Dimension Reduction

Samuel Gerber, University of Utah KIS



Righ-Dimensional Data
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Righ-Dimensional Data

® Supervised: Characterize the function

yi=f(x;) x€R?




Exploratory Analysis

® Feedback about the structure of the data
® Supports building and validating models

® Formation of new hypotheses about
process/system that generated the data



Exploratory Analysis in High-D

® Plotting of raw data or projections
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Exploratory Analysis in High-D

® Plotting of raw data or projections
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Exploratory Analysis in High-D

® High-dimensional data requires
methods that provide a holistic view

® [wo (not exclusive) approaches:

® (Clever visualizations of raw data

® Summary representations



Curse of Dimensionality

® Volume increases exponentially with
dimensionality

® Example: Ratio of (hyper) sphere to cube
volume
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Curse of Dimensionality

® Example: Density estimation, histogram with |10
bins per dimension
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Curse of Dimensionality

® Bellman 1961:Sample size grows exponentially with
dimensionality for approximation of functions.

® Barron 1993: Sample size independent of
dimensionality with additional regularity conditions

® Complexity limited by sample size
® Restriction to simple functions (supervised)

® Reduce dimensionality of domain (un-/supervised)

Bellman, R. Adaptive control processes: a guided tour. 1961

Barron, A. R. Universal approximation bounds for
superpositions of a sigmoidal function. 1993
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Righ-Dimensional Data

Simulations
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Dimension Reduction

® Dimensionality of observation # Variability

® Find low-dimensional representation of variability
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Use Cases for Vis

® Scaffolding for an interactive exploratory
visualization
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Use Cases for Vis

® Hot topic: Uncertainty visualization

® Distribution over possible data realizations /
visualizations

® Typical framework. Encode a most likely solution and
augment with variability

® Major challenge: Perceptual efficient encoding of
appropriate summary statistics of the data set




Dimension Reduction

® Reduce m-dimensional data setY to n-
dimensional representation X.

® Preserve information inY in reduced space X

® Geometry (distances, angles, ...)

® Statistics (den5|ty, entropy, ...) s FIRES
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Some Linear Methods

® Principal Component Analysis:

® Preserve variance / Minimize
orthogonal distance to data
points

® Llinear Discriminant Analysis: \

® Discrimination between groups

® Sliced inverse regression: s

® |inear prediction



Principal Components
pc |

® Closed from solution /

® Eigen-decomposition of
covariance matrix

® Set of orthogonal vectors
(principal components)

® Eigenvalues are the amount of
variance in each component

Variances
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Comp.1 Comp.4 Comp.7




Multidimensional Scaling

ise distances
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Multidimensional Scaling

® What if there is no good set of points?
® Distortion

® Many algorithms that emphasize differently
® Small versus large distances

® Classical MDS - Closed form solution

® Equivalent to PCA if distances from
points in Euclidean space
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Classical MDS

® Possible negative eigenvalues
® Not embeddable in Euclidean space

® Can contain important information
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Nonlinear Structure

® PCA “fails”’ for data sets with non-linear
structure
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Manifold Learning

® Assumption: Y sampled from a low
dimensional manifold embedded in a high
dimensional space

2D manifold in 3D
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Manifold Learning

Manifold - Non-linear PCA - Linear



Manifold Learning
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Popular Algorithms

echniques and Comments




Isomap

® Approximate geodesic distances 0 by
shortest path in nearest neighbor graph

® Preserve approximate geodesics
o min, =}, ;[6(yi,y;) —d(xi,x))]°

® Multidimensional scaling




Properties

® Only relies on accurate local
distances

® Shortcuts in graph - very bad
approximation

® Quality measure based on graph
embedding

Distortion

Dimension




Laplacian Eigenmaps

® Given a manifold.#Z find functions f: .#Z +— R
such that [ ,||Vf(»)|*dy is minimized

® The low dimensional embedding is

X = [fl(y)v' ' 7fn(y)] c R”

