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Programming with Shared Memory 

Chapter 8 
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Shared memory multiprocessor 
system 

 
Any memory location can be accessible by any of the 
processors. 
 
 
A single address space exists, meaning that each memory 
location is given a unique address within a single range of 
addresses. 
 
 
Generally, shared memory programming more convenient 
although it does require access to shared data to be 
controlled by the programmer (using critical sections etc.) 
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Shared memory multiprocessor 
using a single bus 
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Shared memory multiprocessor 
using a crossbar switch 
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Alternatives for Programming Shared 
Memory Multiprocessors: 

 
• Using heavy weight processes. 
• Using threads. Example Pthreads 
• Using a completely new programming language for 
  parallel programming - not popular. Example Ada. 
• Using library routines with an existing sequential 
  programming language. 
• Modifying the syntax of an existing sequential 
  programming language to create a parallel programing 
  language. Example UPC 
• Using an existing sequential programming language 
  supplemented with compiler directives for specifying 
  parallelism. Example OpenMP 
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Using Heavyweight Processes 
 

Operating systems often based upon notion of a process. 
 
Processor time shares between processes, switching from 
one process to another. Might occur at regular intervals or 
when an active process becomes delayed. 
 
Offers opportunity to deschedule processes blocked from 
proceeding for some reason, e.g. waiting for an I/O operation 
to complete. 
 
Concept could be used for parallel programming. Not much 
used 
because of overhead but fork/join concepts used elsewhere. 
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FORK-JOIN construct 
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UNIX System Calls 
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UNIX System Calls 
 

SPMD model with different code for master process and 
forked slave process. 

Returns 0 to child process and 
id to parent process  

Fork 

Join 
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Differences between a process and threads 

Stack – local memory 
for functions etc 
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UNIX PROCESS THREADS WITHIN A UNIX PROCESS 
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Pthreads Model  
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Intel 2.6 GHz Xeon E5-2670 
(16 cores/node) 

8.1 0.1 2.9 0.9 0.2 0.3 

Intel 2.8 GHz Xeon 5660 
(12 cores/node) 

4.4 0.4 4.3 0.7 0.2 0.5 

AMD 2.3 GHz Opteron (16 
cores/node) 

12.5 1.0 12.5 1.2 0.2 1.3 

AMD 2.4 GHz Opteron (8 
cores/node) 

17.6 2.2 15.7 1.4 0.3 1.3 

IBM 4.0 GHz POWER6 (8 
cpus/node) 

9.5 0.6 8.8 1.6 0.1 0.4 

IBM 1.9 GHz POWER5 p5-
575 (8 cpus/node) 

64.2 30.7 27.6 1.7 0.6 1.1 

IBM 1.5 GHz POWER4 (8 
cpus/node) 

104.5 48.6 47.2 2.1 1.0 1.5 

INTEL 2.4 GHz Xeon (2 
cpus/node) 

54.9 1.5 20.8 1.6 0.7 0.9 

INTEL 1.4 GHz Itanium2 (4 
cpus/node) 

54.5 1.1 22.2 2.0 1.2 0.6 

Fork                          Pthreads 
Real  user     sys      Real   user      sys 
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Platform 
MPI Shared Memory 

Bandwidth 
(GB/sec) 

Pthreads Worst Case 
Memory-to-CPU 

Bandwidth  
(GB/sec) 

Intel 2.6 GHz Xeon E5-
2670 

4.5 51.2 

Intel 2.8 GHz Xeon 5660 5.6 32 
AMD 2.3 GHz Opteron 1.8 5.3 
AMD 2.4 GHz Opteron 1.2 5.3 
IBM 1.9 GHz POWER5 p5-
575 

4.1 16 

IBM 1.5 GHz POWER4 2.1 4 
Intel 2.4 GHz Xeon 0.3 4.3 
Intel 1.4 GHz Itanium 2 1.8 6.4 
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Pthreads Model  
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Pthreads 
 

