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administrivia . ..



-scalar data assignment due tonight

-transfer function assignhment out



last time ...



What is a vector field”?

scalar field vector field

s:[E" —- IR v:IE" — IR™

m will often be equal to n, but definitely not necessarily



Flow Data

* Vector data on a 2D or 3D grid

» Additional scalar data may be defined per grid point

» Can either be on a regular grid (a) or scattered data points (b)
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Smoke angel ; ?.f., -
A C-17 Globemaster Il from the Minm lift Squadron,
flares over the Atlantic Oceannear] Ghaﬂeston S.C., dufir

"smoke angel" is caused by the voftex from the engines..
(U.S. Air Force photo/Tech. Sgt. Russell E. Cooley IV)
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Ar Force Base, S.C. flies off after releasing
ining mission on Tuesday, May 16, 2006. The



http://de.wikipedia.org/wiki/Bild:Airplane_vortex_edit.jpg
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http://de.wikipedia.org/wiki/Bild:Airplane_vortex_edit.jpg

Flow Visualization: Problems and Concepts

http://autospeed.com/cms/A_108677/article.html

http://autospeed.com/cms/A_108677/article.html

Wool Tufts



http://autospeed.com/cms/A_108677/article.html
http://autospeed.com/cms/A_108677/article.html

scalar field vector field tensor field

s:[E" - R v:IE" - IR"™ T:E" — IRm:-f.h



scalar field

s:IE" - R

s(x)

with x € E"

vector field

v IEH — IRm.

with x ¢ E"

T(x) =

withx e E"

tensor field

T: E" — mmxh

(71]()()

Cml (X)

C]I,(X)

Cm.b(x)



scalar field

S ° ]E"‘ — IR

vector field

vV IE" — IR’”

v(z,y) = (78 ZD

2D vector field

tensor field

T: E" o ]RMXI)



scalar field

s 'IE" - IR

s(x)

with x € E"

Could be the
gradient of a
scalar field.

vector field

v IE:" — ml”-

e = (420)

2D vector field

tensor field

T:-E" - IR'"xb



vector field

v:E" - R™

V) = (

u(z,y)
v(z,y)

)



vector field

_ v:IE" - R™
_parameter steady vector field
independent oy [(ulx,y)
v(z,y) = v(z,y)



vector field

: vV IE:H — ml”-
. parameter steady vector field
independent . fulz,y)
V@V = \v(a,y)

v ]En-l-l - TR™
one-parameter- “’(.1‘_’ Y, t) |
dependent v(z,y,t) = field

unsteady vector
v(z,y, t))



parameter-
independent

one-parameter-
dependent

two-parameter-
dependent

vector field

v:E" - R™
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e Divergence of v:
e scalar field

e observe transport of a small ball around a point
e expanding volume =» positive divergence
e contracting volume = negative divergence
e constant volume = zero divergence

ou oOv 0w
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divv = =uU +V, +W,

divv=0 <& visincompressible



e Curl of v:
e vector field
e also called rotation (rot) or vorticity

e indication of how the field swirls at a point
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today ...



-software architecture models
-design decision models

- process models



BUT FIRST...



visualization is a design process



wicked problems

19 [Wicked Problems in Design Thinking, Buchanan 92]



wicked problems

-alternative to linear, step-by-step approach to design
-approach: problem definition | problem solution
-appealing as a “logical” understanding of design process

19 [Wicked Problems in Design Thinking, Buchanan 92]



wicked problems

-alternative to linear, step-by-step approach to design
-approach: problem definition | problem solution
-appealing as a “logical” understanding of design process

-Horst Rittel argued in the 1960s that most problems
addressed by designers are “wicked”

1

- “class of social system problems which are ill formulated, where the
information is confusing, where there are many clients and decision makers
with conflicting values, and where the ramifications in the whole system are
thoroughly confusing”

19 [Wicked Problems in Design Thinking, Buchanan 92]



wicked problems

-alternative to linear, step-by-step approach to design
-approach: problem definition | problem solution
-appealing as a “logical” understanding of design process

-Horst Rittel argued in the 1960s that most problems
addressed by designers are “wicked”

1

- “class of social system problems which are ill formulated, where the
information is confusing, where there are many clients and decision makers
with conflicting values, and where the ramifications in the whole system are
thoroughly confusing”

- determinacy versus indeterminacy
-linear model: determinate problems have definite conditions
- designer should identify conditions and design solution

-wicked model: indeterminate problems have no definitive
conditions or limits

- designer must discover or invent a particular subject out of the problem

19 [Wicked Problems in Design Thinking, Buchanan 92]



10 properties
of a wicked
problem

(1) Wicked problems have no definitive formulation,
but every formulation of a wicked problem corresponds
to the formulation of a solution.

