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Abstract. Hierarchical linear models (HLMs) are a standard approach
for analyzing data where individuals are measured repeatedly over time.
However, such models are only applicable to longitudinal studies of Eu-
clidean data. In this paper, we propose a novel hierarchical geodesic
model (HGM), which generalizes HLMs to the manifold setting. Our
proposed model explains the longitudinal trends in shapes represented as
elements of the group of diffeomorphisms. The individual level geodesics
represent the trajectory of shape changes within individuals. The group
level geodesic represents the average trajectory of shape changes for the
population. We derive the solution of HGMs on diffeomorphisms to es-
timate individual level geodesics, the group geodesic, and the residual
geodesics. We demonstrate the effectiveness of HGMs for longitudinal
analysis of synthetically generated shapes and 3D MRI brain scans.
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1 Introduction

A longitudinal study of neuroanatomical aging, development and disease pro-
gression necessitates modeling anatomical changes over time. A convenient rep-
resentation of anatomical variability is via maps of diffeomorphisms, which are
topology-preserving smooth and invertible transformations of a template image.
Recently proposed methods, such as geodesic regression [5, 10, 11], effectively
represent smooth trajectories of changes in anatomy. However, regression is not
an appropriate model of longitudinal data.

Related work [3, 4, 7] estimate the group trajectory by averaging individ-
ual trajectories in the diffeomorphic setting. Durrleman et. al [3] estimates a
spatiotemporal piecewise geodesic atlas. Although this method estimates a con-
tinuous evolution of spatial change, it does not guarantee smoothness of the
resulting average estimate across the time span. The average shape trajectory
estimates by Fishbaugh et. al [4] are also not guaranteed to be smooth in time.
The approach based on stationary velocity fields presented in [7] does not model
distances between trajectories, which makes it difficult to compare the differences
in trends for statistical analysis.

Another important shortcoming of the contemporary methods of averaging
trajectories is that they do not apply when the time ranges of measurements
of individuals are staggered. For instance, [3] and [4] both require extrapolation
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and resampling for each individual trajectory estimates outside their time-range
before an average evolution of the population can be computed. Muralidharan et.
al [9] address these problems and estimate smooth geodesic representations for
individual and group trends for a population of staggered individual measure-
ments. They utilize a Sasaki metric on the tangent bundle of the manifold of
finite-dimensional shapes to compare geodesic trends. However, their methods
are difficult to apply to the infinite-dimensional space of diffeomorphic transfor-
mations, due to the need for curvature computations of the underlying manifold.

In this paper, we present a hierarchical geodesic model (HGM) on diffeomor-
phisms that generalizes classical hierarchical linear models (HLMs) on Euclidean
spaces. HGMs utilize the metric on the space of diffeomorphisms to define the
group geodesic given a population of geodesics. It applies to commonly occurring
unbalanced designs in medical imaging data where measurements are staggered,
i.e., not every individual is measured at the same time points. The consequence
of this modeling is an estimate of a smooth “average geodesic” and a common
reference coordinate system to represent longitudinal trends of multiple individ-
uals for longitudinal studies.

2 Hierarchical Geodesic Models

We begin by defining HGMs in the simplest scenario in which the data lie in a
Euclidean space. In this case, the geodesic models of longitudinal trends reduce
to straight lines, and we give a procedure for estimation of model parameters
defining the group level trend in a hierarchical fashion. We later present the
generalization of this model and its estimation to diffeomorphisms.

2.1 Hierarchical Geodesic Models in Euclidean Space

Consider the univariate longitudinal case with independent time variable, t, and
dependent response variable, y. Say we are given a population of N individuals
with Mi measurements for the ith individual. The design can be unbalanced,
meaning there are potentially a different number of measurements for each in-
dividual. Denote yij as the jth measurement of the ith individual at time tij .
Motivated by classical hierarchical linear models [6] for repeated measurements,
this is modeled in two levels as

Group Level: Individual Level:
ai ∼ N (α+ βti0, σ

2
I ) yij ∼ N (ai + bi(tij − ti0), σ2

i )
bi ∼ N (β, σ2

S)

