)

where D denotes the Jacobian matrix. Operator ad∗ is dual
of the negative Jacobi-Lie bracket of vector fields [7, 8, 9]:

advw = −[v, w] = Dvw −Dwv. (2)

The deformed image I(t) = I0 ◦ φ−1(t) evolves via:

∂tI = −v · ∇I. (3)

2.2. Geodesic Regression and Atlas Estimation

Geodesic regression in the space of diffeomorphisms is a nat-
ural generalization of Euclidean least squares regression. The
parameter estimates consist of an “intercept”, i.e., a template
image at the initial time point, and a “slope”, i.e., an initial
momenta defining a diffeomorphic geodesic evolution of the
template image that best describes the time-dependent image
data. The atlas estimation problem can be thought of as a spe-
cial case of the geodesic regression problem, with the initial
momenta removed. This is analogous to how linear regression
reduces to mean estimation when the slope term is removed.
In this section we present a novel formulation of the template
estimation problem in geodesic regression and atlas construc-
tion using vector momenta, which unlike the scalar momenta
formulation has the advantage of stable, closed-form updates
to the template.
Geodesic Regression: Given N observed images J i at time
points ti, for i = 1 · · ·N such that t1 = 0 and tN = 1, the
geodesic that passes closest, in the least squares sense, to the
data minimizes the energy functional

E(I0,m0) =
1

2
‖m0‖2 +

1

2σ2

N∑
i=1

‖I(ti)− J i‖2L2 (4)

where I0 and m0 are the initial “intercept” and “slope” to be
estimated that completely parameterize the geodesic. Here,
I(ti) = φm0(ti) · I0. As per optimal control theory, we add
the Lagrange multipliers to constrain, φm0(ti) to be along the
geodesic path. This is done by introducing time-dependent
adjoint variables, m̂, Î and v̂, as per the EPDiff evolution
equations (1) to give

Ẽ(I0,m0) = E +

∫ 1

0

〈m̂, ṁ+ ad∗
vm〉L2dt

+

∫ 1

0

〈Î , İ +∇I · v〉L2dt+

∫ 1

0

〈v̂,m− Lv〉L2dt.

The optimality conditions for m, I, v are given by the fol-
lowing time-dependent system of ODEs, termed the adjoint

equations:

− ˙̂m+ advm̂+ v̂ = 0

− ˙̂
I −∇ · (Îv) = 0

−ad∗
m̂m+ Î∇I − Lv̂ = 0

 (5)

subject to boundary conditions

m̂(1) = 0, Î(1) =
1

σ2
(I(tN )− JN ) (6)

with added jump conditions at observed measurements, ti,
such that, Î(ti+) − Î(ti−) = 1

σ2 (I(ti) − J i) where Î(ti+)

and Î(ti−) denote the limits from above and below, respec-
tively, of the integrated Î .

Finally, the variation of Ẽ with respect to the initial mo-
menta is

δm0
Ẽ = K ?m0 − m̂0 (7)

and the variation of Ẽ with respect to the initial image, δI0 Ẽ
can be directly computed from the energy functional Ẽ . No-
tice only the second term has a dependence on I0 i.e., I(ti) =
φm0(ti) · I0 = I0 ◦ φm0

ti,0, where φm0

ti,0 denotes the inverse of
φm0(ti). A change of variable for φ implies the derivative
with respect to I0 is

δI0 Ẽ =

N∑
i=1

(I0 − J i ◦ φm0(ti))|Dφm0(ti)|. (8)

This results in a closed-form solution for I0 at optimum:

I0 =

∑N
i=1 J

i ◦ φm0 |Dφm0(ti)|∑N
i=1 |Dφm0(ti)|

. (9)

Notice, at optimum, the resulting vector momentum are
horizontal, i.e., along gradient of the image. This follows
from taking the gradient in Eq.(4) with respect to velocity,
v0 instead of momenta, m0 and a change of variables for φ
such that:

δv0 Ẽ = v0 −K ?
1

σ2

∑
ti

|Dφv0(ti)|[I0 − J i ◦ φv0(ti)]∇I0.

Comparison to optimization with scalar momenta: The
above analytical update on image, Eq.(9) results in a robust
algorithm that does not require joint parameter tuning dur-
ing optimization unlike previous methods based on scalar mo-
menta. The numerical schemes only optimize on momenta.

However, previously proposed scalar momentum based
optimization involve joint optimization over both the template
image and the momenta. Moreover, computation of the gra-
dient for image update involves integration of higher order



Fig. 1. Top: Shapes sampled uniformly along the ground truth
geodesic. Bottom: ground truth, I andm at t = 0.0 (left), and
estimated I andm at t = 0.0 (right) using only the shape data
for t > 0.5
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Fig. 2. Convergence comparison for same input.

spatial derivatives along time as per the following equations
mentioned in [2]:

δI0 Ẽ =−∇ · (α0K ? (∇I0α0))

−
∫ 1

0

|Dφ0,s|[∇ · (αv̂)] ◦ φ0,sds

+
∑
i

|Dφ0,ti |(I(ti)− J i) ◦ φ0,ti .

