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Introduction

e Existing multi-compartment model estimation methods generally
assume Gaussian noise distribution

In this paper:
e Estimate ball-and-sticks model under Rician noise distribution.
e An automatic model selection scheme to select the number of fibers.

Proposed Method
The Ball-And-Sticks Diffusion Model

vi(©) = Sy | woexp(—bro) + Y wjexp(—br;(g] uj)*)
ball J=1 sticks

Unknown parameters

O ={uy,...,up; stick directions
Wo, - .-, WAL compartment fractions
KOy« vy KM} diffusivities

Rician Likelihood

p(5:]0) = Sz'exp( S; 4-2;;(@)2> . (S,L-u,;(@)>
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Results on Synthetic Data

b-value: 3000. SNR: 15
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The Expectation Maximization Algorithm

e Raw data of MRI| scans are contaminated by additive complex Gaussian noise,
which becomes Rician after taking magnitude
e Hidden variable: the complex Gaussian affected signal of each compartment:
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e E-step: _ _
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e M-step: gradient ascent of the Q-function

e Advantage of the EM algorithm:

The optimization parameters are no longer variables of the modified Bessel function.
Therefore, maximizing the Q-function is more numerically stable and tractable.

Automatic Model Selection ,
e Sparsity Prior on Compartment Weights: _I;2°;$m

2

N

C(wg, w1, ..., wy) =

&
Ot
Sparsity level

e The amended Q-function:

Results on Real Data Model Selection Results:
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