The estimation of the parameters for this model proceeds in two stages. First,
the individual level parameters ai and bi are estimated. These estimates are then
used to estimate α and β at the group level. The solution to this model thus
corresponds to minimizing the negative log-likelihood at individual and group
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levels, respectively, where

− log(p(yij |ai, bi)) =
1

2σ2
i

Mi∑
j=1

[yij − (ai + bi(tij − ti0))]2 (1)

− log(p(ai, bi|α, β)) =
1

2σ2
I

N∑
i=1

[(α+ βti0)− ai]2 +
1

2σ2
S

N∑
i=1

[β − bi]2 (2)

Individual level: The solution for the slope-intercept pair, ai, bi, in the indi-
vidual level that minimize (1) is given by the standard ordinary least-squares
regression solution. An equivalent solution more directly generalizable to the
diffeomorphic case is to solve this problem as an optimal control, as detailed in
[10]. This is done by adding Lagrange multipliers to constrain the curves to be
straight lines and derive the system of equation termed the adjoint equations.

Group level: The maximum likelihood group estimate represents an “average
line”, α(t), that best matches the individual lines, (ai, bi), in least-squares sense.
From an optimal control viewpoint, we add Lagrange multipliers to constrain
the curve α(t) to be a straight line. This is done by introducing time-dependent
adjoint variables, λα and λβ , in the log-likelihood in (2), giving

E(α, β) =

∫ tN

0

(λα(α̇− β) + λβ β̇)dt+
1

2

N∑
i=1

( 1

σ2
I

(α(ti)− ai)2 +
1

σ2
S

(β(ti)− bi)2
)

The gradients of this functional are δα(0)E = −λα(0−) and δβ(0)E = −λβ(0−).

These are evaluated by integrating backwards the adjoint equations, −λ̇α = 0,
and λ̇β = −λα, subject to the following boundary and jump conditions:

λα(tN ) = − 1

σ2
I

(α(tN )− aN )

λβ(t+k )− λβ(t−k ) =
1

σ2
S

(β(ti)− bi)

λβ(tN ) = − 1

σ2
S

(β(tN )− bN )

λα(t+k )− λα(t−k ) =
1

σ2
I

(α(ti)− ai)

Notice that unlike least squares regression, the velocity term in the group
log-likelihood at group level also influences the group estimate. In particular,
the jumps in integrating λβ are interpreted as the forces by the initial velocities
pulling the group geodesic. The solution for α(0) and β(0) in this Euclidean case
corresponds to the solution of the linear system Ax = b, where:

A =

(
N 1
σ2
I

1
σ2
I

∑N
i=0 ti

1
σ2
I

∑N
i=0 ti N 1

σ2
S

+ 1
σ2
I

∑N
i=0 t

2
i

)
, b =

(
1
σ2
I

∑N
i=0 ai

1
σ2
I

∑N
i=0 aiti + 1

σ2
S

∑N
i=0 bi

)

Notice that if there is no slope term in the energy functional, i.e., as σ2
S → ∞,

this reduces to the standard ordinary least squares solution for linear regression.
An example of synthetically generated longitudinal data is shown in Figure 1.
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Fig. 1. Comparing HGM and OLS in Euclidean space.

This example illustrates the importance of modeling correlations within each in-
dividual by including individual slope terms in the likelihood function. Ignoring
these correlations leaves us with a simple linear regression fit to the data, which
does not reflect the longitudinal trends that individuals experience. In contrast,
the group trend, α(t), estimated in the hierarchical model by including slope
terms, better summarizes the average behavior of the individual trends.

2.2 Background on Diffeomorphisms

We follow the well-established framework of large deformation diffeomorphic
metric mapping (LDDMM) [2, 12]. Before introducing our longitudinal model on
manifold of anatomical shape changes, we briefly review some necessary back-
ground of the mathematical framework of diffeomorphisms.

Diffeomorphisms: Let Ω be the coordinate space of the image, I. A diffeomor-
phism, φ(t), is constructed by the integration of an ordinary differential equations
(ODE) on Ω defined via a smooth, time-indexed velocity field, v(t). The defor-
mation of an image I by φ is defined as the action of the diffeomorphism, given
by φ · I = I ◦φ−1. The choice of a self-adjoint differential operator, L determines
the right-invariant Riemannian structure on the collection of velocity fields with
the norm defined as, ‖v‖2 =

∫
Ω

(Lv(x), v(x))dx.

