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Abstract—We present a common framework, for registering
images to an atlas and for forming an unbiased atlas, that tol-
erates the presence of pathologies such as tumors and traumatic
brain injury lesions. This common framework is particularly
useful when a sufficient number of protocol-matched scans from
healthy subjects cannot be easily acquired for atlas formation
and when the pathologies in a patient cause large appearance
changes.

Our framework combines a low-rank-plus-sparse image de-
composition technique with an iterative, diffeomorphic, group-
wise image registration method. At each iteration of image
registration, the decomposition technique estimates a ‘healthy”
version of each image as its low-rank component and estimates
the pathologies in each image as its sparse component. The
healthy version of each image is used for the next iteration of
image registration. The low-rank and sparse estimates are refined
as the image registrations iteratively improve.

When that framework is applied to image-to-atlas registration,
the low-rank image is registered to a pre-defined atlas, to
establish correspondence that is independent of the pathologies
in the sparse component of each image. Ultimately, image-to-
atlas registrations can be used to define spatial priors for tissue
segmentation and to map information across subjects.

When that framework is applied to unbiased atlas formation,
at each iteration, the average of the low-rank images from the
patients is used as the atlas image for the next iteration, until
convergence. Since each iteration’s atlas is comprised of low-rank
components, it provides a population-consistent, pathology-free
appearance.

Evaluations of the proposed methodology are presented using
synthetic data as well as simulated and clinical tumor MRI
images from the brain tumor segmentation (BRATS) challenge
from MICCAI 2012.

Index Terms—Low-Rank and Sparse Decomposition, Sparse
Images, Unbiased Atlas , Atlas-based Segmentation

I. INTRODUCTION

EREIN we present a common framework for (1) regis-
tering images to atlases and (2) forming unbiased atlases
from a collection of images. This framework specifically ad-
dresses the challenging situation in which the images contain
large, deformation inducing, unsegmented pathologies.
Image-to-atlas registration is used to assess and plan the
treatment of patients suffering from traumatic brain injuries
(TBI), brain tumors, or stroke [1]. For these cases, image-
to-atlas registration is used to estimate tissue priors and to
map adjunct information, such as functional site locations,
from that atlas into the patient. However, when those patient
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images contain large lesions, then lesion-induced appearance
changes may inhibit image-to-atlas registrations and confound
the tissue priors and mappings.

Atlas image formation typically involves registering im-
ages from a sample of healthy subjects, however, in clinical
practice, acquiring such a collection of images can be time
consuming, expensive, and possibly pose a risk to the healthy
subjects. For research projects having limited time and finan-
cial resources or involving new imaging protocols or children,
it can be problematic to obtain a sufficient number of protocol-
matched scans from healthy subjects for atlas formation.

Several excellent approaches to image-to-atlas registration
involving images containing pathologies have been previously
proposed. One of the most straightforward methods to elim-
inate a lesion’s influence during registration is “masking.”
Masking prevents a lesion’s content from being considered
during the computation of the image similarity metric. Other
methods attempt to address this problem by joint registration
and segmentation which tolerates missing correspondences [2],
geometric metamorphosis that separates estimating healthy
tissue deformation from modeling tumor change [3], or person-
alized atlas construction that accounts for diffeomorphic and
non-diffeomorphic changes [4]. While effective, these methods
require explicit lesion or anatomical structures segmentations
or initial tumor localizations which, in many cases, are actually
the goal of the process. In [5], a patient-specific, piecewise,
most-similar atlas was proposed by combining subgroups of
images selected for each local region. The selection criterion
was based on the degree of contraction and dilation of the
structures, thus it can tolerate anatomical variabilities. The
patient-specific atlas was then used for anatomical structure
segmentations for head and neck CT images.

On the other hand, forming an unbiased atlas from images
containing pathologies has not been the focus of much re-
search. However, unbiased atlas formation when lesions are
not present has been well studied in the context of estimating
within-population variability and cross-population differences
[6]. During most of those atlas formation processes, individual
images are iteratively mapped into a common coordinate sys-
tem. This construction process can be formulated as a Fréchet
mean estimation via diffeomorphic image registrations. Typ-
ically, lesions in the input images would not only degrade
registration accuracy but also propagate into the resulting atlas
and corrupt its variability estimates.