(2) Wicked problems have no stopping rules.

(3) Solutions to wicked problems cannot be true or false,
only good or bad.

(4) In solving wicked problems there is no exhaustive list
of admissible operations.

(5) For every wicked problem there is always more than
one possible explanation, with explanations depending
on the Weltanschauung of the designer.”

(6) Every wicked problem is a symptom of another,
“higher level,” problem.”

(7) No formulation and solution of a wicked problem
has a definitive test.

(8) Solving a wicked problem is a “one shot” operation,
with no room for trial and error.”

(9) Every wicked problem is unique.

(10) The wicked problem solver has no right to be
wrong—they are fully responsible for their actions.



Richard Buchanan

Wicked Problems in Design Thinking

SUGGESTED READING

This essay is based on a paper presented at
“Colloque Recherches sur le Design:
Incitations, Implications, Interactions,” the
first French university symposium on
design rescarch held October 1990 at
I'Université de Technologic de Compiégne,
Compiegne, France.

Introduction

Despite efforts to discover the foundations of design thinking in
the fine arts, the natural sciences, or most recently, the social sci-
ences, design eludes reduction and remains a surprisingly flexible
activity. No single definition of design, or branches of profes-
sionalized practice such as industrial or graphic design, adequately
covers the diversity of ideas and methods gathered together under
the label. Indeed, the variety of research reported in conference
papers, journal articles, and books suggests that design continues
to expand in its meanings and connections, revealing unexpected
dimensions in practice as well as understanding. This follows the
trend of design thinking in the twentieth century, for we have seen
design grow from a trade activity to a segmented profession to a field

{I\V 'ﬂf“”;fﬁl 'ﬂ(ﬂﬂi’l‘l‘ ‘lﬂt‘ iy ﬂll\‘l' [ aTals 4 ("‘\l\lllt‘ l\ﬂ fﬂt‘t\aﬂ;"ﬂA 1 |
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- software architecture models

- focus on the structure of a software system in terms
of its programmatic components
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- software architecture models

- focus on the structure of a software system in terms
of its programmatic components

- design decision models

- describe and capture design decisions
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- software architecture models

- focus on the structure of a software system in terms
of its programmatic components

- design decision models

- describe and capture design decisions

-process models

- describe stages with concrete actions a designer
should engage in

22



software architecture models

23



reference model

-software architecture pattern

- breaks up visualization (user) process into a series of
discrete steps

Data Visual Form Task

Source Data Visual Views

Data Tables Abstraction

Data Yisual Wiew
Transformations Mappings Transformations

L I l




reference model

-software architecture pattern

- breaks up visualization (user) process into a series of
discrete steps

Data Visual Form Task

Source Data Visual Views
Data Tables Abstraction

Data Yisual Wiew
Transformations Mappings Transformations

L I l

originally developed by Ed Chi as part of PhD dissertation, called the data state model; showed
equivalence to data flow model used in existing toolkits like VTK

later interpreted by Card, Mackinlay, and Shneiderman, dubbing it the information visualization
reference model



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTCBER 2006

Software Design Patterns for Information Visualization

Jeffrey Heer and Maneesh Agrawala

Abstract—Despite a diversity of software architectures supporting information visualization, it is often difficult to identify, evaluate,
and re-apply the design solutions implemented within such frameworks. One popular and effective approach for addressing such
difficulties is to capture successful solutions in design patterns, abstract descriptions of interacting software components that can
be customized to solve design problems within a particular context. Based upon a review of existing frameworks and our own
experiences buiding visualization software, we present a series of design patterns for the domain of information visualzation. We
discuss the structure, context of use, and interrelations of patterns spanning data representation, graphics, and interaction. By
representing design knowledge in a reusable form, these patterns can be used fo facilitate software design, implementation, and

evaluation, and improve developer education and communication.

