
From Motes to Java Stamps: Smart Sensor Network Testbeds

Thomas C. Henderson, Jong-Chun Park, Nate
Smith and Richard Wright

School of Computing
University of Utah

Salt Lake City, UT 84112
USA

Abstract— We have proposed Smart Sensor Networks (S-
Nets) as an architecture and set of distributed algorithms
to extract, interpret and exploit networked sensor devices.
Heretofore, the development of this approach has been done
in simulation. In this paper, we describe two complementary
implementations of S-Nets: (1) on a set of Berkeley motes
comprised of low-power 8-bit, 128Kb memory processors,
communication devices and sensors, and (2) on a set of
JStamps having 32-bit controllers, 2Mb of memory and
native execution Java hardware.

I. INTRODUCTION

Sensor networks have received increasing attention over
the last few years. For example, DARPA’s SensIT program
envisioned £elds of cheap, long-lived, networked sensor
devices. David Culler’s work on sensor networks explores
the rich design space of low-power processors, communi-
cation devices and sensors. NSF has recently funded an
STC Center for Embedded Network Systems headed by
Deborah Estrin that will develop algorithms for wireless
and distributed sensing systems.

Some examples of issues addressed by these vari-
ous projects include: power minimization [1], [2], self-
con£guration [3], [4], data handling [5], [6], [7], systems
issues [8], [9], [10], and fault tolerance [10]. In general,
higher-level exploitation of sensor networks applies stan-
dard sequential or distributed algorithms to the data. Some
work in this area includes calibration [11] and habitat
monitoring [12].

Our own work started in the late 90’s [13], and has
mainly addressed the creation of an information layer
on top of the sensor nodes. This includes distributed
algorithms for leadership protocols, coordinate frame and
gradient calculation, reaction-diffusion pattern formation,
and level set methods to compute shortest paths through
the net [14], [15], [16].

Exploiting sensor networks involves understanding al-
gorithmic and engineering issues of real-world devices,
and making both raw and processed data readily accessible
to humans. In this paper we describe our £rst results in the
implementation of the S-Net algorithms. We have chosen
two complementary domains: Berkeley motes and JStamp
embedded processors. We give the layout and results of
running our distributed leadership protocol to establish

Fig. 1. Berkeley Mote

clusters of devices, and a local coordinate frame algorithm
which runs in each cluster.

II. BERKELEY MOTES

We have developed one implementation in a set of four
Berkeley motes. Figure 1 shows one of the Mica nodes
[17]. The device features an 8-bit Atmega 103 Microcon-
troller (4 MHz) with 4 Kb system RAM, 128 Kb ¤ash
program memory, 8 channel, 10-bit ADC and 3 hardware
timers. For I/O it has one external UART, one SPI port
and 48 general purpose I/O lines. It has an AT90LS2343
microcontroller coprocessor for wireless communication,
and a DS2401 unique ID device. It has RF range of up
to tens of meters at rates up to 115Kb/s. A Maxim1678
DC-DC converter provides a solid 3V supply operated off
a pair of AA batteries. There is an expansion connector
I/O system interface which allows a variety of sensing
boards. Finally, the mote runs the TinyOS multithreading
event-based operating system, and applications are written
in NesC; NesC is a C-like language that was developed
by the Berkeley group just for the purpose of embedded
system applications like sensor networks.

A. Leadership Protocol in the Berkeley Motes

The S-Net leadership protocol has been described in
[16]. Basically, it consists of two phases:

1) Phase I: Broadcast ID and receive other broadcast
ID’s



Fig. 2. 250 Mote Leadership Solution (from Mote Simulator)

2) Phase II: determine if leader (or not) and broadcast
cluster (or re-broadcast cluster)

The protocol was developed in NesC and the con£guration
£le is:

configuration SandR {}
implementation {
components Main, SandRM, RadioCRCPacket

as Comm, UARTNoCRCPacket,
ClockC, LedsC;

Main.StdControl -> SandRM;

SandRM.UARTControl-> UARTNoCRCPacket;
SandRM.UARTSend-> UARTNoCRCPacket;
SandRM.UARTReceive-> UARTNoCRCPacket;

SandRM.RadioControl -> Comm;
SandRM.RadioSend -> Comm;
SandRM.RadioReceive -> Comm;

SandRM.Clock -> ClockC;
SandRM.Leds -> LedsC;

}

The code was developed £rst in the Mote simulator, and
Figure 2 shows a 250-node leadership solution. The gray
squares have devices and the variable gray level squares
are leaders. The edges show communication connectivity.