We propose to eliminate the effects of lesions during
image-to-atlas registration and atlas formation by leveraging
the inherent low-rank structure of the input data. This is
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combined with separating out the sparse components in the
data which are not consistent with the low-rank structure.
This technique, commonly referred to as low-rank plus sparse
matrix decomposition [7] can mitigate the confounding ef-
fects of the pathologies. In a preliminary study, cf. [8], we
have shown how low-rank plus sparse decomposition can be
integrated into an iterative image registration framework to
match individual images containing pathologies to a normal
atlas. In this article, we briefly review that work and present a
common framework that encompasses that work and extends
it to include estimating an unbiased low-rank atlas from data
containing pathologies. The common framework represents a
new theoretic focus and results in implementation improve-
ments to the original work, e.g., introduces a non-greedy
optimization strategy. Correspondingly, the experiments in this
paper are new and primarily focus on the parameters and
robustness of the common framework and its application to
unbiased atlas formation, rather than focusing on individual-
to-atlas registration evaluation as in [8].

The advantages of unbiased, low-rank atlas formation are
two-fold: (1) population information is exploited to assess
which parts of an image are likely lesions (i.e., they are
inconsistent with the population) and which parts of an image
should be considered normal anatomy. This is done without
explicit individual pathology segmentations; and (2) the recov-
ery of the low-rank structures replaces the visual appearance of
the lesion regions (in each image) with population-consistent
normal appearance. As a result, the effect of pathologies on
the estimated atlas is greatly reduced, if not eliminated.

The paper is structured as follows: Section II introduces
the proposed methodology. Section III presents experimen-
tal results on both synthetic and clinical data, evaluated in
comparison to conventional image-to-atlas registration and
unbiased atlas building methods. Advantages and limitations
of the method are discussed in Section IV.

II. METHODOLOGY

We first introduce the low-rank and sparse decomposition
technique (Section II-A ) and the classic unbiased atlas for-
mation method (Section II-B), which are key components of
our proposed framework (Section II-C).

A. Low-rank and sparse decomposition

In [7] Peng et al., the authors propose to decompose a
matrix of vectorized images into the sum of a low-rank and a
sparse component in the context of simultaneous rigid image
alignment. The intuition is that the portion of each image
that cannot be explained by the low-rank model is allocated
to the sparse part. Hence, the low-rank component could be
interpreted as a blending of recorded values and values inferred
from the population; the sparse component then contains
each subject’s anomalous values. Technically, the allocation
of image intensities to each of those components is driven by
the amount of linear-correlation across the images. Given a
collection of n images with m voxels, we have:

D a M x N matrix in which each image [I; is a column

vector that contains the m spatially-ordered voxel
intensities in I;.

L a M x N matrix that contains the low-rank repre-
sentations L; for each of the images in the collection
D.

S a M x N matrix that is the sparse component such

that S; = D; — L;.
The low-rank representation of D is then defined as

{L*, 8"} =argmin(|| L[|« + Al[S]l1)
L,S (D
subjectto D=L+ S

where || - ||« denotes the nuclear norm (surrogate for the rank)
and ||-||; denotes the 1-norm (surrogate for sparsity). The opti-
mal {L*, S*} can be efficiently computed using an augmented
Lagrangian multiplier approach [9]. The optimization problem
is convex as both the nuclear and the 1-norm are convex, the
constraint is linear and the problem is defined over a convex
domain. Hence, a globally optimal solution can be obtained.
By defining

X ={L, 5},
X)) = 1L + AS], (2)
MX)=D-L-S

we can solve the low-rank representation using an augmented
Lagrangian function, which is defined as

9(L, S, Y, ) =| LIl + A|Slli+ <Y,D—L—§ >

I 3)
+§HD*L*SH%

where Y is the Lagrange multiplier and p is a positive scalar of
the ALM (Augmented Lagrangian Multiplier Method). More
implementation details can be found at [9].