Deformation momenta and EPDiff evolution: The tangent space at iden-
tity, V = TIdDiff(Ω) consists of all vector fields with finite norm. Its dual space,
V ∗ = T ∗

IdDiff(Ω) consists of vector-valued distributions over Ω. The velocity,
v ∈ V , maps to its dual deformation momenta, m ∈ V ∗, via the operator L such
that m = Lv and v = Km. The operator K : V ∗ → V denotes the inverse of L.
Note that constraining φ to be a geodesic with initial momentum, m(0) implies
that φ,m, and I all evolve in a way entirely determined by the metric L, and
that the deformation is determined entirely by the initial deformation momenta,
m(0). Given the initial velocity, v(0) ∈ V , or equivalently, the initial momentum,
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m(0) ∈ V ∗, the geodesic path φ(t) is constructed as per the following EPDiff
equations [1, 8]:

∂tm = −ad∗
vm = −(Dv)Tm−Dmv − (div v)m (3)

where D denotes the Jacobian matrix, and the operator ad∗ is the dual of the
negative Jacobi-Lie bracket of vector fields [1, 8, 12] such that, advw = −[v, w] =
Dvw−Dwv. The deformed image I(t) = I(0)◦φ−1(t), evolves via: ∂tI = −v ·∇I.

Fig. 2. Hierarchical geodesic modeling in diffeomorphisms.

2.3 Hierarchical Geodesic Models for Diffeomorphisms

Similar to the setup discussed for Euclidean data, we are given a population
of N individuals with Mi measurements for the ith individual. There can be
a variable number of measurements for each individual. Denote Hij as the jth
measured image of the ith individual at time tij .

Figure 2 shows a schematic of the HGM. We model geodesic trend for an
individual with a diffeomorphism, ξi(t) (brown). The initial image, or intercept,
Ji(0), and the initial momenta, or slope, ni(0), fully parameterize the trajectory
for the ith individual. At the group level, we model the group geodesic trend
with the diffeomorphism, ψ(t), (red) starting at identity, parameterized by ini-
tial momenta, m(0). Let φi denote the diffeomorphism that matches individual
baseline Ji(0) from identity and ρi denote the residual geodesic between ψ(ti)
and φi: ρi = φi ◦ ψ−1(ti). The initial momenta, pi(0), parameterize residual, ρi.

We now present the hierarchical geodesic estimation procedure on diffeomor-
phisms in two stages. For the first stage, we note that estimates at individual
level amounts to solving N geodesic regression problems for each individual as
proposed in [10, 11]. We briefly review it here under the vectorized deformation
momenta formulation (details in [11]). In the second stage at the group level,
we address the more interesting question of averaging the individual geodesics
in the space of diffeomorphisms.

Individual level: Given Mi observed images Hij at time points tij for an
individual such that j = 1, . . . ,Mi, the geodesic that passes closest, in the least
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squares sense, to the data minimizes the energy functional:

E(Ji(0), ni(0)) =
1

2
‖ni(0)‖2K +

1

2σ2
i

Mi∑
j=1

‖Ji(tij)−Hij‖2L2

where Ji(0) and mi(0) are the initial “intercept” and “slope” to be estimated
that completely parameterize the geodesic for the ith individual. Here, Ji(t) =
ξi(t) · Ji(0) and ‖.‖K is the norm defined by the kernel, K, in the dual space of
momenta, as per the metric induced by Sobolev operator, L, on velocity fields.
This is done by adding time-dependent Lagrange multipliers,n̂i, Ĵi, and ŵi, to
constrain ξi(t) to be along the EPDiff geodesic path:

Ẽ(Ji(0), ni(0)) = E +

∫ 1

0

〈n̂i, ṅi + ad∗
wini〉L2dt

+

∫ 1

0

〈Ĵi, J̇i +∇Ji · wi〉L2dt+

∫ 1

0

〈ŵi, ni − Lwi〉L2dt.