IEEE Portable Operating System Interface, POSIX, sec. 
1003.1 standard 
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/****************************************************************************** 
* FILE: hello.c *  A "hello world" Pthreads program.  Demonstrates thread creation 
termination. 
*******************************************************************************/ 
#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
#define NUM_THREADS 5 
void *PrintHello(void *threadid) 
{    long tid; 
   tid = (long)threadid; 
   printf("Hello World! It's me, thread #%ld!\n", tid); 
   pthread_exit(NULL); 
} 
int main(int argc, char *argv[]) 
{    pthread_t threads[NUM_THREADS]; 
   int rc;    long t; 
   for(t=0;t<NUM_THREADS;t++){ 
     printf("In main: creating thread %ld\n", t); 
     rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t); 
     if (rc){  printf("ERROR; return code from pthread_create() is %d\n", rc);    exit(-1);        } 
     } 
   /* Last thing that main() should do */ 
   pthread_exit(NULL); 
} 

OUTPUT 
 
In main: creating thread 0 
In main: creating thread 1 
Hello World! It's me, thread #0! 
In main: creating thread 2 
Hello World! It's me, thread #1! 
Hello World! It's me, thread #2! 
In main: creating thread 3 
In main: creating thread 4 
Hello World! It's me, thread #3! 
Hello World! It's me, thread #4! 
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Pthreads Detached Threads  
It may be that thread are not bothered when a thread 
it creates terminates and then a join not needed. 
Threads not joined are called detached threads. 
When detached threads terminate, they are 
destroyed and their resource released 
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Statement Execution Order 
Single processor: Processes/threads typically executed until 
blocked. 
Multiprocessor: Instructions of processes/threads interleaved in 
time. 

Example 
  Process 1    Process 2 
  Instruction 1.1   Instruction 2.1 
  Instruction 1.2   Instruction 2.2 
  Instruction 1.3   Instruction 2.3 
Several possible orderings, including 
  Instruction 1.1 
  Instruction 1.2 
  Instruction 2.1 
  Instruction 1.3 
  Instruction 2.2 
  Instruction 2.3 
assuming instructions cannot be divided into smaller steps. 
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If two processes were to print messages, for 
example, the messages could appear in different 
orders depending upon the scheduling of 
processes calling the print routine. 
 
 
Worse, the individual characters of each 
message could be interleaved if the machine 
instructions of instances of the print routine could 
be interleaved. 
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Compiler/Processor Optimizations 
 

Compiler and processor reorder instructions for optimization. 
Example 

The statements 
   a = b + 5; 
   x = y + 4; 
 
could be compiled to execute in reverse order: 
   x = y + 4; 
   a = b + 5; 
and still be logically correct. 
 
May be advantageous to delay statement a = b + 5 because a 
previous instruction currently being executed in processor needs 
more time to produce the value for b. Very common for processors 
to execute machines instructions out of order for increased speed . 
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Thread-Safe Routines 
 

Thread safe if they can be called from multiple threads 
simultaneously and always produce correct results. 
 
 
Standard I/O thread safe (prints messages without 
interleaving the characters). 
 
 
System routines that return time may not be thread safe. 
 
 
Routines that access shared data may require special care to 
be made thread safe. 
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Thread-safeness:, refers an application's ability to execute multiple threads 
simultaneously without "clobbering" shared data or creating "race" conditions. 
For example, suppose that your application creates several threads, each of which 
makes a call to the same library routine: 

This library routine accesses/modifies a global structure or location in memory. 
As each thread calls this routine it is possible that they may try to modify this 
global structure/memory location at the same time. 
If the routine does not employ some sort of synchronization constructs to prevent 
data corruption, then it is not thread-safe. 
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Accessing Shared Data 
 

Accessing shared data needs careful control. 
 