Index Terms—Design pattemns, information visualization, software engineering, object-oriented programming

1 INTRODUCTION

As recognition of the value of visualization has increased and the
demand for visual analytics software has risen, visualization
rescarchers have developed numerous software frameworks to meet
these needs. By changing the cost structure goveming the design and
implementation of visualizations, such frameworks carry the
potential to lower barriers to entry and increase the space of feasible
visualization designs. Still, there is never a single tool or framework
that is appropriate for all problems in a given domain. Developers
often migrate between tools (e.g, when developing on a new
platform) or build their own systems (e.g., to achieve functionality
not available clsewhere). In either case, an understanding of the
programmer in lcaming and c¢valuating other frameworks and
furthering their own development efforts. However, inspection of
source code and design documents, if available, can prove difficult
and tedious. Descriptions in the rescarch literature often place more
emphasis on novel features than on recurring design patterns. As a

Schmidt [18] has noted a2 number of bencfits gained from
incorporating design patterns into the development process. He
found that pattems enabled widespread reuse of software architecture
designs, improved communication within and across development
teams, facilitated training of new programmers, and helped transcend
ways of thinking imposed by individual programming languages.
Schmidt also recommends that practitioners focus on developing
patterns that are strategic to a domain of interest, while reusing
genceral-purpose patterns (e.g., those of [13]) as much as possible—
an approach we now adopt for the design of information
visualization software.

Previous rescarch has applied the design pattern approach to
visualization problems. Stolte ¢t al. [21] introduce design patterns
describing  different forms of zooming within  multi-scale
visualizations. Chen [7) takes a more ambitious approach, suggesting
high-level viswalization patterns addressing gencral visualization
concerns. He lists patterns such as Brushing, Linking, and Encoder,



-design patterns
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-design patterns

- means of capturing time-tested design solutions and
facilitating their reuse
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-design patterns

- means of capturing time-tested design solutions and
facilitating their reuse

-software design patterns
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-design patterns

- means of capturing time-tested design solutions and
facilitating their reuse

-software design patterns

- descriptions of communicating objects and classes
that are customized to solve design problems within
a particular context
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-design patterns

- means of capturing time-tested design solutions and
facilitating their reuse

-software design patterns

- descriptions of communicating objects and classes
that are customized to solve design problems within
a particular context

-specific patterns for visualization

- related to: application structure, data handling,
graphics, and interaction

26



Figure 2. The Reference Model Pattern. A visualization manages visual
models for one or more data sets, separating visual attributes (location, size,
color, geometry, etc) from the abstract data. One or more views provide a
graphical display of the visualization, while control modules process user input

and may trigger updates at any level of the system.

Abstract Class object reference Class Name
+ Public Attribute amum + Operation1()
- Protected Attribue > = =2 + Operation2()
+ PublicOperation() | -----=====~-~~ -

Data

Visual Form

Source , Data
Data Tables

—

Abstraction

Visual Views

Data
Transformations

1

Visual
Mappings

1

View
Transformations

I

Task




loeaes 1 T
DataSource fa-4------i--------- 1 Control

Data

Visual Form

Source
Data

Data

—

Tables

Visual
Abstraction

Views

—

Figure 2. The Reference Model Pattern. A visualization manages visual
models for one or more data sets, separating visual attributes (location, size,
color, geometry, etc) from the abstract data. One or more views provide a
graphical display of the visualization, while control modules process user input

and may trigger updates at any level of the system.

Graph
+ nodes : Table <}
| + edges : Table
" TableListener
+ tlableCha
Table ;

+ get(Row, Field) : Value

tables maintain foreign keys which reference incident nodes.

View transform
+ zoom(scabe: Noat) + scabe( )
+ pandx: float, dy: float) + transiatey|..)
M + rotatey...)
¢ +* ga!!
g.sefTransiorm{transform) W
for each item in vis tems() ] + items() : Rerator
item rencer(g) “""1’ repaint()

Figure 12. The Camera Pattern. A view component mantains an affine
transformation matrix that is applied to visual items when rendering. The affine
transform matrix can be used to specify translation, rotation, scale, and shearing

transformations on the geometry of the view,

Figure 4. The Cascaded Table Pattern. A cascaded table inherits values
Figure 5. The Relational Graph Pattern. Network structures are from a parent table instance. The cascaded table may manage its own set of
implemented using relational data tables to represent node and edge data. Edge data columns, potentially shadowing columns in the parent. Column references

Data
Transformations

Visual
Mappings

1

View

Transformations

I

Table
| + get(Row, : Value
T .
CascadedTable 7
+ get(Row, Field) : Value Q——m‘ TabloC
- parentRow(Row) : Row ¢ tableChanged()

not found in the child table are resolved against the parent table.

w
+ render(Graphics, Visualltern)
+ inside(Point, Visualitem) : bool
+ bounds(Visualltem) : Rectangle |

Visualltem

MMM;) : Renderer
rondmrwory
Visualization 8|
+ Mem
items l

+ getRenderer() : Renderer
+ render(Graphics)

Figure 10. The Renderer Pattern. The mapping between items and their
visual appearance is determined using Renderer modules, responsible for
drawing, interior point testing, and bounds calculation. A RendererFactory can
be used to assign Renderers to items based on current conditions, such as data
attribute values or the zoom level.