The variation of Ẽ with respect to the initial momenta is

δni(0)Ẽ = K ? ni(0)− n̂i(0) (4)

The optimality conditions for ni and Ji result in the time-dependent adjoint
system of ODEs which are integrated backward in time to obtain n̂i(0) to
compute gradient update in (4). The variation of Ẽ with respect to the initial
image, δJi(0)Ẽ , can be directly computed from the energy functional, Ẽ . Since

Ji(t) = ξi(t) · Ji(0) = Ji(0) ◦ ξ−1
i (t), a change of variables for ξi, followed by

taking the derivative with respect to Ji(0), results in the closed form solution
for optimum initial image, Ji(0), as

Ji(0) =

∑Mi

j=1Hij ◦ ξi(tij)|Dξi(tij)|∑Mi

j=1 |Dξi(tij)|
.

Note that the solution to the geodesic regression problem presented in [10] is
based on optimization over scalar deformation momentum. In our formulation,
the evolution of the geodesic and adjoint system is decoupled from the template
image resulting in a closed-form for image update. In the discussion that follows,
for clarity and ease of notation, we will use Ji = Ji(0) to denote the initial
“intercept” and ni = ni(0) to denote initial “slope” for an individual.

Group level: At the group level (Figure 2), the idea is to estimate the average
geodesic, ψ(t), that is a representative of the population of geodesic trends de-
noted by the initial intercept-slope pair, (Ji, ni), for N individuals, i = 1, . . . , N .
The required estimate for ψ(t) must span the entire range of time along which
the measurements are made for the population and must minimize residual dif-
feomorphisms ρi from ψ(t).
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Analogous to the Euclidean case, we propose a formulation that includes in-
fluences from forces by initial velocities along with initial intercepts from each
individual. The following energy functional generalizes the log-likelihood pre-
sented for the group estimate in the Euclidean case:

E(ψ, ρi, I(ti)) =
1

2
d(e, ψ(1))2 +

1

2σ2
I

N∑
i=1

(
d(e, ρi)

2 + ‖ρi · I(ti)− Ji‖2L2

)

+
1

2σ2
S

N∑
i=1

‖ρi ·m(ti)− ni‖2K ,

where d is the distance metric on diffeomorphisms, which corresponds to the
norm of initial momentum under unit-time parameterization of the geodesic.
The energy, E , is to be minimized subject to geodesic constraints on ψ(t) and ρi
for i = 1, . . . , N . Here, σ2

I and σ2
S represent the variances corresponding to the

likelihood for the intercept and slope terms respectively. Also, ρi · I(ti) is the
group action of the residual diffeomorphism ρi on the image, I(ti), and ρi ·m(ti)
is its group action on the momenta, m(ti). This group action on momenta also
coincides with the co-adjoint transport in the group of diffeomorphisms.

The above energy functional is written in terms of initial conditions of the
group geodesic as:

E(ψ, ρi,m(0), pi(0), I(0)) =
1

2
‖m(0)‖2K

+
1

2σ2
I

N∑
i=1

(‖p(0)i‖2K + ‖ρi · ψ(ti) · I(0)− Ji‖2L2)

+
1

2σ2
S

N∑
i=1

‖ρi · ψ(ti) ·m(0)− ni‖2K .

This optimization problem corresponds to jointly estimating the group geodesic
flow, ψ, and residual geodesic flows, ρi, and the group baseline template, I(0).

Evaluating gradients of E: We introduce the time-dependent Lagrange mul-
tipliers, m̂, Î, v̂ to constrain the group trend, ψ, to be a geodesic and p̂i, ρ̂i, ûi to
constrain the residuals, ρi, to be geodesics. We write the augmented energy as:

Ẽ = E+∫ 1

0

〈m̂, ṁ+ ad∗
vm〉L2dt+

∫ 1

0

〈Î , İ +∇I · v〉L2dt+

∫ 1

0

〈v̂,m− Lv〉L2dt+

N∑
i=1

∫ 1

0

〈p̂i, ṗi + ad∗
uipi〉L2ds+

∫ 1

0

〈ûi, pi − Lui〉L2ds+

∫ 1

0

〈ρ̂i, ρ̇i ◦ ρ−1
i − ui〉L2ds.