Consider two processes each of which is to add one to a 
shared data item, x. Necessary for the contents of the 
location x to be read, x + 1 computed, and the result written 
back to the location: 
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•The pthread_join() subroutine blocks the calling thread until the 
specified threadid thread terminates. 
•The programmer is able to obtain the target thread's termination return status if it 
was specified in the target thread's call to pthread_exit(). 
•A joining thread can match one pthread_join() call. See also  mutexes and condition 
variables,. 
   Joinable or Not? 
•When a thread is created, one of its attributes defines whether it is joinable or 
detached.  
•Only threads that are created as joinable can be joined. If a thread is created as 
detached, it can never be joined. 
•The final draft of the POSIX standard specifies that threads should be created as 
joinable. 
•To explicitly create a thread as joinable or detached, the attr argument in 
the pthread_create() routine is used. The typical 4 step process is: 

1.Declare a pthread attribute variable of the pthread_attr_t data type 
2.Initialize the attribute variable with pthread_attr_init() 
3.Set the attribute detached status with pthread_attr_setdetachstate() 
4.When done, free library resources used by the attribute 
with pthread_attr_destroy() 

    

Thread Management 
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Detaching 
•The pthread_detach() routine can be used to 
explicitly detach a thread even though it was created as 
joinable. 
•There is no converse routine 
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Conflict in accessing shared variable 
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Critical Section 
 

A mechanism for ensuring that only one process 
accesses a particular resource at a time is to establish 
sections of code involving the resource as so-called 
critical sections and arrange that only one such critical 
section is executed at a time 
 
 
This mechanism is known as mutual exclusion. 
 
 
This concept also appears in an operating systems. 
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Locks 
 

Simplest mechanism for ensuring mutual exclusion of critical 
sections. 
 
A lock is a 1-bit variable that is a 1 to indicate that a process 
has entered the critical section and a 0 to indicate that no 
process is in the critical section. 
 
Operates much like that of a door lock: 
 
A process coming to the “door” of a critical section and 
finding it open may enter the critical section, locking the door 
behind it to prevent other processes from entering. Once the 
process has finished the critical section, it unlocks the door 
and leaves. 
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Control of critical sections through 
busy waiting 
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Pthread Lock Routines 
 

Locks are implemented in Pthreads with mutually exclusive 
lock variables, or “mutex” variables: 
     
     . 
   pthread_mutex_lock(&mutex1); 
    critical section 
   pthread_mutex_unlock(&mutex1); 
     . 
 
If a thread reaches a mutex lock and finds it locked, it will 
wait for the lock to open. If more than one thread is waiting 
for the lock to open when it opens, the system will select one 
thread to be allowed to proceed. Only the thread that locks a 
mutex can unlock it. 
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Deadlock 
 

Can occur with two processes when one requires a resource 
held by the other, and this process requires a resource held by 
the first process. 
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Deadlock (deadly embrace) 
 

Deadlock can also occur in a circular fashion with several 
processes having a resource wanted by another. 
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Pthreads 
 

Offers one routine that can test whether a lock is actually 
closed without blocking the thread: 
 
 

pthread_mutex_trylock() 
 
 

Will lock an unlocked mutex and return 0 or will return with 
EBUSY if the mutex is already locked – might find a use in 
overcoming deadlock. 
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Semaphores 
 

A positive integer (including zero) operated upon by two 
operations: 
 

P operation on semaphore s 
 

Waits until s is greater than zero and then decrements s by 
one and allows the process to continue. 

V operation on semaphore s 
 

Increments s by one and releases one of the waiting 
processes (if any). 
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P and V operations are performed indivisibly. 
 
Mechanism for activating waiting processes is 
also implicit in P and V operations. Though exact 
algorithm not specified, algorithm expected to be 
fair. Processes delayed by P(s) are kept in 
abeyance until released by a V(s) on the same 
semaphore. 
 