Task



design decision models
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design decision models vs process models

domain problem characterization —~ des/gn decision model:
data/task abstraction design v —~ describes levels of design
encoding/interaction technique design ” —~ iInherent to, and should be
algorithm design v considered In, the creation
of a tool

nested model



design decision models vs process models

domain problem characterization —~

design decision model:

data/task abstraction design v —~ describes levels of design
encoding/interaction technique design ” —~ iInherent to, and should be
algorithm design v considered In, the creation
of a tool
nested model
process model: gives practical
advice in how to design and
develop a too [ S5 o a5 G o> a5 e 5 >
emecouomon e i

o-stage framework
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A Nested Model for Visualization
Design and Validation

Tamara Munzner

University of British Columbia
Department of Computer Science




How do you show your system is good?

* SO many possible ways!
* algorithm complexity analysis
* field study with target user population
* implementation performance (speed, memory)
* informal usability study
* laboratory user study
 qualitative discussion of result pictures
e quantitative metrics
* requirements justification from task analysis
 user anecdotes (insights found)
e user community size (adoption)
* visual encoding justification from theoretical principles



Contribution

* nested model unifying design and validation
guidance on when to use what validation method

different threats to validity at each level of model

* recommendations based on model

34



Four kinds of threats to validity
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Four kinds of threats to validity

* wrong problem
 they don’t do that

domain problem characterization
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Four kinds of threats to validity

* wrong problem
 they don’t do that

- wrong abstraction
» you're showing them the wrong thing

domain problem characterization

data/operation abstraction design
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Four kinds of threats to validity

* wrong problem
 they don’t do that

* wrong abstraction
» you're showing them the wrong thing

* wrong encoding/interaction technique
 the way you show it doesn’t work

domain problem characterization

data/operation abstraction design

encoding/interaction technique design
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Four kinds of threats to validity

wrong problem
 they don’t do that

wrong abstraction
» you're showing them the wrong thing

wrong encoding/interaction technique
 the way you show it doesn’t work

wrong algorithm
 your code is too slow

domain problem characterization

data/operation abstraction design

encoding/interaction technique design

algorithm design

39



Match validation method to contributions

* each validation works for only one kind of threat to validity

threat: wrong problem

threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique

threat: slow algorithm

40



Analysis examples

MatrixExplorer. Henry and Fekete. InfoVis 2006.

observe and interview target users

justify encoding/interaction design

measure system time/memory

qualitative result image analysis

LiveRAC. McLachlan, Munzner, Koutsofios,

and North. CHI 2008.

observe and interview target users

justify encoding/interaction design

qualitative result image analysis

field study, document deployed usage

An

energy model for visual graph clustering. (LinLog)
Noack. Graph Drawing 2003

qualitative/quantitative image analysis

Effectiveness of animation in trend visualization.
Robertson et al. InfoVis 2008.

lab study, measure time/errors for operation

Interactive visualization of genealogical graphs.

McGuffin and Balakrishnan. InfoVis 2005.

justify encoding/interaction design

qualitative result image analysis
test on target users, get utility anecdotes

Flow map layout. Phan et al. InfoVis 2005.

justify encoding/interaction design

computational complexity analysis
measure system time/memory

qualitative result image analysis

41




Nested levels in model

 output of upstream level
iInput to downstream level

 challenge: upstream errors inevitably cascade

* if poor abstraction choice made, even perfect technique
and algorithm design will not solve intended problem

domain problem characterization —
data/operation abstraction design ‘\
encoding/interaction technique design ‘\

algorithm design v




Characterizing domain problems

problem

data/op abstraction
enc/interact technique
algorithm

- tasks, data, workflow of target users
» problems: tasks described in domain terms
* requirements elicitation is notoriously hard

43



Designing data/operation abstraction

problem

data/op abstraction
enc/interact technique
algorithm

* mapping from domain vocabulary/concerns to abstraction
* may require transformation!

- data types: data described in abstract terms
* numeric tables, relational/network, spatial, ...

