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Abstract

This study demonstrates the utility of an electrocardiographic inverse solution, coupled with
body surface potential mapping (BSPM), in localizing acute ischemia in patients undergoing per-
cutaneous transluminal coronary angioplasty (PTCA). PTCA balloon inflations produce complete
occlusion and acute transient ischemia, which can be detected electrocardiographically with BSPM.
Comparisons between maps recorded both during and before the inflation of the PTCA balloon
allow patient- and artery-specific characterizations of the resulting ischemia. Knowledge of the
patient’s coronary anatomy and the location of the occlusion site by coronary angiography permit
an estimation based on cardiac hemodynamics of the region of myocardium most likely to suffer
from PTCA-induced ischemia. Electrocardiographic inverse solutions provide a means of predict-
ing cardiac potentials from body-surface maps. In this study, we describe an inverse solution we
have developed to localize the transient ischemia produced by PTCA. To validate the procedure,
we compared the locations of predicted ischemia in 7 patients with a qualitative estimate of the
perfusion region based on fluoroscopic examination of each patient’s coronary anatomy and PTCA
balloon location. In each case, the region of ischemia predicted by the model included the perfusion
zone determined fluoroscopically. These results suggest that electrical changes induced by acute

ischemia can be localized with an electrocardiographic inverse solution.



Introduction

The primary goal of the electrocardiographic inverse problem is to relate quantitatively electro-
cardiographic signals on the body surface with underlying cardiac bioelectric sources. While the
most general form of the inverse problem is phrased directly in terms of intracardiac sources, such
a formulation is not unique, that is, one set of body surface potentials can yield multiple source
configurations. If, on the other hand, we seek to calculate potentials on the epicardial surface, it
is possible to obtain a unique solution for a given body surface potential distribution !. This pa-
per describes such an epicardial inverse solution, and its application to localizing transient cardiac

ischemia during coronary angioplasty.

The search for computationally tractable inverse solutions in terms of epicardial potentials has
its origins in the 1970’s 2 and has challenged investigators interest ever since (see eg., >* for recent
reviews). The requirements of such an inverse solution include a set of equations which are the
mathematical formulation of the biophysical relationships, a description of the irregular geometry of
the thorax (including the source) in an efficient and computationally amenable form, and numerical
and computational methods capable of producing accurate solutions given current computational
resources. Once generated, solutions must be validated in order to establish realistic limits of

accuracy so that the results may eventually be used in appropriate clinical applications.

Experimental validation of an inverse solution can take two forms, either direct validation,
in which experimental conditions permit simultaneous measurements of both body-surface and
epicardial potentials, or indirect validation, in which either the body or the epicardial potential
distributions are not directly available but can be predicted from other measurements. Examples

of the former approach include studies with instrumented animal preparations 3¢

and torso-shaped
electrolytic tanks “~2. The use of animal preparations, especially those in which a perfused heart
is submerged inside an electrolytic torso tanks, allows good control of measurement conditions and
provides a geometrical and physical arrangement which can be well represented in a computer model
7. The technical requirements of such systems, however, are considerable and available to only a
few laboratories. The indirect approach has been employed in the calculation of epicardial and
endocardial activation sequence maps in humans . While this strategy offers much less control,
it can provide valuable insight into both the actual and potential capabilities of such a procedure
in clinical medicine. The primary difficulty lies in linking the quantity intrinsic to the model (eg.,
epicardial potentials or isochrones) with another quantity that can be measured directly, ideally

noninvasively.

We have developed a solution to the inverse problem in terms of epicardial potentials and in
this paper we present results from an indirect validation study on human subjects. We measured
body surface potentials in patients undergoing percutaneous transluminal coronary angioplasty

(PTCA), a procedure which involves dilating a partially occluded coronary artery with a balloon-



tipped catheter for periods of from 10 to 120 s. PTCA has been referred to as a “controlled model of
ischemia” in humans ! because during the balloon inflation, distal blood flow is completely blocked,
resulting in acute, transient ischemia. The results of this ischemia have been detected via numerous
physiologic parameters, including cardiac function % '3, hemodynamics of coronary perfusion 4
and body-surface electrocardiograms (ECGs). The latter studies have dealt with changes in ST

segments and T waves 1%, QRS complexes ¢, and with body surface potential distributions 1719,

The inverse solution itself is a discrete approximation of a system of integral equations which
govern the relationship between electric potentials on the heart and body surfaces. The geometrical
model which underlies this particular solution is a realistic model of the human thorax which was
considered homogeneous in conductivity, that is, it contained only the heart and body surface
and the region between the two (the volume conductor) had a constant, scalar conductivity. The
numerical method used to formulate and solve the integral equations was the boundary element

method, with linear variation over the triangular surface elements of the geometric model.