B. Unbiased low-rank atlas formation

An unbiased atlas of a sample population is defined as the
representative image I that requires the least amount of energy
to deform into each individual image I; from the population
[6]. The energy can be formulated as:

E({®;},1) ZReg + - Szm[I o ®;, 1],
2 1 7112
:Z/ rvi(8)[2dt + 11 0 ; — 112,
i=1"0 g
tM = Ui((pi,t),t € [0, ].]

dt
“4)

where the regularity term Reg[®;] measures the smoothness
of the deformation, and the similarity term Sim[I; o ®;, ]
measures the differences between the estimated atlas and the
deformed individual images. The deformation fields ®;(t) are
defined as the flow of smooth time-indexed velocity fields
v;(t) and are generated by integrating v;(t), forward in time.
The penalty on the diffeomorphic deformation between the
pair of images are formulated as the Sobolev norm via a
partial deferential operator ~ on the time-dependent velocity
vector fields v(¢). This differential operator x also governs
the smoothness of the resulting deformation fields. Image
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similarity is measured by the the sum-of-squared intensity
differences (SSD): ||I; o ®; — I||3.

The minimization of the energy in Eq. (4) can then be
simplified by an alternating optimization scheme in which,
for fixed ®;, the image I that minimizes the energy is the
voxel-wise arithmetic mean of the deformed images:

1 N
==Y Liod,. 5)
Ni:l

The stability convergence study in [0] suggests that roughly
ten images are needed to create a stable atlas representing
neuroanatomy.

C. Iterative low-rank image registration framework

In our preliminary study [8], we have proposed to integrate
low-rank plus sparse decomposition into an iterative registra-
tion framework in which a group of input images, potentially
containing large pathologies and deformations, are registered
to a normal-control atlas. Our premise is that by identifying
the low-rank plus sparse components of each input image, its
low-rank component, which contains reduced or eliminated
pathologies, can be more accurately registered with a normal-
control atlas, compared to the direct registration of an image
containing a pathology to an atlas.

The low-rank plus sparse decomposition exploits the fact
that lesions generally do not manifest in consistent locations
or with consistent appearance in populations. These incon-
sistencies result in lesions being reduced in the low-rank
component and allocated to the sparse component. In this
iterative registration framework, we seek to minimize the
following energy:

E({®;},1) ZReg
where ¢ denotes the identifier of input image I;, Reg[®;] is
the regularity measure for deformation ®;, penalizing spatially
non-smooth transformations; L; is the low-rank image from
the low-rank plus sparse matrix decomposition; I is the target
reference image to which each L; is mapped onto during each
registration step and Sim|[L; o ®;, I ] is the image similarity
measurement between the deformed low-rank image L; o ®;
and the atlas .

When applying this framework to atlas-based segmentation
applications, I is fixed to be a provided atlas which is often
a population atlas formed by a group of selected images from
healthy individuals from unrelated imaging sources.

When extending this framework to forming an unbiased
atlas, on the other hand, the goal is to estimate an atlas such
that it is central with respect to the data population. In this
sense, we replace I in the above framework with an average
low-rank image L which will converge to an unbiased atlas of
the low-rank population, namely the unbiased low-rank atlas.
The advantage of the low-rank atlas is its ability to recover a
“normal” atlas from “corrupted” input images.

Our alternating optimization strategy to solve the minimiza-
tion problem with energy Eq (6) is as follows: we first keep

—|— Szm[L o®;, 1], (6)

L fixed while solving for {®;} and subsequently keep the
transformations {®;} fixed while solving for L. The first part
performs independent pairwise registrations between L; and
the fixed image L. The second part requires minimizing the
dissimilarity measurement

N
Ly=> L~ L3, (7)
i=1
which is achieved by the arithmetic mean of the images, i.e.,
L XN
L:N;Lio@. (8)

Note that when fixing the atlas L, unbiased atlas construc-
tion simplifies to a group-wise registration. The group-wise
approach is essential because it allows for improved decom-
position of the images into low-rank/sparse components.