Devised by Dijkstra in 1968. Letter P is from the 
Dutch word passeren, meaning “to pass,” and 
letter V is from the Dutch word vrijgeven, meaning 
“to release.”) 
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Mutual exclusion of critical sections can be achieved with one 
semaphore having the value 0 or 1 (a binary semaphore), which 
acts as a lock variable, but the P and V operations include a process 
scheduling mechanism: 
 
Process 1    Process 2   Process 3 
Noncritical section   Noncritical section  Noncritical section 
 .     .    .  
 .     .    .  
 .    .    . 
P(s)     P(s)    P(s) 
     Critical section     Critical section  Critical section 
V(s)     V(s)    V(s) 
 .     .    .  
 .     .    .  
 .     .    . 
Noncritical section   Noncritical section  Noncritical section 
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General semaphore 
(or counting semaphore) 

 
Can take on positive values other than zero and one. 
Provide, for example, a means of recording the number of 
“resource units” available or used and can be used to solve 
producer/ consumer problems. - more on that in operating 
system courses. 
 
Semaphore routines exist for UNIX processes. 
Not exist in Pthreads as such, though they can be written 
Do exist in real-time extension to Pthreads. 
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Monitors [Hoare 1974] 
 

Suite of procedures that provides only way to access shared resource. 
Only one process can use a monitor procedure at any instant. 
 
Could be implemented using a semaphore or lock to protect entry, i.e., 
 
  monitor_proc1() 
  { 
  lock(x);    or P(monitor_semaphore) 
   . 
  monitor body 
   . 
  unlock(x);  or V(monitor_semaphore)    
  return; 
  } 
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Condition Variables 
Often, a critical section is to be executed if a specific global 
condition exists; for example, if a certain value of a variable has been 
reached. 
With locks, the global variable would need to be examined at 
frequent intervals (“polled”) within a critical section. 
Very time-consuming and unproductive exercise. 
 
Can be overcome by introducing so-called condition variables. 
 
pthread_cond_t  cond1 
 
pthread_cond_init (&cond1,NULL) 
 
Pthread_cond_destroy{} 
 
Routines to make threads wait on condition variables 
Routines to send a signal to calling thread to another  thread to release it. 
 
pthreads_cond_wait(cond1,mutex1) 
pthreads_cond_signal(cond1) 
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Pthread Condition Variables 
 

Pthreads arrangement for signal and wait: 

Signals not remembered - threads must already be waiting for 
a signal to receive it. 
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Possible New Language Constructs for 
Parallelism 
Shared Data 

Shared memory variables might be declared as shared 
with, say,  
   shared int x; 

par Construct 
For specifying concurrent statements: 
 par { 
  S1; 
  S2; 
  . 
  . 
  Sn; 
 } 



Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 

43 

forall Construct 
To start multiple similar processes together: 
  forall (i = 0; i < n; i++) { 
   S1; 
   S2; 
   . 
   Sm; 
  } 
which generates n processes each consisting of the statements 
forming the body of the for loop, S1, S2, …, Sm. Each process 
uses a different value of i. 

Example 
 forall (i = 0; i < 5; i++) 
  a[i] = 0; 
clears a[0], a[1], a[2], a[3], and a[4] to zero 
concurrently. 
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Dependency Analysis 
 

To identify which processes could be executed together. 
 

Example 
 

Can see immediately in the code 
 
  forall (i = 0; i < 5; i++) 
   a[i] = 0; 
 
that every instance of the body is independent of other 
instances and all instances can be executed simultaneously. 
 
However, it may not be that obvious. Need algorithmic way 
of recognizing dependencies, for a parallelizing compiler. 
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OpenMP 
 

An accepted standard developed in the late 1990s by a 
group of industry specialists. 
 
 
Consists of a small set of compiler directives, augmented 
with a small set of library routines and environment variables 
using the base language Fortran and C/C++. 
 
 
The compiler directives can specify such things as the par 
and forall operations described previously. 
 