Body surface potential distributions recorded from each patient during angioplasty provided
input data to the inverse solution, which in turn produced epicardial distributions estimating the
corresponding epicardial potentials. The PTCA procedure facilitates detection and quantitative
characterization of ischemic changes because the patient can be measured before, during, and after
inflation; the patient provides the control for each inflation. Comparison of the estimated epicardial
maps from before and during balloon inflation reveal local electrophysiological changes associated
with the PTCA induced ischemia.

For the purpose of indirect validation of the inverse solution, we have linked the geometry of
the coronary arteries of the patients and the location of the balloon at inflation with the predicted
location of ischemia. Since the occlusion produced by the balloon is complete, we assumed that,
barring extensive collateral circulation, there would be ischemia in the region normally perfused by
the occluded artery and that this ischemia would produce electrocardiographic changes detectable

through the inverse solution.

The aim of the study was then to evaluate our inverse solution using an indirect validation
approach based on acute, local, PTCA induced ischemia. While validation of this sort can only
be qualitative in nature, it nevertheless reveals important aspects of the accuracy and the clinical

utility of the inverse solution.

Materials and Methods

The forward solution

To generate the inverse solution involved first solving the forward problem — calculating body-

surface potentials in terms of epicardial potentials. For this, we made use of Green’s theorem



2,20, 21

and the boundary element method, as described in and summarized in Appendix A. This

formulation yields a matrix description of the forward problem, which can be stated as
®p = Zpu%H, (1)

where ®p is a set (vector) of body-surface potentials, @y is a set of epicardial potentials, and
Zpp is the “forward transfer coefficient matrix”. Zpy contains all the geometric and conductivity
information from the model geometry and is therefore unique to the particular geometry, but
independent of the potentials on either epicardial or torso surface. To create Zpy for anything
but the simplest of geometries requires numerical computation and the details of this are described

21

elsewhere Once Zpy has been computed, converting epicardial potentials to body surface

potentials and, thus, solving the forward problem, is a simple matter of matrix multiplication.

One of the key numerical issues in the forward problem is the trade-off between the spatial
resolution of the geometrical model and the level of complexity with which each discrete element
— in our case, triangle — of the model is treated. Higher spatial resolution increases the number
of elements (and therefore equations), while more complexity adds to the computational overhead
of the calculations and there is no simple relationship which can predict the net result on solution
accuracy. The earliest solutions to the forward problem in electrocardiography, limited as they were
by the existing computational resources, employed both relatively large (and hence few) elements,
and assumed that the potential remained constant over each element 2. Somewhat later studies
increased the complexity by subdividing elements and assigning an interpolated potential to each
sub-element %22, Not until the work of Messinger-Rapport and Rudy ?°, based, in turn, on
earlier work from mechanical engineering applications of the boundary element method by Cruse
23 were elements with truly linear variations in potential used. See Appendix B for a more detailed
description of both forms of boundary elements. The model described here contains similar numbers
of elements as those in 22, 3, and '°, but allows either subdivided or linear boundary elements to

be used for computing.

The inverse solution

Once a satisfactory forward solution exists, we must somehow invert the process so that epicardial
potentials can be predicted from body surface measurements. It is well established, however, that
the inverse problem is ill-posed in the sense that small variations in any of the input values can
produce unbounded oscillations in the output. The most successful means devised to compensate
for the ill-posed nature of the inverse problem is to apply what is know as regularization, by methods
first outlined by Tikhonov 2*. The theory and application of this method have been well described
in the literature (eg., 3) so that for our purposes it is sufficient to write only the expression for the

regularized inverse transfer coefficient matrix Zyp as

Zup = (ZhyZpy +tM)™' Zhy. (2)



where Z%,; is the transpose of Zpy. The matrix M is either the identity matrix I, or is derived
from the gradient operator matrix G or the Laplacian operator matrix L. The scalar ¢ is known as
the regularization parameter and must be set beforehand based on either previous results or a priori
knowledge of the problem. We can view regularization as a means of constraining or smoothing
the solution, with the choice of the matrix M and the regularization parameter ¢ determining the
nature and extend of that smoothing. Hence the methods used to select M and ¢ are critical to the

problem.