The variation of the energy functional Ẽ with respect to all time dependent
variables results in ODEs in the form of dependent adjoint equations with bound-
ary conditions and added jump conditions. For clarity we report derivatives first
for the residual geodesics followed by that for the group geodesic.
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For the residual geodesics, ρi parameterized by s: The resulting adjoint systems
for the residual geodesics for i = 1, . . . , N are:

ûi − ˙̂pi + adui p̂i = 0

ρ̂i − Lûi − ad∗
p̂ipi = 0

− ˙̂ρi − ad∗
ui ρ̂i = 0

 (5)

with boundary conditions:

p̂i(1) = 0, and ρ̂i(1) =− 1

σ2
I

[(
I(ti) ◦ ρ−1

i − Ji
)]
∇(I(ti) ◦ ρ−1

i )

− 1

σ2
S

(
ad∗
K?[Ad∗

ρi
−1m(ti)−ni]Ad∗

ρ−1
i
m(ti)

)
 (6)

The gradients for update of initial momenta, pi for residual diffeomorphisms are:

δpi(0)Ẽ =
1

σ2
I

K ? pi(0)− p̂i(0). (7)

The initial momenta, pi(0), for each individual is updated via gradient descent,
using the gradient in (7), by first evaluating p̂i(0) via backward integration of N
adjoint systems in (5) starting from initial conditions in (6) for each individual.
It is important to note that the residual diffeomorphisms, ρi, are not estimated
using the usual image matching solution. Rather, this estimate maximizes the
combined matching of both the base image Ji with I(ti) under the group action
on images, and the momentum ni with m(ti) under the co-adjoint transport,
jointly over all the individuals.

For the group geodesic parameterized by t: The resulting adjoint system for the
group geodesic:

− ˙̂m+ advm̂+ v̂ = 0

− ˙̂
I −∇ · (Îv) = 0

−ad∗
m̂m+ Î∇I − Lv̂ = 0

 (8)

with boundary conditions:

Î(1) = 0, and m̂(1) = 0, (9)

with added jumps at measurements, ti, such that,

Î(ti+)− Î(ti−) =
1

σ2
I

|Dρi|(I(ti) ◦ ρ−1
i − Ji) ◦ ρi

m̂(ti+)− m̂(ti−) =
1

σ2
S

Adρ−1
i

(
K ? (Ad∗

ρ−1
i
m(ti)− ni)

)
 (10)

Finally, the gradients for update of the initial group momentum is:

δm(0)Ẽ = K ?m(0)− m̂(0) (11)
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The variation of Ẽ with respect to the group initial image, δI0 Ẽ , can be directly
computed from the energy functional, Ẽ . Since, ρi ·ψ(ti) · I(0) = I(0) ◦ψ−1(ti) ◦
ρ−1
i (1) = I(0)◦φ−1, a change of variable for φi followed by taking the derivative

with respect to I(0) results in the closed form solution for optimum initial image,
I(0), for the group geodesic as:

I(0) =

∑N
i=1 J

i ◦ φi|Dφi|∑N
i=1 |Dφi|

(12)

During the joint optimization for computing group geodesic, the initial mo-
menta, m(0), is updated via gradient descent, using the gradient in (11), by first
evaluating m̂(0) via backward integration of the adjoint system for the group in
(8) starting from initial conditions in (9) with added jumps in (10). This can
be interpreted as forces influencing the group geodesic by the individual initial
images, Ji, and the momenta, ni, that parameterize the individual trends. Thus,
in effect, such a formulation incorporates the pull arising from the “differences”
in the individual trajectories with the group trajectories and not just their base
images. The energy functional at the group level is jointly minimized such that
the group estimates, I(0),m(0), and all the N residual estimates, ρi(1), pi(0),
are updated at each iteration of gradient descent according to (7), (11) and (12).

3 Results

We evaluate our proposed model using synthetic and 3D-structural MRI data.
Our focus in these experiments is to evaluate our primary proposed contribution,
i.e., the estimation of group level trajectory given a population of trajectories.
In our experiments, the kernel K corresponds to the invertible and self-adjoint
fluid operator, L = −a∇2 − b∇(∇·) + c, with a = 0.01, b = 0.01, and c = 0.001.