Several OpenMP compilers available. 
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For C/C++, the OpenMP directives are contained in #pragma 
statements. The OpenMP #pragma statements have the 
format: 
 
  #pragma omp directive_name ... 
 
where omp is an OpenMP keyword. 
 
 
May be additional parameters (clauses) after the directive 
name for different options. 
 
 
Some directives require code to specified in a structured 
block (a statement or statements) that follows the directive 
and then the directive and structured block form a “construct”. 
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OpenMP uses “fork-join” model but thread-based. 
 
 
Initially, a single thread is executed by a master thread. 
Parallel regions (sections of code) can be executed by 
multiple threads (a team of threads). 
 
parallel directive creates a team of threads with a specified 
block of code executed by the multiple threads in parallel. 
The exact number of threads in the team determined by one 
of several ways. 
 
 
Other directives used within a parallel construct to specify 
parallel for loops and different blocks of code for threads. 
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Parallel Directive 
 

   #pragma omp parallel 
   structured_block 
 
 
creates multiple threads, each one executing the specified 
structured_block, either a single statement or a compound 
statement created with { ...} with a single entry point and a 
single exit point. 
 
There is an implicit barrier at the end of the construct. 
The directive corresponds to forall construct. 
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Number of threads in a team 
 

Established by either: 
 
1. num_threads clause after the parallel directive, or 
2. omp_set_num_threads() library routine being previously 
called, 
    or 
3. the environment variable OMP_NUM_THREADS is defined 
    in the order given or is system dependent if none of the 
above. 
 
 
Number of threads available can also be altered automatically 
to achieve best use of system resources by a “dynamic 
adjustment” mechanism. 
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Work-Sharing 
 

Three constructs in this classification: 
 
  sections 
  for 
  single 
 
In all cases, there is an implicit barrier at the end of the 
construct unless a nowait clause is included. 
 
 
Note that these constructs do not start a new team of threads. 
That done by an enclosing parallel construct. 
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Sections 
 

The construct 
  #pragma omp sections 
  { 
   #pragma omp section 
        structured_block 
   #pragma omp section 
        structured_block 
    . 
    . 
    . 
  } 
cause the structured blocks to be shared among threads in team. 
#pragma omp sections precedes the set of structured blocks. 
#pragma omp section prefixes each structured block. 
 
The first section directive is optional. 
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For Loop 
 

  #pragma omp for 
  for_loop 
 
 
causes the for loop to be divided into parts and parts shared 
among threads in the team. The for loop must be of a simple 
form. 
 
Way that for loop divided can be specified by an additional 
“schedule” clause. Example: the clause schedule (static, 
chunk_size) cause the for loop be divided into sizes specified 
by chunk_size and allocated to threads in a round robin 
fashion. 
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Single 
 

The directive 
 
  #pragma omp single 
       structured block 
 
cause the structured block to be executed by one thread only. 
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Combined Parallel Work-sharing 
Constructs 

 
If a parallel directive is followed by a single for directive, it 
can be combined into: 
 
  #pragma omp parallel for 
      for_loop 
 
with similar effects, i.e. it has the effect of each thread 
executing the same for loop. 
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Master Directive 
 

The master directive: 
 
  #pragma omp master 
      structured_block 
 
causes the master thread to execute the structured block. 
 
Different to those in the work sharing group in that there is 
no implied barrier at the end of the construct (nor the 
beginning). Other threads encountering this directive will 
ignore it and the associated structured block, and will move 
on. 
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Synchronization Constructs 
Critical 

 
The critical directive will only allow one thread execute the 
associated structured block. When one or more threads 
reach the 
critical directive: 
 
  #pragma omp critical name 
      structured_block 
 
they will wait until no other thread is executing the same 
critical section (one with the same name), and then one 
thread will proceed to execute the structured block. name is 
optional. All critical sections with no name map to one 
undefined name. 
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Barrier 
 

When a thread reaches the barrier 
 
  #pragma omp barrier 
 
it waits until all threads have reached the barrier and then they 
all proceed together. 
 