Once regularized, the inverse solution is again a matrix of transfer coefficients, Zyp, which

relates epicardial (H) potentials to body surface (B) potentials as follows:
QH:ZHB*Q)B, (3)

One need only multiply each set of body-surface potentials by Zgyp to generate the corresponding

set of predicted epicardial potentials.

To select the smoothing operator M and the regularization parameter ¢, we computed both
epicardial and torso potentials directly using a single dipole source placed in the model torso
geometry (see next section) 2°. We then generated inverse solutions which were regularized with

each of the three variations on M, and optimized ¢ for each set of results.

Calibration data

One way to test the validity of the forward and inverse solutions is to generate epicardial and body
surface distributions from discrete sources. This is not a true validation, since discrete sources are
only an approximation of the actual complex cardiac activation, but any general forward/inverse

solution which does not agree with the discrete simulations must be viewed with skepticism.

For this study, we placed a single unit current dipole in a location corresponding to the mid-
septum of the heart and oriented it along the three orthogonal axes of the torso geometry. We then
computed both epicardial and body surface potentials with the same homogeneous, bounded torso
volume conductor as we used in the full forward/inverse solution. The results, in the form of three
sets of epicardial and body-surface potentials, became the reference, or simulated potentials against
which all direct (i.e., surface to surface) computations were compared. To test the accuracy of the
forward solution, we took the simulated epicardial potentials, calculated torso potentials using the
forward solution, and compared these with the simulated torso potentials. To test the inverse
solution, we took simulated torso potentials, computed epicardial potentials, then compared these

with simulated epicardial values.

Difference measures

The numerical measures of differences between potential distributions we used were:



Maximum Error: absolute maximum difference between the predicted and actual values.

Root-Mean-Square (rms) Error:

N c_Ha

where ®¢ are the computed and ®° the actual potentials.

Relative Error: this is essentially the rms error normalized by the actual values according to

N
v (PE — P2 2
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N
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E,.; is zero for two identical sets of values &% and ®°.

Correlation Coefficient: geometrically, we can picture this as the cosine of the angle between

the vectors of potentials, which is computed by the expression

Pe . pa
=T .= - (6)
el
The closer CC' is to one, the more similar ®¢ and ®* are to each other, independent of any
scaling factors that apply to all the potentials.

Model geometry

The numerical inverse solution used for this study was based on a realistic, homogeneous geomet-
rical model of the human torso consisting of 352 nodes on the body surface and 92 nodes on the
epicardial surface 26. The basis of the geometry was a set of measurements made by Horacek ?® of
a human torso, and those from a human heart by Macchi ?” and Ritsema van Eck 28. One of the
computational advantages of the boundary element method is that it requires a description of only
the surfaces of the geometry wversus the entire volume, as in finite element implementations. This

reduces not only the size of the model itself, but also many steps in the calculations.

Our aims in constructing the model geometry were to maintain a manageably small number of
elements in the model while retaining resolution where information content could be expected to
be high, and to facilitate easy transfer of data from actual BSPM recordings to the model. To this
end we included each of 117 measurement electrodes as nodes in the model, then placed additional
nodes approximately at the midpoint between each electrode, for a total of 352 nodes. The mean
spacing in the precordial region is approximately 2.5 cm, for the right anterior and posterior regions
the spacing doubles to approximately 5 cm, yielding an overall mean spacing of 3.0 cm and a range

of 1.7 to 5.1 cm. Manual triangulation yielded 700 triangles in the completely closed torso surface.



The basis of the epicardial surface description was a set of microtome slices of a post mortem
human heart, which had been previously digitized 27:?8. At the same time, the location and
orientation of this heart within the torso was determined from radiographic views of the same
subject from whom the torso geometry was constructed. The node points of the epicardial surface
lie on the outlines of 6 of the slices through the heart, made perpendicular to an axis running from
the apex of the heart, through the root of the aorta. Digitization and manual triangulation of these

slices produced 98 nodes and 192 triangles.

Data visualization

To generate hard-copy plots of the potential distributions, we projected the three-dimensional
geometry to a plane, maintaining the same triangularization. The projections were based on a
concept of an ‘isometric’ mapping, in which linear surface distances were maintained as much as
possible. The torso geometry layout matches the BSPM standard of placing the anterior surface on
the left, posterior on the right, so that the outside edges represent the right mid-axillary line. The
method of projection for the epicardial surface also followed a convention in epicardial mapping by
adopting the ‘apical view’. The center of this display corresponds to the apex, with the epicardium
splayed outwards in concentric rings. In our case, these rings were defined by the slices used to
create the model, and were further distorted slightly so that linear distances between nodes in
adjacent rings (slices) were preserved. To display potentials on both of these surfaces, we used
triangularization and standard bilinear interpolation techniques 2° to produce contour lines with

linear or logarithmic spacing between levels.