- operations: tasks described in abstract terms
* generic
- sorting, filtering, correlating, finding trends/outliers...
* datatype-specific
* path following through network...

44



Designing encoding,interaction techniques

problem
data/op abstraction
enc/interact technique

algorithm LES VARIABLES DE L'IMAGE
POINTS LIGNES ZONES
XY e
2 DIMENSIONS i x '
. . DU PLAN
* visual encoding 2 T
TAILLE

* marks, attributes, ...

» extensive foundational work exists | VAR | [
LES VARIABLES DE SE

GRAIN 2 g

couek | g [l

* interaction
 selecting, navigating, ordering, ...
« significant guidance exists ORIENTATION| Y 4

FORME I A

Semiology of Graphics. Jacques Bertin, Gauthier-Villars 1967, EHESS 1998
45



Designing algorithms

problem

data/op abstraction
enc/interact technique
algorithm

- well-studied computer science problem

» create efficient algorithm given clear specification

* N0 human-in-loop questions

46



Immediate vs. downstream validation

threat: wrong problem

threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique

threat: slow algorithm

implement system

47



Domain problem validation

« immediate: ethnographic interviews/observations

threat: wrong problem
validate: observe and interview target users

threat: bad data/operation abstraction

threat: ineffective encoding/interaction technique

threat: slow algorithm

iImplement system

48



Domain problem validation

« downstream: adoption (weak but interesting signal)

threat: wrong problem
validate: observe and interview target users

threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique

threat: slow algorithm

iImplement system

alidate: observe adoptionrates

49



Abstraction validation

» downstream: can only test with target users doing real work

threat: wrong problem

validate: observe and interview target users

threat: bad data/operation abstraction

threat: ineffective encoding/interaction technique

threat: slow algorithm

iImplement system

vali ; u : Vi atitity
validate: field study, document human usage of deployed system
gtidate observe adoption rates

50



Encoding/interaction technique validation

* immediate: justification useful, but not sufficient - tradeoffs

threat: wrong problem

validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm

iImplement system

vall : g , Vi Oty
validate: field study, document human usage of deployed system
gidate ObServe agoption rates
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Encoding/interaction technique validation

» downstream: discussion of result images very common

threat: wrong problem

validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm

iImplement system

validate: qualitative/quantitative result image analysis

vall : U , Vi atiity
validate: field study, document human usage of deployed system
gidate ObServe agoption rates

52



Encoding/interaction technique validation

» downstream: studies add another level of rigor (and time)

threat: wrong problem

validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm

Implement system

validate: qualitative/quantitative result image analysis

validate: lab study, measure human time/errors for operation
vall : v , Vi Oty

validate: field study, document human usage of deployed system
gidate ObServe agoption rates
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Encoding/interaction technique validation

* usability testing necessary for validity of downstream testing

- not validation method itself!
threat: wrong problem
validate: observe and interview target users
threat: bad data/operation abstraction
threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm

Implement system

validate: qualitative/quantitative result image analysis

[test on any users, informal usability study]

validate: lab study, measure human time/errors for operation

vall : g , Vi Oty
validate: field study, document human usage of deployed system

vatidateotserve adoptionm rates
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Algorithm validation

* immediate vs. downstream here clearly understood in CS

threat: wrong problem

validate: observe and interview target users

threat: bad data/operation abstraction

threat: ineffective encoding/interaction technique

validate: justify encoding/interaction design

threat: slow algorithm

validate: analyze computational complexity

implement system

validate: measure system time/memory

validate: qualitative/quantitative result image analysis

[test on any users, informal usability study]

validate: lab study, measure human time/errors for operation

vaf : a , Vi Oty
validate: field study, document human usage of deployed system

gidate ObServe agoption rates

95



Avoid mismatches

- can't validate encoding with wallclock timings

threat: wrong problem
validate: observe and interview target users

threat: bad data/operation abstraction

threat: ineffective encoding/interaction technique
alidate: justify encoding/interaction design
threat: slow algorithm
validate: analyze computational complexity
mplement system
alidate: measure system time/memory
validate: qualitative/quantitative result image analysis
[test on any users, informal usability study]
validate: lab study, measure human time/errors for operation

validate: test on target users, collect anecdotal evidence of utility
validate: field study, document human usage of deployed system

validate: observe adoption rates

56



Avoid mismatches

 can’t validate abstraction with lab study

threat: wrong problem
validate: observe and interview target users

‘threat: bad data/operation abstraction

threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm

validate: analyze computational complexity
mplement system

validate: measure system time/memory
validate: qualitative/quantitative result image analysis
[test on any users, informal usability study]