In the mote implementation, the leadership code takes
14.3Kb memory. A delay of 2 seconds is set for Phase I to

Fig. 3. 4-Mote Leadership Solution (red LED means leader)

Fig. 4. 250-Mote Coordinate Frames Calculation (mote simulation)

allow neighbors lists to be built. Figure 3 show four motes
which have run the protocol; leader motes have the red
LED illuminated. (The leader motes are the left and right
motes which are not in each others broadcast range;they
both can communicate with the middle two motes.)

We have also developed algorithms to compute a co-
ordinate frame for a cluster. Figure 4 shows a 250-mote
simulation result with the local frames shown. We have
run the code on the 4 motes and produced correct frames
for them as well; the coordinate frame executable takes
21Kb.



Fig. 5. Systronix JStamp Processor

PCPC

JSTAMP JSTAMP

Ethernet

...

Fig. 6. JStamp Testbed Layout

III. JSTAMP PROCESSORS

We have also implemented the S-Net algorithms in
Systronix JStamps (see Figure 5). There are many bene£ts
to using Java as the programming language, and the
JStamp or JStik as the controller hardware. JStamp and
JStik are physically small (JStamp is only 1x2 inches), yet
contain a 32-bit controller, 2 Mbytes of memory, and the
rich constructs of Java. Software can be developed in Java
on PCs and then easily loaded onto the nodes. Another
huge bene£t of Java is the robust and proven security
models designed into the Java language and JXTA. Native
execution Java hardware is physically small, very power
ef£cient, and computationally powerful. For example, the
1x2 inch JStamp can run off a standard 9V transistor
battery for up to 40 hours, and execute three million Java
byte codes per second. Systronix is currently the world
leader in the commercial development of such modules.

Of course, sensor networks do not always require wire-
less connectivity, and our current JStamp testbed is set up
as shown in Figure 6. Each JStamp in the testbed has an
RS232 connection to a PC, and the PCs are connected
through Ethernet. (If we use JStiks instead of JStamps,
they have their own Ethernet ports and eliminate the need
for PCs. RF capability for JStamps/JStiks is also under
development by Systronix.)

Independent processes are run on each PS which han-
dle the communication between JStamps; these processes
connect to each other through sockets. The S-Net leader-
ship protocol and coordinate frame algorithm have been
implemented in the JStamp testbed with no problems
encountered. There is an effect in setting timer values in
the leadership protocol which is a critical issue in energy
awareness in S-Nets.

The leadership and coordinate frame executable takes
133.4Kb memory. Here is a partial trace of an execution
of the coordiante frame calculation.

< On PC >

Test For Global Frame:

Given three points and distances to each known point,
we can calculate the coordinates of an unknown point.

Enter <x0, y0> for P0: 0 0
Enter <x1, y1> for P1: 3 0
Enter <x2, y2> for P2: 6 8
Enter a distance to point P0: 5
Enter a distance to point P1: 4
Enter a distance to point P2: 5

The unknown point is <3.0, 4.0>.
<< Data from J-Stamp

Test For Local Frame:

Given two known points and three dis-
tances from an unknown point, we can
calculate the coordinates of the
unknown point. And then we can also
calculate the coordinates of an unknown
point in this local frame with three
distances to three known points.

Enter a distance d12: 3
Enter a distance d23: 4
Enter a distance d13: 5
Enter a distance to a point
P0 from an unknown point: 10

Enter a distance to a point
P1 from an unknown point:

8.54400374531753116787
Enter a distance to a point
P2 from an unknown point: 5

The third point is <3.0, 4.0>.
<< Data from J-Stamp

The unknown point is <



6.000000000000003,
7.999999999999997>.
<< Data from J-Stamp

Test For Converting Frame

Given two points from the old and new
frame, we can calculate the displace-
ment and angle rotated between two
frames. Thus, we can convert the point
of the new frame to the corresponding
one of the old frame.

Enter <x0, y0> : 0 0
Enter <x0’, y0’> : 0 0
Enter <x1, y1> : 1 0
Enter <x1’, y1’> : 0 -1
Enter <x1’, y1’> : 5 6

The origin of the new frame has moved
to <0.0, 0.0> with angle
1.5707963267948966 radian rotated.
The point corresponds to
<-5.999999999999999,
4.999999999999999> of the old frame.
<< Data from J-Stamp

< On J-Stamp >

[TEXTIO.0]->TEST FOR GLOBAL FRAMES:
[TEXTIO.0]-> Given three points and
distances to each from a known point,
[TEXTIO.0]->we can calculate the
coordinates of the unknown point.