Mapping Studies

From a clinical study carried out at the Victoria General Hospital in Halifax, Canada, to examine the
effects of PT'CA on cardiac electrical activity, we selected sixteen patients in whom successful BSPM
and PTCA were accomplished. Before the procedure, all subjects had significant (> 60% diameter
reduction) stenosis of the proximal sections of a single coronary artery, showed no clinical evidence
of variant angina, and had resting ECGs which showed no diagnostic Q waves, or ST elevation
or depression of more than 100 pV. Of this group, 8 patients had occlusions of the left anterior
descending (LAD) artery, 4 of the right coronary (RC) artery, 3 of the left circumflex (LCx) artery,
and one had both the LAD and RC arteries treated, but otherwise met all the inclusion criteria.
This study was approved by the institutional review committee of the Victoria General Hospital

and all patients provided signed, informed consent.

BSPM involved simultaneous recording of 120 ECG leads, relative to a Wilson’s central termi-

nal, continuously for up to 6-minute periods over the entire balloon inflation/deflation cycle. The

details of the electrode configuration and mapping system have been presented elsewhere 331,



The recording protocol for this study included 15-s recordings before commencement of the PTCA
procedure, and again between inflations to evaluate control conditions. To capture the electro-
cardiographic response to angioplasty, we recorded either the last 15 s of the balloon inflation, or
the entire inflation/deflation cycle, beginning 30 s before balloon inflation and ending 2 min post
deflation. For each patient, we carried out at least one of these long-duration recordings and every

patient had at least 2 inflations recorded in some form.

BSPM processing consisted of selecting epochs of 10-30 s duration during which there was little
change in ECG waveform, as determined from a selected precordial lead. In each of the resulting
epochs a computer program clustered beats with similar waveform shape and then averaged the
beats in the majority cluster for each lead. From the resulting average complex for a particular
epoch, we constructed maps of isopotentials and isointegrals for areas under the QRS, ST, and
QRST regions of the ECG. In order to emphasize the differences resulting from the angioplasty-
induced ischemia, we also subtracted integral maps recorded just prior to inflation from those
recorded during the inflation. These difference maps, which served as the focus of most of our anal-
ysis, are a unique feature of the PTCA model of ischemia since the patient provides a personalized

control.

Radiologic Examination

For a 7-member subgroup of the 16 patients in the test group, (2 LAD; 2 RC, 2 LCx, 1 LAD/RC),
we performed detailed radiographic examination for the purpose of inverse solution validation. For
each case, a radiologist (R.M.M.) created a customized two-dimensional projection of the coronary
tree of the patient, superimposed on the apical projection of the epicardium. These drawings
included the major arteries and primary branches, and indicated clearly the relative dominance of
left or right coronary arteries, as well as the location of the angioplasty balloon. The patients were
selected only on the basis of the amplitude of PTCA-induced changes in the maps, not to match

the size, shape, or gender of the model geometry.

Results

Forward/Inverse solution

Results from the forward calculations with discrete dipole sources provided both an independent
measure of the accuracy of the forward solution, and a means of evaluating different smoothing

operators and regularization parameters for the inverse solution.

Table 1 summarizes the results of the forward solution using two different methods for approxi-
mating the boundary-element integrals over the triangular surface elements. The first method used

a triangle subdivision approach similar to that described in 22, the second the true linear element



approach 20, With relative errors for the subdivision method ranging from 8.6% to 9.0%, and for
the linear element method from 5.0% to 8.2%, the fit for both methods was very good with the lin-
ear method being marginally more accurate. Comparison of torso surface contour maps supported

this result.

Please place Table 1 here

We then applied both zero-order and Laplacian smoothing operators M to the Tikhonov in-
verse procedure, and varied the regularization parameter ¢t over several orders of magnitude. Each
location in this parameter space was then evaluated by computing the maximum, rms and relative
errors, and the correlation coefficients between epicardial potentials derived from the inverse solu-
tion, and those computed directly from the three orientations of the single dipole source. Input to
the inverse solution was the set of torso surface potentials calculated directly from the same dipole

source.