alidate: lab study, measure human time/errors for operation

validate: test on target users, collect anecdotal evidence of utility
validate: field study, document human usage of deployed system

validate: observe adoption rates

Y



Single paper would include only subset

« can’t do all for same project

* not enough space in paper or time to do work
threat: wrong problem

validate: observe and interview target users

threat: bad data/operation abstraction

threat: ineffective encoding/interaction technique
validate: justify encoding/interaction design
threat: slow algorithm

validate: analyze computational complexity
mplement system
validate: measure system time/memory
validate: qualitative/quantitative result image analysis

[test on any users, informal usability study]

validate: lab study, measure human time/errors for operation
validate: test on target users, collect anecdotal evidence of utility
validate: field study, document human usage of deployed system
validate: observe adoption rates

58



Single paper would include only subset

* pick validation method according to contribution claims

threat: wrong problem

alidate: observe and interview target users
agl: bad data/operation abstraction
threaWgjpeffective encoding/interaction technique
validate: JUS&y encoding/interaction design
threat: slow alfwagthm
validate: analyze cOMgutational cogsfflexity
mplement system ‘,
validate: measure systgg®lime/nMgory
validate: qualitative/g#antitative result imaWganalysis
[test on any ug#®S, informal usability study]
validate#D study, measure human time/errors for opewgtion
valigg#€: test on target users, collect anecdotal evidence of ut
falidate: field study, document human usage of deployed system
validate: observe adoption rates

59



Recommendations: authors

» explicitly state level of contribution claim(s)

» explicitly state assumptions for levels upstream of
paper focus

* just one sentence + citation may suffice

» goal: literature with clearer interlock between papers
 better unify problem-driven and technique-driven work

60



Recommendation: publication venues

- we need more problem characterization
« ethnography, requirements analysis

* as part of paper, and as full paper
« now full papers relegated to CHI/CSCW

does not allow focus on central vis concerns

* legitimize ethnographic “orange-box” papers!

observe and interview target users

61



Limitations

 oversimplification

» not all forms of user studies addressed
* infovis-oriented worldview

- are these levels the right division?

62



W%ﬂ EVALUATE ?

Mike Gleicher
BELIV’12
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The Four-Level Nested Model Revisited:
Blocks and Guidelines

Miriah Meyer, Michael Selmair, Tamara Munzner
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| leam > winnow > casi _>discover > design _pimplement> deploy > reflect g wie_ >

Design Study Methodology: Reflections for the Trenches and the Stacks.
M. Sedlmair, M. Meyer, T. Munzner, [EEE TVCG (Proceedings of InfoVis 2012).
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confirm | refine | reject | propose
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Design Study Methodology: Reflections for the Trenches and the Stacks.
M. Sedlmair, M. Meyer, T. Munzner, [EEE TVCG (Proceedings of InfoVis 2012).
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Interactive Level-of-Detail Rendering of Large Graphs

Michael Zinsmaier, Ulrik Brandes, Oliver Deussen, and Hendrik Strobelt

Fig. 1. Appication of cur visualization technique on a hieraschical data set, zooming from overview (left) 1o a region of interest (right).
The density-based node aggregation field (blue color) guides edge aggregation (orange/red color) 1o reveal visual patterns at diierent

levels of cetail.

Abstract— We propose a technique that allows straight-ing graph drawings to be rendered interactively with adjustable level of detal,

The approach consists of a novel combination of edge cumulaion with density-based node aggregation and is designed 10 expioit

common graphics hardware for speed. It operates divectly on graph data and does not require precomputed hierarchies or meshes.

As proof of concept, we present an implementation that scales to graphs with millions of nodes and edges, and discuss several
cati

example

1 INTRODUCTION

We present methods for the interactive vissalization of large graphs.
We say a graph is large if it fits ino video memory but cannot be
rendered as node link diagram withoet significant over-plotting, thus
we define size relative 1o the computing eaviroament. For the iner-
active exploration of such graphs fast node and edge aggregation is
needed in combination with efficient rendering in different Jevels of
detail (LOD). Both is presented in the following. Our techmiques en-
able us 1o show graphs with up to ~ 107 nodes and up to ~ 107 edges
at imeractive rates.