Experiments with synthetic data: To test the group estimation in HGM,
we generated the synthetic data using the forward model. We first generated a
ground truth group geodesic in diffeomorphisms by solving the image matching
problem to give initial conditions, I(0), andm(0). The image, I(t), and momenta,
m(t), can be generated along the group geodesic via the EPDIff evolution equa-
tions. Figure 3 (first row) visualizes the trajectory of this group trend in terms
of sampled shapes along this geodesic: plus to flower.

To generate the individual, random perturbations from the group trend were
computed. This was done by generating initial conditions: images, Ji(0), and
momenta, ni(0), for the ith individual at time, ti. In particular, the Ji(0) are
constructed by shooting the image I(ti) along the group geodesic at time, ti,
with a randomly generate momenta that consequently also defines a residual
geodesic diffeomorphism ρi for this individual. Correspondingly, the initial indi-
vidual momenta, ni(0), are generated by co-adjoint transport of m(ti) along the
diffeomorphisms, ρi. In Figure 3 (second row), we visualize one such individual’s
own EPDiff geodesic evolution for which the initial conditions are generated at
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Fig. 3. First row: Synthetically generated ground truth group shape geodesic. Second
Row: An example of a perturbed individual starting at t=0.2. Twenty four randomly
perturbed individuals along the span of the geodesics were generated. Only the initial
conditions of the perturbed individuals were used in the group trend estimation. Third
Row: Recovered ground truth geodesic by HGM overlaid with difference in intensities
relative to ground truth (in red).

time t = 0.2. Using this procedure, we generate 24 such randomly perturbed
trends from the group trend.

It is important to note that the HGM algorithm only uses the initial condi-
tions of the individual geodesics as input, i.e., images, Ji(0), and initial momenta,
ni(0), for all individuals, i = 1, . . . , 24 for estimation of the group geodesics initial
conditions, m(0), and I(0). The resulting estimated group trend closely match
the ground truth geodesic, Figure 3 (third row). Head-to-head comparison of the
initial conditions between estimated and ground truth are depicted in Figure 4,
together with an example of one of the individual’s perturbed initial conditions.

Experiments with brain images from OASIS: We performed HGM anal-
ysis on longitudinal 3D-MRI sequences for seven individuals diagnosed with
Alzheimer’s disease with maximum scan range of 5 years. At the individual
level of HGM, seven geodesic regressions are performed independently on the
time-series of scans. At the group level, the initial conditions of the average
geodesic are estimated based on the estimated initial conditions of seven indi-
viduals at individual level. The naive serial implementation of this algorithm
took 7.5 hours to run 500 iterations of gradient descent for optimization on this
dataset. Figure 5 reports the estimated initial conditions for the group geodesic
at age=66 for different level of noise variance in intercept and slope terms.

We observe that forcing both the image and momenta to match the corre-
sponding initial conditions of individual geodesics results in a different estimate
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Fig. 4. Left: Initial conditions, intercept image and slope for ground truth group
geodesic. Center: Example of the initial conditions for one perturbed individual from
the group trend. Right: Recovered initial conditions for the group geodesic from ran-
domly perturbed initial conditions using 24 individuals.

of initial conditions for the group geodesic when compared to ignoring the mo-
menta and forcing the image matching alone. For higher variance on the mo-
menta matching term (σ2

S → ∞), the resulting deformation directions exhibit
patterns of deformation across the whole brain (Figure 5, Left). This is because
variability across the subjects is very high. These deformations are capturing
variability in brain shape across the population more than representing an av-
erage trajectory within an individual and hence is not a representative of the
longitudinal trend in the population.

On the other hand, lowering the variance in the momenta matching term
(σS = 0.1, σI = 0.1, Figure 5, Right) results in deformation patterns around
regions expected to be changing for an individual as time progresses. In partic-
ular, the information about individual trajectories are taken into account in the
averaging process more than inter-subject variability information, thus resulting
in an average shape change that represents the longitudinal trend in the pop-
ulation. This is in accordance with the simple Euclidean case presented earlier
(Figure 1), where ignoring the velocity matching results in an average line that
does not represent the longitudinal variability in the population and hence fail
to represent an average trajectory of changes in the dependent variable.
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U01 AG024904, R01 MH084795 and P41 RR023953, and NSF CAREER Grant
1054057.
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