The optimal value for the regularization parameter ¢ differed slightly for each difference measure,
ranging, eg.,, from 0.5 x 107* to 1.0 x 10~* for zero-order and from 5.0 to 90.0 for Laplacian
smoothing operators. The best value for ¢ also varied for the three dipole orientations, between,
eg., 0.7 x 107* and 1.5 x 10~* in the case of zero-order and from 40 to 75 for Laplacian operators.
Of importance in any practical application of the inverse solution is its performance when noise is
present in the signal. In Figure 1 is shown a graph of the relative error and correlation coefficient
with a single dipole source, for two different values of the Laplacian regularization parameter ¢, as
progressively more noise was added to the torso potentials. Regularization at ¢ = 57 was optimal
for noiseless torso potentials (E,.,; = 0.188, CC = 0.982), while at ¢ = 200 the error was only
slightly larger (E,¢ = 0.197, CC = 0.980). With added noise, however, the errors increased much
more rapidly for the ‘optimal’ case (¢ = 75) than for the slightly over-regularized case (¢ = 200).
We compared the noise tolerance for other levels of regularization and selected 200 as the value
which gave both relatively low error at low noise levels, and acceptable degradation at noise levels

in the 10-30% range which we felt was realistic for the clinical mapping data.

Please place Figure 1 here

Comparison between methods used to estimate the variation in potential over the triangular
surface elements of the model suggests a small advantage of the linear over the triangle-subdivision
scheme. In our implementation, using true linear triangular elements was also faster to compute,
by a factor of almost three, over subdivided elements. These findings led us to select the linear
element method for application of the inverse solution to clinical mapping data. Comparison
between different regularization functions M also indicated a clear and consistent advantage of the

Laplacian over zero-order operators. Examination of the epicardial maps in Figure 2 supports this

10



result, since the maps generated by the zero-order inverse solution show local errors in all three

dipole orientations.

Please place Figure 2 here

Inverse solution applied to PTCA data

All results of the inverse solution applied to BSPM data recorded during PTCA are shown as pairs
of isocontour maps. One map of each pair represents the potential distribution over the torso
surface, the other map, the corresponding distribution over the epicardial surface, as predicted by

the inverse solution.

Figure 3 is a display of measured body-surface maps (outside columns) and the corresponding
computed epicardial maps (inside columns), one pair for each of four sequential instants in time,
from two different averaged beats. The first beat, whose maps are shown in the two left hand
columns of Figure 3, represents the period just prior to inflation of the angioplasty balloon, with
the catheter in place. The four pairs of maps form a sequence near the J-point, as indicated by the
vertical lines in the V3 lead shown at the top of each column of torso maps. The maps in the right
hand columns represent the equivalent time instants from an averaged beat late in the occlusion

phase, just before release of the PTCA balloon.

The projections used for the maps are described in the methods section, above. Superimposed
on the apical view of the epicardium are shaded outlines of the main coronary arteries derived for
each patient from angiograms recorded during the PTCA procedure. Using the clock dial as a
reference, the LCx artery encircles the basal region of the heart from 11:00 to 3-6:00 in the polar
view, while the RC artery also lies near the atrioventricular border running from 10:00 to 6-7:00.
The arrows in the epicardial maps point to the location of the occlusion, relative to the coronary
arteries of the patient. Contour lines in each plot are spaced according to a standard logarithmic
scale covering one decade, relative to the extrema of each map, which are marked by the plus and

minus signs, and labeled with values in microvolts (see figure legend for details).

Please place Figure 3 here

If we look first at measured data, the pairs of body-surface maps are very similar in the first
two rows of Figure 3, but a clear difference develops by the third time instant, seen as an area
of localized positive potential over the left anterior region of the right hand, peak-inflation body-
surface map, which persists throughout the rest of the ST segment (not shown). This is reflected as
ST-segment elevation in the V3 lead shown above the right-hand column of maps in Figure 3. The
location and topography of the maps identify this case as angioplasty of the LAD artery 81921,

In the corresponding computed epicardial maps for the third and fourth time instants, there is also

11



an area of positive potential unique to the peak-inflation maps, which is located in the region under
the LAD artery, distal to the site of occlusion marked in the display with an arrow. The location
of this positive potential corresponds with the region which would suffer a lack of perfusion, and

hence, presumably, acute ischemia, as a result of balloon inflation.