Lampe and Hauser [20] describe a method for rendering large
graphs as density fields based on a GPU implementation of Kernel
Density Estimation (KDE). Our method extends their technique for
node aggregation by a two-pass seed point rendering that significantly
reduces geometry and scales to large graphs. Furthermore we present
a fast edge aggregation method that derives start- and endpoints of

ods is given in Section 3, performance considerations are discussed in
Section 4. An interactive system based oa the proposed techaiques is
described in Section S. We preseat its interaction paradigms and some
mwsm . Finally, we summarize and propose future work

2 RELATED WORK

We divide the problem of rendering large graphs on (comparatively)
small displays into two main problems: dense regions of nodes and
cluttering of edges. While the first is the general problem of dense
point sets commonly faced in viswalization and computer graphics,
the second problem is more closely related o structure-aware methods

2.1 Node Visualization Methods
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Fig. 7. US ar taffic data set. The node aggregason highlights important fight hubs, while edge aggregation shows e.g. a dense connection
between Los Angeles and San Francisco. A dick in the Miami area (low right) highlights important nodes and a label kst on the 1op left. From the
list the user can choose imeresting labels, that are placed within the visualzation. The color mapping scale is shown on the botiom right.
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design decision models vs process models
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Chapter 8

Arrange Spatial Data

EXN The Big Picture

For datasets with spatial semantics, the usual choice for arrange
is to use the given spatial information to guide the layout. In this
case, the choices of express, separate, order, and align do not apply
because the position channel is not available for directly encoding
attributes. The two main spatial data types are geometry, where
shape information is directly conveyed by spatial elements that
do not necessarily have associated attributes, and spatial fields,
where attributes are associated with each cell in the field. (See Fig-
ure 8.1.) For scalar fields with one attribute at each field cell, the
two main visual encoding idiom families are isocontours and direct
volume rendering. For both vector and tensor fields, with multiple
attributes at each cell, there are four families of encoding idioms:
flow glyphs that show local information, geometric approaches that
compute derived geometry from a sparse set of seed points, texture
approaches that use a dense set of seeds, and feature approaches
where data is derived with global computations using information
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Comparing 2D Vector Field Visualization
Methods: A User Study

David H. Laidlaw, Robert M. Kirby, Cullen D. Jackson, J. Scott Davidson, Timothy S. Miller,
Marco da Silva, William H. Warren, and Michael J. Tarr

Abstract—We present results from a user study that compared six visualization methods for two-dimensional vector data. Users
performed three simple but representative tasks using visualizations from each method: 1) locating all critical points in an image,

2) identifying critical point types, and 3) advecting a particle. Visualization methods included two that used different spatial distributions
of short arrow icons, two that used different distributions of integral curves, one that used wedges located to suggest flow lines, and
line-integral convolution (LIC). Results show different strengths and weaknesses for each method. We found that users performed
these tasks better with methods that: 1) showed the sign of vectors within the vector field, 2) visually represented integral curves, and
3) visually represented the locations of critical points. Expert user performance was not statistically different from nonexpert user
performance. We used several methods to analyze the data including omnibus analysis of variance, pairwise t-tests, and graphical
analysis using inferential confidence intervals. We concluded that using the inferential confidence intervals for displaying the overall
pattern of results for each task measure and for performing subsequent pairwise comparisons of the condition means was the best
method for analyzing the data in this study. These results provide quantitative support for some of the anecdotal evidence concerning
visualization methods. The tasks and testing framework also provide a basis for comparing other visualization methods, for creating
more effective methods and for defining additional tasks to further understand the tradeoffs among the methods. In the future, we also
envision extending this work to more ambitious comparisons, such as evaluating two-dimensional vectors on two-dimensional surfaces
embedded in three-dimensional space and defining analogous tasks for three-dimensional visualization methods.

Index Terms—User study, vector visualization, fluid flow visualization.

4

1 INTRODUCTION

ONE of the goals of scientific visualization is to display studies help to form a basis upon which rule-of-thumb
measurements of physical quantities so the underlying construction measures for vector visualizations can be

rhvaical phenomena can be internreted acciiratelv aiickly postulated.



