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Objectives for a streaming KPCA Previous work

» Existing approaches to streaming/online KPCA either provide no error
bound, require substantial space during training time, or have an expensive
matrix inverse at test time.

» Incremental KPCA techniques update the eigenspace of kernel PCA without
storing training data, but suffer from unbounded compound error in
intermediate approximations of the eigenspace on adversarial data sets.

» Small space requirement
» Small training time (process training data)

» Small testing time (evaluate unseen test data)
» Bound on potential error

» Nystrom approximation methods approximate the kernel (Gram) matrix
G = CW}:CT, by sampling columns of G in a non-streaming setting, but
require a costly matrix inverse at test time.

» Randomized Nonlinear Component Analysis (RNCA) uses a Random Fourier
Feature (RFF) approximation to G via randomized feature maps by directly

— > [ — T 2; — approximating the lifting function, but use an exact (costly) covariance

Random Frequent computation.
Fourier Directions » We propose Streaming KPCA (SKPCA), combining the computational

Features Sketch benefits of Random Fourier Features (RFF) and approximation bounds of
Frequent Directions (FD) to achieve the stated goals.

Algorithm: SKPCA Datasets

» Methods were compared on real and synthetic datasets, including three real
datasets below from the UCI machine learning repository.

» The kernel matrix was found using an RBF kernel (or RFF equivalent) with
the bandwidth set to the averge inter-point distance — the spectra and input
data sizes from the three datasets are shown below.

Input: Data A € R"¥9 kernel K, £, m € Zt
Output: RFF maps [f1,: - - , ], subspace W
[f1,:-- , fn] = RFF(K, m)

B «— Oexm

fori € [n] do

7= /2[f(a), -, fmla))] \ RFF projection
B «— z )
if B has no zero valued rows then

[Y, 2, W] < svd(B) > Frequent

B \/max{O, ¥2 32,1} - WT [ Directions 523910 x 54 33561 x 123
end if )
end for Results
Return [fy,--- ,f,] and W
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Theorem 1: Spectral error bound

I_et G — (D(DT be the exact kernel matriX over n pOintS. I_et 1 > 3 s 200 400 600 800 1000 1200 1400 E 200 400 600 800 1000 1200 14‘007

sample size sample size

G = ZWTWZT be the result of Z from m = O((1/&2) log(n/3§))
RFFand W from running Algorithm SKPCA with £ = 4 /e. Then with
probability at least 1 — §, we have |G — G||2 < en.
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Theorem 2: Frobenius error bound ol sing ample size
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Given that ||G — G’||2 < &n we can bound

G — G{llr < IIG — Gulle +evkn N
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Runtime bounds to obtain ||G' — G|, < en Frobenius error Training time (sec) Testing time (sec)
— » Frobenius error is the approximation error, |G’ — G||.

» The size of the sketch, £, is a parameter and we compare several choices,

TRAIN TIME TEST TIME
¢ ={2,5,10, 20, 30, 50}, indicated by parenthesis in the legend.

KPCA O(n*(n + d)) O(n(d + n?))
NYSTROM O(nd 4+ n/e? 4+ 1/&%) O(d/e? + 1/ : :
RNCA O(n((d/e?)logn + (1/€*) log®n)) O((1/£?)(d + n) log n) Discussion
SKPCA O(nlogn(d/e? + 1/¢%)) O((d + 1/€) /&% log n)

» Nystrom: fast training time (random sampling), considerably slower testing
time due to sample Gram matrix inversion.

» RNCA: fast testing time (matrix multiplication), training slower because
complete covariance accumulation as data are observed

SEACE » SKPCA: obtains a more balanced runtime where both training and testing
KPCA O(n“ 4+ nd) are competitive
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NYSTROM O(d/e” +1/¢%) > Error is competitive with previous methods (all methods less than 1073 in
RNCA O((d/e?)n log n) error)

SKPCA O(((d + 1/€)/e%) log n) > Improved error vs space for RFF based methods

Space bounds to obtain |G’ — G||2 < en
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