The general unbiased low-rank atlas framework for our
method is shown in Fig. 1. The algorithm steps are listed as
follows:

(0) Initialization: Affinely align input images, with respect to
(w.r.t.) a common reference atlas image, to prepare the
initial iteration data I ?, set k=1;

(1) For iteration k, compute the low-rank image L¥ from
{If,..,I%} via low-rank and sparse decomposition,
solving Eq. (1);

(2) Compute the arithmetic mean image L*  from
{L%, ..., Lk},
(3) Solve for diffeomorphic transforms {®%, ..., ®k }, each

®* maps the low-rank image L* o (V)= o the
current low-rank atlas L*;

(4) Apply the transforms from the previous step to update
the input images: 171 = 10 o @F;

(5) Set k + k + 1 and continue with step (1) until conver-

gence.

Note that in step (3) we first deform the low-rank image
LY back to the original input image’s physical space using
the inverse transform of the previous iteration’s deformation
( @f‘l) before calculating the mapping. The purpose is to
avoid accumulated errors when composing the deformations
over the iterations. This non-greedy strategy is theoretically
more rigious and is considered to be a major improvement
comparing to the greedy version proposed in [8]. Convergence
is reached when the total change in deformation is small
enough (a numerically small tolerance threshold can be set).

Setting the parameters of our equations is straightforward.
Convergence typically occurred within 5~10 iterations. The
weight A in Eq. (1) was adjusted for each data type, e.g.,
T2 MRI or FLAIR MRI. The range was roughly 0.5~1.0.
The weight could be determined by any of several factors,
including the type of imaging modality, sample size, im-
age dimensions, and lesion intensity contrast. At first, we
heuristically determined the weight for each experiment by
evaluating several different weights on the initial input images
for a low-rank and sparse decomposition, and we picked the
one which seemed to produce the best separation between
the low-rank/normal and the sparse/lesion variations within
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Fig. 1: An illustration of the proposed low-rank atlas formation framework, where I; refers to the i-th input image, D; is the i-th vector of
the input matrix D, L; is low-rank component of the input image and ¢; refers to the registration map generated from diffeomorphic image

registration at each iteration.

the populations. Subsequently, we conducted a simple weight
sensitivity study using the synthetic example. That study is
given in Section III-B2, and it revealed that our method
converges to similar results for a relatively wide range of
weight values.

The precise control of the quality of the decomposition

would require the precise quantification of the efficacy of the
sparse components, and such considerations are highly appli-
cation specific and beyond the scope of this initial theoretic
and exploratory paper.
Implementation. The proposed framework is largely imple-
mented in Python' and uses ANTS [10] for image regis-
trations. Running on 8-input MRI volumes (of a voxel size
140x190x 155 ) on a dual-core 16GB RAM PC takes about 3
to 5 hours. Each low-rank plus sparse decomposition merely
takes a minute and most of the computation time is spent
during dense diffeomorphic registrations. With recent advances
in adapting image registration algorithms to the GPU, total
runtime could potentially be reduced to minutes.

III. VALIDATION

In this section, we first introduce the evaluation metrics and
then present a series of experimental results.

A. Evaluation metrics

The following metrics are used to evaluate our iterative
atlas-based image registration framework:

1) TCSD for atlas-based segmentation accuracy: The
premise of atlas-based segmentation is that by registering an
atlas with a target image, the tissue labels in the atlas provide
spatial priors for the tissues in the target image. When image-
to-atlas registration is successful, the tissue labels of the atlas
should align with the corresponding tissue labels in the target
image. Therefore we compute the standard deviation of the
target image intensities under each tissue label in the atlas.
Smaller tissue-class standard deviation (TCSD) values indicate

Lavailable online at https://github.com/KitwareMedical/pyLAR

more accurate image-to-atlas registrations. It is important to
note that we exclude the tumor region when calculating TCSD
for each tissue class.

2) Dissimilarity Metrics for low-rank atlas estimation ac-
curacy: For simulated ground-truth (pathology-free) data to
which corruptions are artificially added, we can easily measure
the accuracy of the estimated low-rank atlas by comparing it
with an unbiased atlas formed from the ground-truth.