In order to enhance the changes between maps recorded before inflation of the angioplasty
balloon, and those at peak inflation, we computed difference maps for all inflation epochs, relative
to the pre-inflation recordings. To achieve some insensitivity to alignment, and also a large degree
of data compression, we first integrated the signal from each map lead, generating “integral maps”,
and then subtracted these to form “integral difference maps”. For the purposes of validating the
inverse solution in this report, we show only integral difference maps derived from the “STT”, the

ST segment and T wave, as measures of the “net” effect of angioplasty-induced ischemia.

Figure 4 contains results from a single inflation in each of the cases in our selected group of
seven patients, which contains two patients each who underwent PTCA of the LAD, RC, and LCx
arteries, respectively, along with a single patient in whom both LAD and RC arteries were treated.
The display consists of pairs of maps, one member of the pair for the measured body surface
distribution (left-hand column) and one for the corresponding epicardial distribution (right-hand
column), as predicted by the inverse solution. The body-surface maps are “peak” difference maps,
produced by subtracting the maps recorded just before inflation of the angioplasty balloon from
those measured during the peak phase of the inflation. The epicardial maps are thus also peak
integral difference maps and do not represent potential distributions as they might be measured,
but simply portray the distribution of the degree of difference or change in epicardial potentials
brought about by inflation of the PTCA balloon. Studies of epicardial potentials in animals show
that electrodes located directly over ischemic areas sense elevated potential in the ST segment 32
and hence in the STT integral maps. While the injury current that generated this localized ST
elevation must also produce a complementary depression elsewhere on the epicardium, the return
current path is more diffuse, and hence the resulting change in potential distribution is less suitable
for localizing ischemia. Therefore, as we have subtracted pre-inflation maps from peak-inflation
maps to create the difference maps, we view epicardial regions of positive difference as evidence of

underlying regions of ischemia.

‘Please place Figure 4 here‘

For cases 3229 (LAD), 3230 (RC), 3235 (RC), 3223 (LCx), and 3200 (LAD and RC), the regions
predicted as being ischemic by the inverse solution, indicated by positive contour lines, were also
located distal to the site of balloon inflation in the predicted perfusion bed of the occluded artery.
There were also regions of positive difference that did not overlie regions where ischemia would be
expected on hemodynamic grounds, eg., in patient 3229 there was a positive region near 3 o’clock

on the epicardial map. Similarly, in patient 3211, the maximum lay over the left atrium and the

12



positive zone was not contiguous under the course of occluded LCx artery. In perhaps the biggest
deviation from expectation, the difference map from patient 3196 showed a maximum over the
upper left ventricle and left atrium while the apex, which, at least in its anterior aspects, should

experience ischemia due to an LAD occlusion, displayed a reduction in ST integral value.

Discussion

The inverse solution described here includes only the epicardial and body surfaces and hence does
not account for the inhomogeneous and anisotropic nature of the torso volume conductor. This level
of simplicity offers the advantage of reduced geometrical and computational complexity, which, in
this case, allowed us to generate complete forward and inverse solutions in the order of a minute on
moderately powerful workstations. Moreover, some studies suggest that assuming homogeneity is

a ‘better’ error that overestimating the deviation of conductivity values in inhomogeneous regions
33,3

In the studies described here, a single, realistic, human torso model was used for all calculations.
From the recent reports, there is every reason to believe that the addition of accurate, customized
geometrical information would improve the quality of our results. Without ready access to nuclear
magnetic resonance equipment there is no acceptable means of gathering customized geometrical
data on the patients for whom inverse solutions are computed. Despite the development of semi-
automatic systems for acquiring and triangularizing 3D surface data 1934736 the cost in terms of
human effort and computing time of individualizing each inverse is still prohibitive. If such an
individualized inverse solution were to be applied to the clinical setting, the time to generate a
patient-specific forward matrix would, given present technology, limit its diagnostic capabilities.
One possible solution might be to generate a set of inverse solutions based on a variety of basic

body types and sizes.

The relative contribution of inhomogeneity and geometrical errors to inverse solutions is still on
open matter. Values for errors induced by the omission of inhomogeneities as high as 300% have
been reported in one inverse solution for epi/endocardial activation times !°. Errors in geometry

have also been found to induce errors in the same range 33.

These results have almost all been
gleaned from modeling studies and hence suffer from the same lack of direct, experimental validation
as the study reported here. To further confound the issue, there appears to be some interplay
between factors. For example, the skeletal muscle may have a larger influence on torso potentials

33,37 or fat which is on the epicardium could be a larger source of error

than epicardial potentials
than the fat located below the skin 3%). It has also been suggested that an inverse solutions
based on one geometric model can be applied without significant additional error to other cases of

approximately similar build due to the smoothing effect of regularization 3.

