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Research Area Goals Current State and Challenges

- *The coupling of electrochemical and mechanical processes inside The key materials research/design efforts in this topic are: The key challenges for modeling methods in this area include:

>~ electrodes, bulk electrolytes and at electrode/electrolyte intertaces 1) Understand the structure and the mechanisms of SEI and CEI layer formation and stability. _electrochemical /mechanical coupling (e.g., deformation and damage of electrodes durin
Stels is one of the key challenges that has to be addressed in order to 2) Predict mechanical properties and failure mechanisms of electrode and interfaces during hareine /dischareine. f G d cllj g d t.'g" £ SEI/CEI ] gl' ) 5
A provide efficient materials-by-design of novel batteries. charging/discharging processes charging/discharging, formation and degradation o / dyers upon cycling),

e | . We have £ 1 on develoni ¢ rultiseal del; 1 3) Predict transport and mechanical properties of SEI and CEI layers, their failure mechanisms. -dealing with the complexity of interactions in ionic systems (e.g., accurate and computationally
Bl e G I We have focused on developing a set of multiscale modeling tools 4) Design system with optimal SEI/CEI structure and characteristics. efficient treatment of long-range electrostatic interactions, accurate models for induced polarization
LS o that allows us to couple the atomic, molecular and nanoscale effects, parameterization of accurate coarse-grained models for electrolyte and electrode materials),

> < electrochemical and mechanical processes to continuum level p " L . d at solid/lauid int ( Jucti ati
(Y s modeling. This approach substantially enhances the predictive The key methods development efforts needed to facilitate this research include: redox reactions in tomc systems and at solid/hiquid interfaces (e.g., reduction/oxidation
b capabilities for the modeline and the desien of novel electrode reactions in bulk electrolyte, electrode/electrolyte interfaces, catalytic reactions),
™\ pabl 5 S 1) Enhancement of the ab initio—ReaxFF methods and their coupling to accurately capture redox : : : : : : . :
7cqt] materials and electrolytes. : . . . -dealing with slow dynamic relaxations and events with high transitional state barriers (e.g.,
PN orerl reactions and mechanics in electrodes and at their interfaces with SEI and electrolytes. . : . : :
- : : : : . : glassy behavior of SEI layer in batteries, chemical transformations and self-assembly of products of
jnner SEI outer SEI Specific focus is dedicated to understanding and design of 2) Development of efficient coarse-grained models for electrolytes, SEI, and electrodes. electrochemical reactions)
o S8 > N electrode/electrolyte interfaces where key redox/oxidation 3) Coupling of fracture/damage models with continuum level modeling. . 7 . . . ,
Dif;f;‘;':a:;‘s‘yl y reactions and formation of solid-electrolyte interphases (SEI) and 4) Development of methods that can deal with slow dynamic relaxations and rare events with high - necessity to efficiently navigate through a large space of materials design parameters (i.e.,
Mnm ?&a > cathode electrolyte interphase (CEI) layers occur. activation energy barriers. fast throughput of large data sets).
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The multiscale modeling framework addresses key challenges in design of novel electrolytes we find that there is a transition = mweadngpoymer
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which are parameterized against the ab initio data and allow investigation of that can allow to decouple optimization of Li* Small linkage groups can create Li* traps and substantially reduce :
materials and interfaces on length scales of several nanometers transport and mechanical properties  of ionic  conductivity. ~Simulation-guided = synthetic modification The chemical reactions between the anode surface and EC shows under-coordinated il
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scales to allow modeling of self-assembly processes which are usually operative on
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microseconds, and . . . _orai : : . .
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