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Why SIAC Filtering

e The discontinuous Galerkin method continues to main-
tain heightened levels of interest within the simulation
community because of its discretization flexibility.

e This flexibility causes a plethora of difficulties in simula-

tion post-processing such as streamlining. tion approximately by disregarding the kernel-mesh intersections. OpenMP.
e SIAC filtering enhances the smoothness of the field
by eliminating the discontinuity between elements. | P2
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e The convolution can be evaluated exactly to machine precision:
e Solving a geometric intersection problem.
e Up to several numerical integrations within a DG element.

e The computational cost can be reduced by evaluating the convolu-

Parallelization

Efficient Implementation of Smoothness-Increasing Accuracy Conserving (SIAC)
Filters for Discontinuous Galerkin (DG) Solutions
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e Evaluating the post-processed solution at one point is indepen-
dent of the other.
e Only a few compiler directives are required to gain close to per-
fect scaling on a shared-memory multiprocessors machine using
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Figure 3. Kernel-mesh intersection. (a) integration regions in the exact
evaluation. (b) integration region in the approximate evaluation.

Figure 5. Timings results in seconds for filtering a DG projection
problem over a smoothly-varying triangular mesh. th represents the
number of threads.

e Only one Iintegration region is considered in the approximate
evaluation, however, more quadrature points might be required.
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Figure 1. Point-wise errors in log scale for constant coefficient

e Near the boundaries a (partly) one-sided form of the kernel is used.

advection equation over a structured DG triangular mesh. | "—E igggn | N =2800
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Figure 4. One-sided vs. Symmetric filtering.

» In higher dimensions the kernel is formed by tensor prod- Figure 6. Performance scaling.

ucts of one-dimensional kernels. e A switch between one-sided and symmetric will take place as soon

as possible to avoid extra computational costs.
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