Another source of error for all inverse solutions that include Tikhonov regularization is the

13



setting of the regularization parameter. The essential difficulty is that while the value of this
parameter affects the accuracy of the inverse, the only sure way to set its value is to know the
solution beforehand. Moreover, there are data which suggest that the optimal value of regularization
parameter is not constant over time, but varies throughout the cardiac cycle 3%4°. The two best
known techniques for setting the regularization parameter when there is no a priori knowledge
available are the CRESO #! and the L-curve *2 methods. More recent investigations have focused on
including the temporal continuity of the underlying electrophysiology in the regularization process,

43 44

either as a separate operation *°, or in simultaneous combination with spatial regularization **.

In most of the inverse solutions which have been applied to clinical data the approach has been
more empirical, using what can best be described as “physiological constraints” to set regularization
levels. We used another approach entirely, by letting epicardial and torso potentials calculated
from a single dipole source determine the optimal regularization values. This methods offers the
advantages of relative simplicity and the possibility of expansion to more complex discrete sources,
which could even change in time to generate more realistic body surface potentials. However,
this method also suffers from a potential bias since the same geometry is used for both the direct
calculation of the dipole potentials for regularization and the resulting inverse solution. Another
possible weakness of this approach is that the noiseless conditions of the model lead to unrealistic
values of the regularization parameter. For this reason, we applied Gaussian noise at variable levels
and found that by increasing regularization, we worsened the optimal (no noise) error, but gained
considerable tolerance to a range of noise levels, effectively flattening the error vs. noise level curve.
Hence, while the ‘optimal’ level for Laplacian regularization was 75, we chose a value of 200 for use
with the BSPM data.

The use of integral maps as the input data for much of this study has advantages that go beyond
the practical issues of data compression. Since PTCA offers the unique opportunity to compare
the effects of ischemia against a control in the same patient, the situation begs to have those effects
highlighted by difference maps. The computation of difference maps on an instant-by-instant basis,
however, depends too sensitively on alignment of the signals to be useful 2!. Integral maps largely
solve this problem, since errors in determining fiducial points have limited impact on the area under
the ECG. A further justification for the use of integral maps in the context of inverse solutions

39 Since the inverse solution is ill-posed, we must regularize

was pointed out by Walker et al.
it to restore continuity of the output. The regularization, however, applies a smoothing to the
output so that fine detail and abrupt changes in the maps are not well resolved by the inverse
solution. Integral maps, however, tend to be smoother in their topography, and hence may be more
accurately predicted by an inverse solution. In addition — and this is the essential justification for
using integral maps in any clinical context — the distribution of some integrals, especially of the
QRST, has been shown to be highly suggestive of changes in repolarization “>~*’. For the purpose

of this report, we presented ST-T integral maps, in large part because we found that difference
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maps produced from ST, STT and QRST segments of the beat were virtually identical (except
for a constant scaling factor) 2! and all included the ST segment most commonly used to detect

ischemia.

Given all of the preceding discussion, it is perhaps little surprise that there are features in
the inverse solutions we have computed that are not compatible with our knowledge of epicardial
potential distributions. At this point, we can only surmise that these features arise, at least in part,
due to the admittedly oversimplified view of the human torso as a homogeneous volume conductor.
A further, perhaps even larger, source of error is the fact that the model geometry was realistic but
not anatomically correct for the particular patients we measured, and that the same geometry was
used throughout. The human thorax has a complex, irregular shape containing tissues with different
conductivities, making assumptions of homogeneity and uniformity perhaps oversimplifications. A
further potential source of error lies in the physiology of the PTCA-induced acute ischemia situation
— our simple assumptions of coronary hemodynamics and lack of adequate information regarding
the effects of collateral circulation in these patients. All of these factors probably contributed to
the lack of model specificity, as seen in the spurious extrema of some of the epicardial difference

maps — any further discussion of this issue would be purely speculative at this point.