® Small gradient implies that close by points
will be mapped close together




Properties

® Again only local distances important

® No quality measure of the embedding




Spectral Methods

® |somap, Laplacian eigenmaps, LLE, Kernel PCA,
and a whole set of related variations

® Based on eigendecomposition of a similarity
matrix

® Closed form solution, relatively fast, simple



Principal Curves

Curve that passes through the middle of a density

I. Hastie, W. Stuetzle, Principal curves
Journal of the American Statistical Association 1989




Principal Curves

® (Quantitative measure of manifold fit

® Principled approach to reconstruct and
project unseen data points

® | ots of methods to do fitting by minimizing
reconstruction error (neural nets, regression,

local PCA, ...)
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Fitting

= === ground truth
initialization
intermediates
current

Samuel Gerber, Tolga Tasdizen, Ross Whitaker "Dimensionality Reduction
and Principal Surfaces via Kernel Map Manifolds", (ICCV 2009)




Model Complexity

Minimizing reconstruction error favors
curves that pass close to the data points

ground truth
initialization
intermediates
current




Regularization

® Defeats purpose of exploratory analysis

® Violates principal curve properties




Cross-Validation

® No overfitting in traditional sense

= === ground truth
initialization
intermediates
current

40 60 80
iteration




Results

® |nitialization

=== ground truth
initialization
intermediates

i ® Ground truth

® Small
bandwidth
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Results

sl ® |nitialization

® Principal
component
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Results

d(A,Y)?

G(A,Y)?




Some examples

® | 965 images of different facial expression (20x28)
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Some Examples

val Original



Manifold in Brain Space

Space of Smooth Images

Frechet mean on
data manifold
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Frechet mean on X

metric manifold

Manifold induced by Learned data
diffeomorphic image manifold
metric




Space of Brain Images




Remarks

® Be aware of the specifics of the method
® Quantify quality of summary / approximation

® How to measure distances (metric) often more
important than dimension reduction method.

® Summary representation provides a coghnitive
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Modellng Righ-Dimensional
§) Scalar Functions

Visual exploration of high-dimensional scalar functions
S. Gerber, P-T. Bremer, V. Pascucci, and R. Whitaker, IEEE TVCG, 2010.

Morse-Smale regression
S. Gerber, O. Ruebel, P-T. Bremer, V. Pascucci, and R. Whitaker, Journal
of Computational and Graphical Statistics, 2012 (to appear)

Data analysis with the Morse-Smale complex: The msr package for R
S. Gerber and K. Potter, Journal of Statistical Software, 2012 (to appear)




Problem Setting

® Given a sample from a scalar function
yi=f(xi) xeR
® Goals:
® Visualize / explore the structure of f

® Build an interpretable regression
(approximation) model



Crime Rates

Population
Percentage urban
Police per population
Person per family
Income

Employment

Rent cost

Number of homeless
Household size
Poverty levels

crime rate
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http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime

Climate Simulations

rhminh - high stable cloud formation
rhminl - low stable cloud formation
rligice - liquid drop size sea ice
rligland -liquid drop size land
rligocean-liquid drop size ocean

isf - ice stokes factor

capnc - particle density land/ocean
capnsi - particle density sea ice
capnw - particle density warm land
conke - evaporation

icritic - cold ice conversion

icritw - warm ice conversion
r3lcrit - liquid conversion

ricr - richardson number

cO_hk - shallow convection efficiency
cmftau - characteristic time scale
alfa - cloud downdraft flux

cO_zm - deep convection efficiency
dmpdz - fractional mass

ke - air entertainment

tau - consumption time scale

Visus image courtesy of K. Potter



Visualization / Exploration

® Simple in 2D: Regression of Y; on X;




What to Visualize?

e Goal:

® Summary representation of
geometry of height field

¢ Strategy:
® Extract important features

® Extremal Points

® Regions of similar behavior

® Summary representation &
Dimension reduction



Methodology

® Segment surface (Morse-Smale complex)