Two metrics are used to compare the atlases. First, we use
the same similarity metric, i.e., SSD, that we used to drive the
optimization in Eq. (4) to measure the dissimilarity between
the estimated low-rank atlas and the unbiased ground-truth
atlas. Second, we use geodesic distance (GD) which measures
the amount of diffeomorphic deformation it takes to match
one atlas to the other. Geodesic distance is calculated by
integrating the deformable registration’s velocity field over
time. In most cases these two metrics are consistent with each
other (e.g., larger SSD values typically indicate larger amounts
of deformation).

3) Visual inspection and entropy measurement for atlas
image quality: We can qualitatively assess the iterative reg-
istration process by visual examinations of the low-rank and
sparse components of each image, after each iteration.

In image-to-atlas registrations, a particular image’s sparse
component at the final iteration (i.e., after reaching conver-
gence) should be specific to the lesion(s). Conversely, at the
final iteration the low-rank component should contain only
healthy-looking tissue, that is well aligned with the healthy
atlas.

To visually evaluate the quality of the unbiased low-rank
atlas, we can inspect the appearance of the atlas image in
terms of the sharpness and shape of high-contrast structures.
Similar to conventional unbiased atlas formation, the low-
rank atlas obtained in the first iteration of the registration is
typically quite blurry and then sharpens up over the iterations.
Residues of pathology structures or missing normal structures
indicate unexpected low-rank plus sparse decomposition re-
sults, typically due to the fact that pathologies do not constitute
random corruptions of the image, but are rather structured
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Patient 1 2 3 4 5 6 7 8
Ours 467 422 449 480 463 43.0 473 623
BSpline 68.0 483 508 534 405 537 582 394

TABLE I: TCSD comparison to traditional BSpline image-to-atlas
registration for the GM class.

outliers. Quantitatively, we use image intensity entropy as
a goodness metric of the atlas image quality [6], [11]. The
discrete image entropy is defined as an expected uncertainty in
the random variable associated with the intensities of the given
image, yielding entropy measured in bits. Sharp images have
relatively low entropy, while blurry or noisy images (relatively
flat histograms) tend to have higher entropy.

B. Case studies

The following three data sources are used for validation: a)
simulated “bullseye” data, used as a toy example for testing
and illustration; b) synthetic tumor MRI images, generated
using TumorSim [12] and available as part of the BRATS 12
[13] challenge; c) clinical MRI from tumor patients, also
available as part of the BRATS 12 challenge.

1) Atlas-based tissue segmentation: Here we summarize a
study that we previously conducted to assess the utility of our
framework when a healthy atlas is used as the target atlas L
[8]. In this study, the SRI24 atlas [14] was used as the target
healthy atlas for image-to-atlas registrations and to provide
gray-matter (GM), white-matter (WM), and cerebrospinal fluid
(CSF) tissue labels. These labels enabled us to compute, after
registration, the TCSD metric of Section III-A1 for each tissue
class. A subset of 8 FLAIR images from the BRATS ’12
challenge data were used.

Quantitatively, the box plots in Fig. 2 show that the overall
TCSD for the GM class improves over the iterations. Each
box summarizes the TCDS values from all 8 patients at each
iteration. The numbers in Table I confirm that our framework
outperforms BSpline registration in most cases in this study.
However, our method performs worse on two cases, patients 5
and 8. On inspection, we realized that these images are quite
different from the six other images in the sample. Both have
much narrower and more distorted ventricles. Due to their
distinctive appearance the ventricular areas are allocated to
the sparse component instead of the low-rank component, and
thereby the ventricles are excluded from consideration during
registration and overall alignment quality is degraded. This
is a failing of our sample size; eight subjects are too few
to fully capture normal variability using our framework. If
more patient images with similar ventricular variations would
have been included, it is very likely that the low-rank plus
sparse decomposition would have been more effective and the
ventricles would have appropriately driven the registrations for
patients 5 and 8.

2) Low-rank atlas estimation results on bullseye data: We
simulated a group of bullseye images, see Fig. 3(a), for testing
and illustration purposes. Eight bullseye patterns (i.e., a 2D
image) are generated by composing three concentric disks of
different radii and intensity. The radii of the middle ring varies
in these images. These radii changes are meant to represent

70
+ Gray matter (GM)
r +
65 + + + + + + + +
D60 '
a_| -
ot - 0 E e
g =N =N NS
451 L - - T
+ + + - -
40 1 1 1 1 1 L 1 1 L 1
1 2 3 4 5 6 7 8 9 10
# iterations

Fig. 2: Change in TCSD values for GM labels transcribed from the
atlas after each iteration of our method.

normal anatomic variations. Furthermore, we inserted a bright
disk with random radius at a random location into each image,
to simulate pathologies.

