Applications of Biomedical Computing in the Heart

Rob MacLeod

Scientific Computing and Imaging Institute (SCI), Bioengineering Department, and Cardiovascular Research and Training Institute (CVRTI)

Center for Integrative Biomedical Computing (CIBC)

University of Utah

Utah NCRR Center

Goals

- Produce cutting edge software for biomedical researchers
- Develop new techniques and algorithms in image processing, geometric modeling, simulation and visualization

 Carry out original research in segmentation, bioelectric field simulation, and visualization

Computer Modeling

What is (Our) Biomedical Computing?

Identifying (Biomedical) Problems

Nobel Prize Problems

Structure of voltage gated potassium channels:

- Rod MacKinnon (Chemistry)
- Computation for image reconstruction for x-ray diffraction and mass spectrometry data

Discovery of water channels

- Peter Agre (Chemistry)
- Augmentation by bioinformatics for identification of water channel genes

Magnetic resonance imaging

- Lauterbur and Mansfield (Physiology)
- Mathematical and computational techniques for inferring structure and image

How to Pick a Problem

Interesting

Compelling, relevant, personal
Structure-Function relationship

Feasible

- Simple enough to have a solution
- Complicated enough to grow
- Supported by good and plentiful data
 - Experimental partner (who trusts computers)

Translational/Clinical impact

Sex appeal and fundability

Heart vs Brain Physiology

Cells:

- 8 billion
- fairly homogeneous

Tissue structure:

syncitial

Function:

It's only a pump!

Cells: • 100 billion • very diverse Tissue structure: • Network with many links Function:

It's a brain!

Heart vs Brain Computing

Cells:

- HH formalism
- + stochastic
- + EC coupling

Tissue structure:

• Discrete models, cellular automata, bidomain

Function:

 Electrical, mechanical, statistical models

Cells:

- HH formalism
- + stochastic
- + synapse

Tissue structure:

 Discrete models, circuits, neural nets

Function:

• Electrical, chemical, network, and cognitive models

Heart vs Brain (Multi)Scalability

Example 1: Modeling Tissue Structure

How do we incorporate realistic structure and function into heart tissue models ?

Myocardial Structure

Passive Tissue Properties

Effective longitudinal (red) and transverse (green) intracellular conductivity (S/m)

Ratio longitudinal vs. transverse effective intracellular conductivity

Propagation during ischemia

mV

Competing Factors

Elevated [K⁺]_e

- brings resting closer to threshold
- reduces charging current -80
- accelerates activation

Reduced AP amplitude

- reduces potential difference between cells
- slows down spread of activation

Additional Compexity

Fluid shift

- capillaries collapse
- water enters cells
- reduces extracellular space
- reduces tissue conductivity
- slows spread of activation

Propagation during Ischemia

Example 2: Ischemia Modeling

Electrophysiology Experiments

Cardiac Imaging

T2

Fiber Angle

T1

Transmural and Subendocardial Ischemia

Problem: Diagnosing Ischemia

Clinical challenge: ECG: fast by equivocal Enzymes: more robust but slow and lack spatial information **Unavoidably multiscale** Cellular, tissue, volume conductor Impact Enormous

Geometric Model of Ischemia

Results: Extent of Ischemia

Effect of Conductivity during Ischemia

Mechanism of ST Shifts

Depends strongly on anisotropy
Requires detailed geometry

Example 3: Defibrillation Modeling

Patient-Specific Modeling of Defibrillation in Children

Children's Hospital Boston: John Triedman, Assoc. Prof. Pediatrics Matt Jolley, Pediatrics Fellow Frank Cecchin, Assist. Prof. Pediatrics

LMI/SPL/NAMIC at Brigham and Women's Hospital C.F. Westin Raul San Jose Kilian Pohl Steve Pieper Gordon Kindlmann

The Problem

ICD Placement in Children

Examples Developed at CHB

Berul et al, 2001

Goal: Simulate Defibrillation

Patient specific models necessary

Model Construction Pipeline

From segmented images to tet mesh

Volume Rendering

Example

Electrode 1

Current and Voltage

Voltage Gradient

Current Density

Myocardium Over Threshold

CIBC Software

SCIRun/BioPSE Networks

CIBC Power Apps

Problem-specific Application

- Hide complexities of dataflow
- Provide simplified graphical user interface
- Focus on specific task
- Enhance productivit

Biomedical Computing at Utah

SCIRun/BioPSE

SCIRun/BioPSE

- Imaging, Modeling, Simulation, and Visualization Tools
- Modular and Extensible
- Open Source, Open Model, and Open Data

Pick Your Problem Carefully

Big Challenges Require Great People

Graduate Student and Postdoctoral Positions Open

www.sci.utah.edu

Come Visit (www.sci.utah.edu)