® Summary for each partition of the segmentation

® Embed in 2D/3D for visualization




Morse-Smale Complex

® Segmentation of the domain

® Regions with similar gradient flow with a single
source (minimum) and sink (maximum)




Segmentation Summaries

® |D domain summary with regression curve for each
partition

ri(y) =E[X €C|Y =y] € R?
® [Estimate with kernel regression

® Not estimating the surface

vi = f(X;)




Segmentation Summaries

® Morse-Smale decomposition preserves extrema

Complete Domain Per partition
gy) =E[X|Y =y] rn(y)=EXeC[Y =)




So Far ...

® Segmentation based on Morse-Smale Complex
® Monotonic regions

® Kernel regression |D summary for each partition

® Regression curves still in R4




Embedding in 2D

e |. Embed extremal points
® Preserve geometric location as best possible

® No underlying structure - 2D principal component analysis




Embedding in 2D

e 2. Embed regression curves separately
® Sample regression curves - piecewise linear approximation
ri(y) = EIX € GY =)

® Preserve as much of the geometry as possible -
2D principal component analysis for each curve

® Transform to match to extremal points

O






Crime data

Multiple peaks indicate different factors leading to high crime rates.
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Climate Simulations

cmftau
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-‘for final projects that have been
approved, email me:

-working title
-group member names
two or three sentence description



CS6964 | Information Visualization

U hetp: / /www.cs.utah.edu/~miriah/cs6964 /#projects

PROJECTS
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OVERVIEW

IMPORTANT DATES

PROPOSAL

Your final project will be in one of two flavors: programming, where you will implement a visualization
system of your own; or analysis, where you will analyze a data set of your choosing using a variety of
existing visualization systems. In both cases you will be responsible for acquiring data, creating a data and
task abstraction of the problem your visualization system(s) will address, surveying existing visualization
methods, and analyzing the results -- depending on your type of project you will emphasize these aspects to
different degrees.

You may do the projects individually or in teams of two. The total amount of work done must be
commensurate with the size of the group. Note that research novelty is not a requirement for a course
project.

PROGRAMMING PROJECT: For a programming project, you will implement a visualization system you
design and develop yourself. Common varieties of programming projects are:

* problem-driven design studies based around a specific dataset and questions of interest
e technique-driven explorations of how to carry out specific visual encoding or interaction ideas
o implementations of previous published algorithms

You may use existing components as the base for your system, as well as any programming language or
toolkit of choice. A (not necessarily complete) list of visualization languages and toolkits can be found on the
resources page.

ANALYSIS PROJECT: For an analysis project, you will analyze a dataset/problem of your choosing using a
variety of existing visualization tools, as well as analyze the strengths and weaknesses of those tools and
discuss in detail whether they are effective for the data and task that you have chosen. These projects are
problem-driven design studies in nature. No serious programming is required, so this option is suitable for
non-CS students. You may need to write some scripts to change data formats, however. A (not necessarily
complete) list of visualization tools can be found on the resources page. This style of project will require a
much more extensive survey of previous work than a programming project.

-meetings, Feb 14 - 23

-proposals due, March 9 at noon

-project update presentation, March 27, 29, and April 3
-final presentations, May 1 from 1-3pm

-process books due, May 3 at noon

Written proposal length: several pages
Written proposal format: PDF

Prior to submitting your proposal you will meet with me in person to discuss your project at least once
before submitting a proposal. It may take more than one meeting for me to sign off that you're
ready to move on to the proposal writeup stage. You'll need to meet with me between Feb 14 and
Feb 23 at the latest, and earlier would be better.