There are restrictions on the placement of barrier directive in a 
program. In particular, all threads must be able to reach the 
barrier. 
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Atomic 
 

The atomic directive 
 
  #pragma omp atomic 
      expression_statement 
 
 
implements a critical section efficiently when the critical 
section simply updates a variable (adds one, subtracts one, 
or does some other simple arithmetic operation as defined 
by expression_statement). 
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Flush 
 

A synchronization point which causes thread to have a 
“consistent” view of certain or all shared variables in memory. All 
current read and write operations on the variables allowed to 
complete and values written back to memory but any memory 
operations in the code after flush are not started, thereby creating 
a “memory fence”. Format: 
 
  #pragma omp flush (variable_list) 
 
Only applied to thread executing flush, not to all threads in the 
team. 
 
Flush occurs automatically at the entry and exit of parallel and 
critical directives (and combined parallel for and parallel sections 
directives), and at the exit of for, sections, and single (if a no-wait 
clause is not present). 
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Ordered 
 

Used in conjunction with for and parallel for directives to 
cause an iteration to be executed in the order that it 
would have occurred if written as a sequential loop. 
 
 
See Appendix C of textbook for further details. 
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OpenMP Example Jacobi Iteration  
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Performance of an OpenMP Jacobi Code on an Intel  
Dual Core Dual Socket Xeon 5160 3Ghz. For two threads 
there are 2 choices wrt how the sockets are used 
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Notes  
 
Breakdown in perf.  with increasing N when memory 
does not fit into cache any more. 
 
Single thread can saturate memory bus. Use of two 
sockets with extra bus helps. 
 
With two threads max cache perf. same regardless of 
number of sockets. 
 
Foe small N location of threads more important as for 
N < 50 problem fits into level 1 cache.  Problem is that 
barrier synchronisation cost dominates. 
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Shared Memory Programming 
Performance Issues 
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Shared Data in Systems with Caches 
 

All modern computer systems have cache memory, high-
speed memory closely attached to each processor for holding 
recently referenced data and code. 
 

Cache coherence protocols 
 
Update policy - copies of data in all caches are updated at the 
time one copy is altered. 
 
Invalidate policy - when one copy of data is altered, the same 
data in any other cache is invalidated (by resetting a valid bit in 
the cache). These copies are only updated when the 
associated processor makes reference for it. 
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False Sharing 
 
Different parts of block 
required by different 
processors but not 
same bytes. If one 
processor writes to 
one part of the block, 
copies of the complete 
block in other caches 
must be updated or 
invalidated though the 
actual data is not 
shared. 
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Solution for False Sharing 
 
 

Compiler to alter the layout of the data stored in the main 
memory, separating data only altered by one processor into 
different blocks. 
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Critical Sections Serializing Code 
 

High performance programs should have as few as 
possible critical sections as their use can serialize the 
code. 
 
Suppose, all processes happen to come to their critical 
section together. 
 
They will execute their critical sections one after the other. 
 
In that situation, the execution time becomes almost that of 
a single processor. 
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Illustration 
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Sequential Consistency 
 

Formally defined by Lamport (1979): 
 
A multiprocessor is sequentially consistent if the result 
of any execution is the same as if the operations of all 
the processors were executed in some sequential 
order, and the operations of each individual 
processors occur in this sequence in the order 
specified by its program. 
 
i.e. the overall effect of a parallel program is not 
changed by any arbitrary interleaving of instruction 
execution in time. 
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Sequential Consistency 
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Writing a parallel program for a system which is known to be sequentially 
consistent enables us to reason about the result of the program. 
 

Example 
 
 Process P1     Process 2 
 .      . 
 data = new;    . 
 flag = TRUE;     . 
 .      . 
 .      while (flag != TRUE) { }; 
 .      data_copy = data; 
 .      . 
 