[TEXTIO.0]->...processing...
[TEXTIO.0]->...done...
[TEXTIO.0]->The calculated coordinates
of the unknown points are sent to
the requester.

[TEXTIO.0]->TEST FOR LOCAL FRAMES:
[TEXTIO.0]-> Given two points and
distances among them, we can calculate

[TEXTIO.0]->the third point. And then
we can caculate the coordinates of a

[TEXTIO.0]->unknown point to this local
frame provided the distance to each.

[TEXTIO.0]->...processing...
[TEXTIO.0]->...done...
[TEXTIO.0]->The calculated coordinates
of the unknown points are sent to
the requester.

[TEXTIO.0]->TEST FOR CONVERT FRAMES:
[TEXTIO.0]->we can convert the
coordinates of any point between

any two frames.
[TEXTIO.0]->...processing...
[TEXTIO.0]->...done...
[TEXTIO.0]->The calculated coordinates
of the unknown points are sent to
the requester.

IV. CONCLUSIONS AND FUTURE WORK

These initial results of actual implementations of the
S-Net algorithms are very encouraging. The leadership
protocol and coordinate frame algorithm are the basis
for most of the other algorithms we are implementing;
e.g., gradient calculation, reaction-diffusion, and level set
calculations. We hope to be able to report on these other
algorithms soon.

As far as comparing the two implementation testbeds,
they have very complementary features. First, the Berkeley
motes offer:

• small size
• low cost
• low power
• RF
• simulation environment

Mote cons include:

• small memory
• new programming language (NesC)
• differences between simulator and mote codes
• dif£cult to debug motes

The major issue in learning NesC is getting the communi-
cations aspects correct. In addition, there are some prob-
lems with shoehorning codes into the simulator (speci£ed
node connections may not occur in the simulator). In the
actual motes, new batteries need to be used for bench-
marking and testing to get consistent results. Moreover, the
clock setting in¤uences the correctness of the leadership
protocol: set to 32 ticks/sec is really good; 64 ticks/sec
results in failure about half the time, and 100 ticks/sec
leads to high failure rates. In addition, delay timings are
crucial for Phase I of the leadership protocol. Finally,
simple acknowledgements in the frame algorithm led to
more accurate results (angles between devices, etc.).

The JStamp testbed offers:

• Java programming
• off-stamp debugging
• small size
• low power
• large memory
• permits large memory sensors (e.g., CMUCam).

JStamp cons are:

• no RF
• no simulator for testbed

We hope to develop a large, heterogeneous mote and
JStamp/JStik system (100 or so nodes) to be used with



actual sensors. In addition, we are looking at providing
the sensed data through interfaces to the leaf nodes in
the Utah Emulab. (Emulab [18] is a universally-available
time- and space-shared network emulator. Several hundred
PCs in racks, combined with secure, user-friendly web-
based tools, and driven by ns-compatible scripts of a
Java GUI, allow you to remotely con£gure and control
machines and links down to the hardware level. Packet
loss, latency, bandwidth, queue sizes can be user-de£ned.)
Data synthesis and analysis can be readily written in Java,
as well, and then run on Utah’s Emulab nodes. Other
possible data sources include a wearable human terminal,
or other monitoring nodes such as notebook PCs with
wireless adapters.

We hope to explore human – S-Net interfaces where
each node in the sensor network could have sensors
capable of detecting motion of people; (e.g., a camera,
microphones, pyroelectric motion detectors, ultrasound,
or other such sensors. Camera and sound sensors would
bene£t from the JStik HSIO bus. Other sensor options
include Dallas 1-Wire, I2C and SPI devices. Many such
off the shelf devices exist and JStamp products can already
accommodate them. The sensor nodes may be wireless.
At least two possibilities exist: 916 MHz RF modems,
and Bluetooth. Both RF devices could use the JXTA
protocols, and there is already a Java implementation of
JXTA. JXTA is media agnostic and could accommodate a
mixed network of wired ethernet, 916 MHz RF modems
and Bluetooth.

For emulation experiments the S-Net nodes may be
attached to Emulab nodes. With a serial-to-1Wire adapter
and some 1Wire devices, the Emulab node could synthe-
size signals which would appear to the sensor nodes to be
actual sensor data. This would allow some very interesting
and rapid testing. The 1Wire Emulab test signal adapter
would be limited to low bandwidth signals (a few tens
of Hz typically). The advantage is the low cost of each
such adapter. The adapters could be programmed via a
Java application running on the Emulab node in a standard
JVM.