I advise that you start by thinking about a domain/dataset/visualization method that you are interested in
exploring more deeply. The key is to find some domain and task that both interests you and presents an
opportunity for infovis. That is, there is some task where a human needs to understand the structure of a
large dataset. You're welcome to link the infovis project to another class or research project. Keep in mind
that you're submitting a proposal, not a specification -- it's natural that your plans will change somewhat as
you refine your ideas. But your proposal should be based on an idea that we've discussed and I've approved.
When you come talk to me about your proposal, I'll give you some pointers to background reading in the
area of your interest.



http://www.cs.utah.edu/~miriah/cs6964/%23projects
http://www.cs.utah.edu/~miriah/cs6964/%23projects
http://www.cs.utah.edu/~miriah/cs6964/%23projects
http://www.cs.utah.edu/~miriah/cs6964/%23projects
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http://www.cs.utah.edu/~miriah/cs6964/%23projects
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THE SMARTPHONE CHALLENGE



part 6

-get back into large groups

-share sketches

-turn in abstraction and individual
sketches



L13: Tabular Data

REQUIRED READING



Hierarchical Parallel Coordinates for Exploration of Large Datasets

Ying-Huey Fua, Matthew O. Ward and Elke A. Rundensteiner
Computer Science Department
Worcester Polytechnic Institute
Worcester, MA 01609
{yingfua,matt,rundenst } @cs.wpi.edu *

Abstract

Our ability to accumulate large, complex (multivariate) data sets
has far exceeded our ability to effectively process them in search of
patterns, anomalies, and other interesting features. Conventional
multivariate visualization techniques generally do not scale well
with respect to the size of the data set. The focus of this paper is
on the interactive visualization of large multivariate data sets based
on a number of novel extensions to the parallel coordinates display
technique. We develop a multiresolutional view of the data via hi-
erarchical clustering, and use a variation on parallel coordinates to
convey aggregation information for the resulting clusters. Users can
then navigate the resulting structure until the desired focus region
and level of detail is reached, using our suite of navigational and
filtering tools. We describe the design and implementation of our
hierarchical parallel coordinates system which is based on extend-
ing the XmdvTool system. Lastly, we show examples of the tools
and techniques applied to large (hundreds of thousands of records)
multivariate data sets.

Keywords: Large-scale multivariate data visualization, hierarchi-
cal data exploration, parallel coordinates.

1 Introduction

¢ Dimensional embedding techniques, such as dimensional
stacking [16] and worlds within worlds [6].

¢ Dimensional subsetting, such as scatterplots [S].

¢ Dimensional reduction techniques, such as multidimensional
scaling [20, 15, 29], principal component analysis [12] and
self-organizing maps [14].

Most of these techniques do not scale well with respect to the
size of the data set. As a generalization, we postulate that any
method that displays a single entity per data point invariably re-
sults in overlapped elements and a convoluted display that is not
suited for the visualization of large data sets. The quantification of
the term “large” varies and is subject to revision in sync with the
state of computing power. For our present application, we define a
large data set to contain 10° to 10" data elements or more.

Our research focus extends beyond just data display, incorporat-
ing the process of data exploration, with the goal of interactively
uncovering patterns or anomalies not immediately obvious or com-
prehensible. Our goal is thus to support an active process of discov-
ery as opposed to passive display. We believe that it is only through
data exploration that meaningful ideas, relations, and subsequent
inferences may be extracted from the data. The major hurdles we
need to overcome are the problems of display density/clutter (too



Metric-Based Network Exploration and Multiscale Scatterplot

Yves Chiricota*
Université du Québec a Chicoutimi, Canada

ABSTRACT

We describe an exploratory technique based on the direct interac-
tion with a 2D modified scatterplot computed from two different
metrics calculated over the elements of a network. The scatterplot
is transformed into an image by applying standard image process-
ing techniques resulting into blurring effects. Segmentation of the
image allows to easily select patches on the image as a way to ex-
tract sub-networks. We were inspired by the work of Wattenberg
and Fisher [21] showing that the blurring process builds into a mul-
tiscale perceptual scheme, making this type of interaction intuitive
to the user. We explain how the exploration of the network can be
guided by the visual analysis of the blurred scatterplot and by its
possible interpretations.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques 1.3.3 [Computer Graphics]:
Picture / Image Generation—Viewing algorithms 1.4.3 [Image Pro-
cessing]: Enhancement—Smoothing