Influence of the weight parameter on atlas generation:
In theory, the influence of the weight parameter could be
dependent on the type and size of the pathologies present,
sample size, amount of normal variation in the data, and
numerous other factors. We used the bullseye data to study its
influence in practice. Fig. 3(a), shows the first iteration of the
low-rank plus sparse decomposition results using two selected
weights. With the weight being 0.6, the initial decomposition
allocates not only the “tumor” to the sparse component, but
also some of the true structural variation, as illustrated by the
ring artifacts in Fig. 3(a). When the estimation converges after
seven iterations, the sparse components contains much less
non-tumor structures, while the low-rank component visually
appears much sharper and closer to the true mean geometry.
When the weight is set to be 1.0, after a single iteration the
separation between the background geometry and the inserted
“tumor” blobs are much cleaner as shown on the lower half of
the Fig. 3(a). After convergence, it too produced an atlas that is
appears to be similar to the true mean geometry. Most impor-
tantly, while neither weight produces optimal decompositions
for all cases in the first iteration, both weights do converge
after a similar number of iterations and do produce similar
atlas images that are very close to the ground truth.

A quantitative analysis of the influence of the weight
parameters on the final atlas generated is shown in Fig. 3(b).
The relatively flat curve between the weights 0.4 and 1.6, and
their small SSD values, shows that the proposed framework
converges to a stable low-rank atlas for a wide range of weight
values.

Influence of the portion of data containing pathologies:
In order to evaluate the robustness of the proposed method
to the presence of pathologies, we studied how the final atlas
varies when the portion of patients that contain pathologies
in the input population is changed. Specifically, we generated
various mixtures of the “tumor-free” and the “tumor” injected
data from the BRATS challenge and compared low-rank atlas
results with traditional unbiased atlas results using those
mixtures. The results are given in Fig. 3(c). Low-rank atlas
formation exhibits stable performance when the input sample
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has patients with no pathologies or when every patient has
a pathology, while traditional atlas building results degrade
dramatically when the portion of tumor data is increased in
the input sample.

3) Low-rank atlas estimation results from brain MRI with
simulated tumors: The synthetic brain tumor dataset in
BRATS’12 was created by injecting tumors into the MRI

data from five normal BrainWeb [|5] subjects. Tumors were
injected into the tumor-free images via a series of physical and
statistical modeling techniques [12]. Local image deformations
were induced to simulate inter-subject variations. While the
use of simulated inter-subject differences may induce bias
and degrade generalizability of results, the utility of this
data arises from being a public standard dataset used in the
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(a) Low-rank atlas estimation results, after a single iteration of our framework, on a group of 8 simulated bullseye images. The upper half shows the first
iteration low-rank and sparse decomposition result with a weight of 0.6: the top row shows the original input images, the second row shows the low-rank
components and the third row shows the sparse components; The lower half visualizes the first iteration decomposition results with a weight of 1.0. Note
that the sparse images are rescaled to highlight the differences for illustration.
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(b) SSD (to the ground-truth atlas) of the estimated low-rank atlas with varying weights
on the sparse component. The estimated atlases are displayed at four weight values from
the left to the right: 0.4, 0.6, 1.0 and 1.9. The ground truth atlas, for comparison, is
displayed on the rightmost.

(c) SSD comparison between the estimated low-rank at-
lases and the traditional unbiased atlases as the portion of
patients containing pathologies in the training sample is
increased.