Another option is a portable, wearable, human inter-
face and display. This would consist of a small glasses-
mounted virtual display terminal (e.g., this kind of device
is available from Micro Optical Displays). This display
creates a virtual screen that appears to ¤oat in the air
about a meter in front of the wearer. The display has a
serial interface and can be driven from JStamp or JStik.
It can display simple monochrome block graphics and
text. Models with color and gray scale are also available.
The wearer could input data into the portable terminal by
using a small handheld trackball/mouse, or a data glove.
This display, driven by a battery-powered JStamp node,
would communicate with the sensor network by means
of the same RF transceivers used in the sensor nodes.

The total system including batteries weighs as little as
one pound (depending on the duration of the batteries). A
user wearing the system could in fact be an interactive part
of the sensor network and could be guided safely through
the sensor network.

V. REFERENCES

[1] V. Swaminathan, K. Chakrabarty, and S. Iyen-
gar, “Dynamic i/o power management for hard
real-time system,” in Proc. Intl. Symposium on
Hardware/Software Co-Design (CODES, (Amble-
side, Lake District, UK), pp. pp. 237–242, 2001.

[2] Y. Yemini, S. da Silva, D. Florissi, and H. Huang,
“The network ¤ow language: A mark-based ap-
proach to active networks,” Computer Science XXX,
Columbia University, July 1999.

[3] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann,
“Scalable coordination for wireless sensor networks:
Self-con£guring localization systems,” in Proc. Sixth
International Symposium on Communication Theory
and Applications (ISCTA ’01), (Ambleside, Lake
District, UK), July 2001.

[4] A. Lim, “Support for reliability in self-organizing
sensor network,” in Proc of the Intnl Conf on Infor-
mation Fusion, (Annapolis, Maryland), July 2002.

[5] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards
sensor database systems,” in Proc of the Second
Intntl Conf on Mobile Data Management, (Hong
Kong), January 2001.

[6] T. Imielinski and S. Goel, “Dataspace - querying and
monitoring deeply networked collections in physical
space,” in Proc. of International Workshop on Data
Engineering for Wireless and Mobile Access (Mo-
biDE’99), (Seattle, WA), August 1999.

[7] S. Madden, M. Franklin, and J. Hellerstein, “Tag: a
tiny aggregation service for ad-hoc sensor networks,”
in Proc. of the Fifth Symposium on Operating Sys-
tems Design and Implementation, (Boston, MA),
USENIX Association, December 2002.

[8] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin,
“Highly resilient, energy ef£cient multipath routing
in wireless sensor networks,” Mobile Computing and
Communications Review, vol. 1, no. 2, 2002.

[9] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and
J. D. Tygar, “SPINS: Security protocols for sensor
networks,” Wireless Networks, vol. 8, pp. 521–534,
Sept 2002.

[10] L. Zhang, “Simple protocols, complex behavior,” in
Proc. IPAM Large-Scale Communication Networks
Workshop, March 2002.

[11] K. Whitehouse and D. Culler, “Calibration as param-
eter estimation in sensor networks,” in Proc. WSNA
2002, (Atlanta), September 2002.



[12] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson, “Wireless sensor netwroks for
habitat monitoring,” in WSNA 2002, (Atlanta, GA),
September 2002.

[13] T. C. Henderson, M. Dekhil, S. Morris, Y. Chen, and
W. B. Thompson, “Smart sensor snow,” IEEE Con-
ference on Intelligent Robots and Intelligent Systems,
October 1998.

[14] Y. Chen, “Snets: Smart sensor networks,” Master’s
thesis, University of Utah, Salt Lake City, Utah,
December 2000.

[15] Y. Chen and T. C. Henderson, “S-nets: Smart sensor
networks,” in Proc International Symp on Experi-
mental Robotics, (Hawaii), pp. 85–94, Dec 2000.

[16] T. C. Henderson, “Leadership protocol for s-nets,”
in Proc Multisensor Fusion and Integration, (Baden-
Baden, Germany), pp. 289–292, August 2001.

[17] J. Hill and D. Culler, “A wireless embedded sensor
architecture for system-level optimization,” ece, UC
Berkeley, October 2002.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar, “An integrated experimental environ-
ment for distributed systems and networks,” in Proc.
of the Fifth Symposium on Operating Systems Design
and Implementation, (Boston, MA), pp. 255–270,
USENIX Association, December 2002.