Design Study Methodology:
Reflections from the Trenches and the Stacks

Michael Sedimair, Member, IEEE, Miriah Meyer, Member, IEEE, and Tamara Munzner, Member, IEEE

Abstract-—Design studies are an increasingly popular form of problem-driven visualization research, yet there s littie guidance avadl:
able about how % do them effectively. In this paper we reflect on our combined experience of conducting twenty-one design studies,
as well as reading and reviewing marny more, and On an exionsive erature review of other field work methods and methodologies.
Based on this foundation we provide definions, propose a methodological framework, and provide practical guidance for conducting
design studies. We define a design study as a project in which visualization researchers analyze a specific real-world problem taced
by domain experts, design a visuakzation systom that supports solving this problem, validale the design, and reflect about lessons
learned In order 10 refine visualzation design guideines. We characterize two axes—a task clanty axis from fzzy 10 crisp and an
Information Dcation axis rom 1o SOMAaN export's Nead 10 the COMPUter—and USe hese XxDs 10 PasoN About COSIgN SILdy CoNYidy-
tions, ther sutablity, and uniqueness from other approaches. The proposed methodological framewark consists of 9 stages: learn,
winnow, Gast, discover, desgn, imploment, deploy, reflect, and write. For each stage we provide practical guidance and outiine poten-

tial pitalis. We aiso conducied an exsensive Merature survey of related

AErOBCHES TUET FVOND & SHATCAN AMOUNt

methodological
of qualtatve ield work, and compare design study methodology 10 that of ethnography, Grounded theory, and acton research,
Index Terms-—Desgn study, methodology, visualzation, framework,

1 INTRODUCTION

Over the last decade design studies have become an increasingly pop-
wlar approach for conducting problem-driven vissalization rescarch.
Design study papers are explicitly welcomed at several visualization
venues as 2 way 10 explore the choices made when applying visualiza.
tion techniques 10 a particular application area [S5), and many exem-
plary design studies now exist [17, 34, 35, 56, 94). A carcful reading
of these papers reveals multiple steps in the process of conducting a
design study, inclading analyzing the problem, abstracting data and
tasks, designing and implementing a visualization solution, evaluating
the solution with real users, and writing up the findings.

Adya&unlhddwﬂcgmdnamthcwmhmiu
atuze that describes holistic approaches for condocting
design studies—currently only three paragraphs exist [49, 55). The
relevant Nicrature instead focuses oo methods for designing (1, 42, 66,
79,82, 90,91] and evaluating [ 13, 33, 39, 50, 68, 69, 76, 80, 85, 85, 95)
visualization tools. We distinguish between methods and methodology
with the analogy of cooking: methody are like ingredicats, whereas
methodology is ke a recipe. More formally, we use Crotty's defini-
tions that methods are “wechnigues or procedures™ and a
is the “strategy, plan of action, process, or design lying behind the
choice and use of particular methods™ [18].

From our personal expenience we know that the process of con-
ducting a design study is hard 10 do well and contains many poteatial
3 We make this ststement after reflecting on our own design
studies, in 1otal 21 betwoen the 3 authors, and our experiences of re-
viewing many more design study papers. We coasider at Jeast 3 of our
own design study attempes 10 be failares [S1, 54, 72); the other 18
were moce successful [4, 5, 10, 40, 43, 44, 45, 46, 52, 53, 67,70, 71,

of visualization & good idea at all? How should we go about collab-
oeating with experts from other domains? What are pitfalls to avoid?
How aad when should we write a design study paper? These questions
motivated and guided our methodological work and we proseat a set
of answers in this paper.

We conducted an extensive literature review in the fields of haman
computer imeraction (HCT) (7, 8, 9, 12, 16, 19, 20, 21, 22, 25, 26,
27, 28, 29, 30, 31, 38, 47, §7, 63, 64, 65, 83) and social science [6,
14, 18, 24, 32, 62, 81, 87, 93] in hopes of finding methodologics tha
we could apply directly 10 design study rescarch. Instead, we found
an isselloctaal territory full of quagmires where the very issucs we
ourselves struggled with were active subjects of nuanced debate. We
did not find any off-the-shelf answers that we coasider suitable for
wholesale assimilation; after carcful gleaning we bave synthesized a
framing of how the concerns of visualization design studies both align
with and differ from several other gualitative approaches.

This paper is the result of a careful analysis of both our experi-
ences in the “trenches™ while doing our own work, and our foray into
the library “stacks" to investigate the ideas of others. We provide, for
the first time, a discussion about design study methodology, includ-
ing a clear definition of design studies as well as peactical guidance
for conducting them effectively. We anticulate two axes, sk clariry
and informarion location, to reason about what contributions design
stodies can make, whea they are an appeopriate rescarch device, and
how they are usique from other approaches. For practical guidance we
peopose a process for conducting design stadics, called the nime-stage
Mr.mw.m.m.udnzm. Al cach stage