Fig. 3: Evaluation of low-rank atlas building on the bullseye dataset.
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a) 8 input synthetic tumor FLAIR images

b) Unbiased Atlas c) Low-rank Atlas d) BrainWeb Atlas

Fig. 4: Low-rank atlas estimation results on synthetic FLAIR images:
a) The axial slices of the eight input FLAIR images. Our estimated
low-rank FLAIR atlas (c) is compared with the conventional unbiased
atlas (b) and the sample mean T1 atlas (d) formed from healthy
BrainWeb images.

b) Unbiased Atlas

c) Low-rank Atlas d) BrainWeb Atlas

Fig. 5: Low-rank atlas estimation results on synthetic T1 images : a)
The axial slices of the eight input T1 images. Our estimated low-rank
atlas (c) is compared with the conventional unbiased atlas (b) and the
sample mean T1 atlas (d) formed from healthy BrainWeb images.

BRATS MICCALI challenge and from the fact that the expected
unbiased healthy atlas for these data can be computed as
the unbiased atlas formed from the five healthy MRI images
(without tumor injection), which were used to generate the
tumor cases. We refer to this tumor-free atlas as the tumor-free

w.r.t. sample mean w.r.t. SRI24
SSD GD SSD GD
Unbiased atlas 4.08e8 1.88e-2 19.42e+8  1.91e-2
Low-rank unbiased atlas 4.29¢8 1.64e-2 18.64e+8  1.87e-2

TABLE II: Comparison of the T1 low-rank atlas with conventional
unbiased atlas using both SSD and geodesic distance (GD), with
respect to the sample mean (BrainWeb) and a population mean
(SRI24).

sample mean. A challenge with this data, however, is that the
tumor insertion software changes the intensities of all tissues
in the images, as can be seen from Fig. 5. Therefore, when
we compute the distance between estimated atlases and the
tumor-free sample mean, the mutual information (MI) metric
must be used instead of SSD.

Comparison with the tumor-free sample mean: Using 8
synthetic FLAIR images that have tumor(s) injected at differ-
ent locations in the brain, as shown in Fig. 4, we compared our
estimated low-rank FLAIR atlas (middle) with the traditional
unbiased atlas building results from that tumor data (left) and
the tumor-free sample mean (right). The geodesic distances
of the traditional unbiased atlas and the low-rank atlas to the
tumor-free sample mean are 1.29e-2 and 1.10e-2, respectively.
Our low-rank atlas is also slightly sharper (measured by image
entropy).

Influence of imaging modality: We repeated the above
experiment using the corresponding T1 images, as seen in
Fig. 5(a). This alternative MRI protocol was chosen because
in it the lesion intensity nearly matches the intensity range of
healthy tissues; potentially confounding the low-rank decom-
positions. Fig. 5(b)-(d) shows low-rank atlas results (middle) in
comparison with traditional unbiased atlas results (left) and the
tumor-free sample mean (right). We also computed the SSD
metric and geodesic distances between the computed atlases,
the tumor-free sample mean, and a published population atlas,
i.e., the SRI24 normal T1 atlas. Those results are given in
Table. II. The low-rank atlas has a slightly lower entropy
(3.5058) than the unbiased atlas (3.5071). The low-rank and
traditional atlases perform nearly equally well with respect
to the tumor-free sample mean in terms of SSD and GD,
and the the low-rank atlas was a much closer match to the
published population atlas than the traditional unbiased atlas.
As predicted, compared to the FLAIR images, the benefits
of our low-rank framework are reduced due to the reduced
conspicuity of the tumors, but the benefits of our framework
do persist.

4) Low-rank atlas estimation results from clinical brain
tumor data: The BRATS’12 challenge also provided clinical
FLAIR data from patients with brain tumors, see Fig. 6(a).
We used that data to illustrate the expected clinical utility of
low-rank atlas formation.

Large and high-contrast lesions in the clinical tumor data
makes the advantage of the low-rank strategy even pronounced
compared to the results from conventional atlas building,
which clearly fails as shown in Fig. 6(b). Our low-rank atlas
calculated from 16 input FLAIR images, see Fig. 6(c), recovers
major structures regardless of the presence of large tumors in
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e
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v

c) Corresponding low-rank images at the final iteration

d) Unbiased atlas e) Low-rank Atlas

Fig. 6: Low-rank atlas estimation results on real patients’ FLAIR
images: a) The axial slices of the 16 input FLAIR images. The sparse
images b) and low-rank images c) are in correspondence with the
input images. Our estimated low-rank atlas e) with an entropy of
3.13, is compared with the conventional unbiased atlas d) with an
entropy of 3.76).