Expect data_copy to be set to new because we expect the 
statement data = new to be executed before flag = TRUE and the 
statement while (flag != TRUE) { } to be executed before data_copy 
= data. Ensures that process 2 reads new data from another process 
1. Process 2 will simple wait for the new data to be produced. 
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Program Order 
 
 

Sequential consistency refers to “operations of each 
individual processor .. occur in the order specified in its 
program” or program order. 
 
In previous figure, this order is that of the stored machine 
instructions to be executed. 
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Compiler Optimizations 
 

The order is not necessarily the same as the order of the 
corresponding high level statements in the source program 
as a compiler may reorder statements for improved 
performance. In this case, the term program order will 
depend upon context, either the order in the source program 
or the order in the compiled machine instructions. 
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High Performance Processors 
 

Modern processors usually reorder machine instructions 
internally during execution for increased performance. 
 
This does not alter a multiprocessor being sequential 
consistency, if the processor only produces the final results in 
program order (that is, retires values to registers in program 
order which most processors do). 
 
All multiprocessors will have the option of operating under 
the sequential consistency model. However, it can severely 
limit compiler optimizations and processor performance. 
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Example of Processor Re-ordering 
 
 Process P1    Process 2 
 .     . 
 new = a * b;    . 
 data = new;    . 
 flag = TRUE;    . 
 .     . 
 .     while (flag != TRUE) { }; 
 .     data_copy = data; 
 .     . 
 
Multiply machine instruction corresponding to new = a * b is 
issued for execution. The next instruction corresponding to data = 
new cannot be issued until the multiply has produced its result. 
However the next statement, flag = TRUE, is completely 
independent and a clever processor could start this operation 
before the multiply has completed leading to the sequence: 
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 Process P1   Process 2 
 .    . 
 new = a * b;   . 
 flag = TRUE;  . 
 data = new;   . 
 .    . 
 .    while (flag != TRUE) { }; 
 .    data_copy = data; 
 .    . 
 
Now the while statement might occur before new is assigned 
to data, and the code would fail. 
 
All multiprocessors have the option of operating under the 
sequential consistency model, i.e. not reorder the instructions 
and forcing the multiply instruction above to complete before 
starting subsequent instruction which depend upon its result. 
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Relaxing Read/Write Orders 
 
 

Processors may be able to relax the consistency in 
terms of the order of reads and writes of one processor 
with respect to those of another processor to obtain 
higher performance, and instructions to enforce 
consistency when needed. 
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Shared Memory Program Examples 
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Program  
 

To sum the elements of an array, a[1000]: 
 
 int sum, a[1000]; 
  sum = 0; 
  for (i = 0; i < 1000; i++) 
   sum = sum + a[i]; 
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UNIX Processes 
 

Calculation will be divided into two parts, one doing even i and 
one doing odd i; i.e., 
 
 Process 1           Process 2 
 sum1 = 0;           sum2 = 0; 
 for (i = 0; i < 1000; i = i + 2)             for (i = 1; i < 1000; i = i + 2) 
 sum1 = sum1 + a[i];                         sum2 = sum2 + a[i]; 
 
Each process will add its result (sum1 or sum2) to an 
accumulating result, sum : 
 
 sum = sum + sum1;                     sum = sum + sum2; 
 
Sum will need to be shared and protected by a lock. Shared 
data structure is created: 
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Shared memory locations for UNIX 
program example 
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Pthreads Example 
 

n threads created, each taking numbers from list to add to their 
sums. When all numbers taken, threads can add their partial 
results to a shared location sum. 
 
The shared location global_index is used by each thread to 
select the next element of a[]. 
 
After index is read, it is incremented in preparation for the next 
element to be read. 
 
The result location is sum, as before, and will also need to be 
shared and access protected by a lock. 
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Shared memory locations for 
Pthreads program example 
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