Keywords: Graph navigation, exploration, scatterplot, multiscale
perceptual organization, clustering, filtering, blurring

1 INTRODUCTION

Part of the research activity in Information Visualization is devoted
to exploratory techniques (4, 12]. Indeed, when designing a tool it is
important to distinguish whether the user is facing familiar data and
is actually using it for a specific task (annotating it or consulting it,
for instance) or if she/he is exploring the data trying to find patterns

Fabien Jourdan, Guy Melangon®
LIRMM UMR CNRS 5506, Montpellier, France

is to specify a threshold by moving the cursor down (or up) and
filter out nodes or edges with a value above (or not exceeding) the
threshold. This hiding method gains effectiveness when coupled
with a colour map as the elements that are filtered out have a lighter
hue and/or lesser intensity, are thiner, etc.

The use of multiple range sliders can help the exploration of a
dataset by filtering elements based on a combination of criterion.
Williamson and Schneiderman [24] have successfully applied this
technique when exploring a real estate database, enabling a user to
specify a price range and number of bedrooms, for instance. Barry
Becker’s MineSet [2] is a tool supporting the exploration of multidi-
mensional databases, helping the user to navigate the data through
the selection of range values on several dimensions.

It is unclear whether range selectors are as effective when deal-
ing with less intuitive metrics. What if the values correspond to a
theoretical measure computed over all nodes of the network, such
as for example the so-called clustering index used to define small
world networks [22, 23] or the pagerank index of web pages [17]
? What if the values are unevenly distributed over the range they
cover ? How should a user manipulate the range selectors to cor-
rectly monitor the threshold (filter) ? These observations become
even more relevant when dealing with two-dimensional metrics.
Situations that are hardly predictable may appear where one slider
requires finer tuning depending on the values that were selected us-
ing the other. Section 2 provides examples and a more detailed
discussion on these issues that were one of the starting point of our
work.

The technique we put forward in this paper gives the user direct
access to the 2D set of values through a modified scatterplot view.
More preciselv. the view the user acts on is obtained from the actual



Stacked Graphs — Geometry & Aesthetics

Lee Byron & Martin Wattenberg

Abstract — In February 2008, the New York Times published an unusual chart of box office revenues for 7500 movies over 21 years. The
chart was based on a similar visualization, developed by the first author, that displayed trends in music listening. This paper describes the
design decisions and algorithms behind these graphics, and discusses the reaction on the Web. We suggest that this type of complex layered
graph is effective for displaying large data sets to a mass audience. We provide a mathematical analysis of how this layered graph relates
to traditional stacked graphs and to techniques such as ThemeRiver, showing how each method is optimizing a different “energy function”.
Finally, we discuss techniques for coloring and ordering the layers of such graphs. Throughout the paper, we emphasize the interplay between

considerations of aesthetics and legibility.

Index Terms — Streamgraph, ThemeRiver, listening history, last.fm, aesthetics, communication-minded visualization, time series.

1 INTRODUCTION

In February 2008, The New York Times stirred up a debate. The
famous newspaper is no stranger to controversy, but this time the
issue was not political bias or anonymous sources— it was an unusual
graph of movie ticket sales. On information design blogs, opinions
of the chart ranged from “fantastic” to “unsavory.” Meanwhile, on
other online forums and blogs, hundreds of people posted insights
and questions spurred by the visualization.

graphic and accompanying online interactive visualization of the box
office revenue for 7500 movies over a 21-year period.

In this paper we first provide a case study of the New York Times
and last.fm visualizations. We pay special attention to the response
on the web and the role of aesthetics in the appeal of visualizations.
Second, we perform a detailed analysis of the algorithms that define
these graphs. A key theme is the role of aesthetics in visualization
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