The numerical instability of the optimization for template up-
date for scalar momentum is also evident from this gradient
of the energy functional with respect to the template.
Atlas Construction: The Riemannian metric on the space
of diffeomorphisms also establishes the Energy minimization
problem for atlas construction based on initial momentum,
m0. The minimum mean squared energy, Fréchet atlas con-
struction problem is that of jointly estimating an image Î
and N individual geodesics emanating from the atlas towards

Fig. 3. Left: evenly rotated ellipses. Right: estimated atlas.

70.75 yrs 71.38 yrs 71.78 yrs 72.79 yrs
Fig. 4. Top row: Original timepoint scans of an individ-
ual overlaid on its baseline scan. Bottom row: Estimated
geodesic regression overlaid with original scans at each time-
point. Red indicates mismatch.

70.75 yrs 72.75 yrs 74.75 yrs 76.75 yrs
Fig. 5. 6 years predicted future brain atrophy.

each individual image. The joint energy functional over atlas
image, I and initial momenta, mi

0 for i = 1 · · ·N is:

E(I,mi
0) =

1

2N

N∑
i=1

‖mi
0‖2 +

1

2σ2
‖Ii(1)− J i‖2L2 , (10)

where Ii(t) = φm
i
0(t) · I , is the image along the geodesic

parameterized by initial momenta for the ith individual. Sim-
ilar to the geodesic regression case, solving the constrained
variations with respect to atlas image, I and N initial vector
momentum result in the similar time-dependent adjoint equa-
tions corresponding to m̂i and Îi for each geodesic:

The variation of Ẽ with respect to initial momenta for in-
dividual geodesics, δmi

0
Ẽ is:

δmi
0
Ẽ = K ?mi

0 − m̂i(0). (11)

Similar to the geodesic regression case, this results in a

Fig. 6. Shooting atlas generated from 50 3D-MRI scans.



closed-form solution for atlas estimate, I at optimum:

I =

∑N
i=1 J

i ◦ φmi
0 |Dφmi

0 |∑N
i=1 |Dφm

i
0 |

. (12)

3. RESULTS

Our implementation of geodesic regression and atlas build-
ing is developed based on MPI and the GPU image process-
ing framework by [10]. We evaluate our proposed shoot-
ing method using synthetic and real 3D-structural MRI data
both for the geodesic regression and the atlas construction
problem. In our experiments, the kernel, K corresponds to
the invertible and self-adjoint fluid operator, L = −a∇2 −
b∇(∇·) + c, with a = 0.01, b = 0.01 and c = 0.001.
Experiments with synthetic data:
For geodesic regression: We generated ground truth geodesic
on diffeomorphisms by solving the image matching problem
and generated sampled shapes along the geodesic. Fig. 1(top)
shows our example of shapes along this geodesic: plus to
flower. To validate the robustness of estimation of initial con-
ditions at t = 0, geodesic regression was performed given the
sampled shapes only for t > 0.5 as input to the algorithm. We
used closed-form image update and a simple constant step-
size gradient descent for momentum update. The resulting es-
timated baseline template for this experiment (Fig. 1, bottom
right) closely matches the ground truth image at t = 0 (Fig. 1,
bottom left). The estimated initial deformation momenta vec-
tors also closely match the ground truth. Fig. 2 reports our
experiment with results for assessing the stability of optimiza-
tion when compared to scalar momenta geodesic regression.
The comparison was done based on constant stepsize gradi-
ent descent on exactly the same input to both the algorithms.
Identical numerical integration methods (fourth order Runge-
Kutta) were used in both the algorithms for integrating the
evolution equations. We observe that the scalar momentum
has difficulty converging even with very small steps for im-
age update while vector momentum converges early to a sta-
ble energy.

For atlas construction: The atlas was estimated from uni-
formly rotated ellipses across 180◦. Fig. 3 shows the input
to the atlas algorithm and the estimated template. The aver-
age shape given equally rotated ellipses were expected to be a
circle. A perfect circle shape was recovered as the estimated
template by our algorithm.
Experiments with brain images from ADNI:
The geodesic regression was performed on longitudinal scans
of a subject with Alzheimer’s disease (AD) from the ADNI
database (adni.loni.ucla.edu). This individual had MRI scans
taken at uneven time intervals, i.e., at ages = 70.75, 71.38,
71.78 and 72.79. Fig. 4 (top) shows the original MRI scan
data: comparison of the MRI scans with the baseline scan
at age=70.75. Expansion of lateral ventricles in this individ-
ual is more evident by the end of second year of scan. Our

geodesic regression algorithm captures the estimates of the
smooth trend of atrophy (Fig. 4 (bottom)). To illustrate reli-
ability of our method, we use the estimated initial conditions
to predict the future trend of atrophy for this Alzheimer’s
subject. The estimated 3D MRI template at t = 70.75 is
evolved for 6 years in the future via EPDiff Equations (1).
The resulting generated brains exhibit a clear trend in shrink-
ing hippocampus, and expanding ventricles along with cere-
bro spinal fluid across the whole brain with time. These pat-
terns of atrophy are well known to characterize the disease
progression in AD. Fig. 6 shows our atlas estimate of 50 cog-
nitively normal subjects in ADNI database.
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