*»—+ Unbiased Atlas
[| e Low-rank Atlas

1 2 3 4 5
Iteration

Fig. 7: Intensity entropy measurement over the iterations during the
atlas formation of 16 FLAIR images (Fig. 6) : unbiased atlas v.s.
low-rank atlas.

these clinical data. Fig. 7 shows the image entropy values for
each iteration during the atlas formation for both low-rank
atlas and unbiased atlas. As the low-rank atlas gets sharper
over the iterations, its entropy values decreases gradually. On
the other hand, the traditional unbiased atlas suffers from the
corrupted data from the beginning and can not recover with
more iterations.

@ ‘

Fig. 8: A low-rank atlas will be degraded when the training images
have tumors in consistent locations (indicated by the red and blue
arrows). The low-rank atlas (image at the far right and outlined in
red) contains tumor intensities at locations that repeatedly had tumors
in the training data.

IV. DISCUSSION AND CONCLUSION

The proposed low-rank image registration framework is able
to handle large pathologies / lesions when registering input
images to a normal atlas or when computing an unbiased atlas.
Its results are insensitive to the value of its main parameter,
the weight parameter which influences the allocation of image
data into low-rank and sparse components based on normal
variation observed in the training sample.

Our experiments show that the low-rank atlases produced
by our framework match well with the atlas that would have
been formed if the patients data did not contain tumors. The
atlases it produces are insensitive to the portion of training
patients that contain tumors. The atlases it produces are similar
to healthy population atlases.

The low-rank and sparse decompositions of each individ-
ual’s data can also serve as a spatial prior for tissue seg-
mentation. However, as discussed above, each image’s sparse
component may contain some ‘“normal” anatomic variation
that may arises due to (a) normal variation that isn’t well
represented by the sample, (b) limited lesion conspicuity
relative to normal anatomic variation, or (c) cross-patient
lesion correlations that cause those correlations to be assumed
as normal anatomy.

The method does require that the lesions are randomized
spatially across the training sample. This is especially critical
when the sample size is small, as normal anatomic variations
which are weakly represented may be incorrectly allocated
to the sparse component and common parts of the tumors
may be interpreted as normal anatomic variation and thereby
allocated to the low-rank component. For example, as shown
in Fig. 8 , when lesions repeatedly appear at nearly the
same locations across the training sample, the decomposition
is not able to to statistically distinguish those lesions from
“normal® tissue and therefore will not allocate them to the
sparse component. Instead, the resulting low-rank atlas will
contain the “averaged* appearance of the repeated lesions at
those locations.

The method performs better when the lesions are more
conspicuous in the data. As indicated in our comparison in
applying our method to T1 and FLAIR synthetic brains, our
method works better for those imaging modalities where the
lesions have high contrast with respect to normal tissues.
When the intensity ranges of the lesion and the normal
tissues overlap, it is mathematically challenging to separate
the intensity differences caused by geometric variation and
the pathology in the current framework.

The novel contributions of this paper are 1) the use of low-
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rank plus sparse image decomposition in image-to-atlas regis-
tration, 2) the integrated formulation of this decomposition into
atlas formation, and 3) the use of sparse components as a prior
for lesion identification and segmentation. These contributions
allow images containing pathologies to drive atlas formation,
and they allow images containing pathologies (large lesions
and deformations) to nevertheless be well registered with
normal-control atlases. The robustness of proposed methods
is validated on both synthetic and clinical MRI datasets.

For future work, adding spatial coherence constraints during
the low-rank and sparse decomposition optimization may
mitigate some of the limitations seen when the sample size is
small and the lesions are less conspicuous. The definition of
the constraints could, for example, be customized according
to expected lesion patterns. For example, it could be useful
to penalize thin structures or surfaces allocated to the sparse
part thereby discouraging normal variation to be allocated
to the sparse component. Conversely, one could encourage
spatially contiguous regions to be allocated to the sparse part.
This could likely be achieved by some form of total variation
penalty on the sparse component.
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