From these caveats, it might appear tempting to suggest that the inverse solution, even though
it leads to predictions of epicardial potential distributions, does not reveal anything that is not
already present in the body surface maps. This is only partially true because the inverse contains
information from the body surface potentials, but also takes into account geometrical relationships
that have profound biophysical influence on electrocardiographic fields. The inverse-squared rela-
tion between potential and distance combined with the asymmetrical shape of the torso and the
heart’s location within combine to distort spatial relationships clearly visible on the epicardium
when they are simply viewed as potentials at the torso surface. For example, discrete sites of
epicardial activation merge into single features of body surface maps and the relative strength of
posterior cardiac events is lost due simply to the relative distance to body surface electrodes. De-
spite the promise, the question that does remain is whether inverse solutions as they now exist can
be trusted enough to replace, or supplement existing clinical methods. The results from our study
cannot provide an unequivocal answer, but they do suggest that even under simplified assump-
tions, inverse solutions include something that looks to be correct. It remains to further refine the
approach to extract that part of the inverse solutions that is most useful for diagnostics. Present
efforts are therefore directed at both improving the spatial resolution and electrical fidelity of the

geometrical model 34:35,38,48

, and completing experimental validation studies using a realistically
shaped electrolytic tank and immersed, perfused canine hearts *°. The immense potential that the
inverse solution offers is what continues to motivate researchers to refine the mathematical methods

required to predict accurately cardiac electrical activity from body surface measurements.
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Appendix A: The forward solution

The forward problem can be formulated as a quasi-static Laplace’s equation with known boundary
conditions on the epicardial (Dirichlet) and body surfaces (Neumann). Applying Green’s second
identity to describe the scalar value of electric potential on the boundaries, leads to a pair of integral

equations for the body and epicardial surfaces, respectively;

. 1 1 Vv -
Py — — ¢HdQBH+—/ $5 AUy + o Q:H dA=0 (7)
2 Jsy r
and ) 1 Vo
it — il YPH A =
S | % + 5 / b Ay + 5 /5 Tt ead=o, (8)

Here we have denoted ¢ and ¢p as the potential on heart and body surfaces, respectively; V
as the spatial gradient operator; r as the distance between the observation point and points on the
integration surface; and the differential sohd angle d% g as the angle subtended by an elemental
area of the integration surface @ at the % observation point on surface P. Likewise, ¢P is the
potential at the i*” location on the surface P. Figure 5 shows the geometrical relationships in a

schematic way.

Please place Figure 5 here

Equations 7 and 8 can only be solved in closed form for the simplest of geometries and so we
must derive discrete equivalents for each term in the equations. We can then write a single discrete
equation for each point on both surfaces and from this generate a system of linear equations (the
collocation method) which can be solved numerically. The discrete versions of Equations 7 and 8
can be written as

Pee®B + P5r®u + gprln =0 9)
and

Pus®B +Pyn®n + gyuTm =0, (10)
where @ is a column vector of electric potentials at all the discrete points on the surface indicated
by the subscript (H = heart and B = body surface); 'y is the column vector of potential gradient
on the heart surface; and the p’s and g’s are row vectors of coefficients derived from the integrals in
the continuous equations, which express the geometrical contribution of each point on the surface
of integration to the potential at the observation point 7. The ¢ refers to a specific observation
point on either the heart (Equation 10) or the body (Equation 9) surface. Note that this form
of equation requires that the geometrical coefficients (the p’s and g¢’s) can be separated from the
potentials and potential gradients — a restriction which limits the possible numerical approaches.
As discussed in some detail below, the manner in which this separation is achieved perhaps best

characterizes the difference between numerical approaches to the forward solution 2 3:10:20,
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If we now write Equation 9 for each point on the body surface and Equation 10 for each point

on the heart surface, two sets of equations result, which in matrix notation can be written as:
Ppp®p + Ppy®y + Gpul'u =0 (11)

and
Pyp®p + Pgg®y + Gggl'g = 0. (12)

The P's and G's are the matrices formed by collocating all the elements of the associated p* and
g' row vectors — one row for each observation point. For the Pyp matrix, for example, each
row contains Ng elements from one pﬁ'q p vector, and there are Ny rows, one for each value of i.
Here again, the first subscript represents the surface containing the observation points, the second
subscript the surface of integration. Pygy and Ggg are square matrices of size Ny x Ny, Py
and Gy are sized N X Ny, Pgp is another square matrix of size Ng X Ng, and Pyp is sized
N H X N, B-

By solving Equation 12 for 'y and substituting the result into Equation 11, we remove the

need for explicit knowledge of the potential gradients. This leads, after sorting of variables, to
(Ppp — GpuG iy Pup)®p = (GpuGyyPun — Pen)®m, (13)
which can be rewritten as
Op = Zpnm, (14)

with Zgg defined as

Zpg = (Ppp — GuGryPus)  (GruGyyPrr — Pra). (15)

Appendix B: Boundary element integration

The boundary element method requires that a scalar value (in this case electric potential) be
integrated over surfaces that are described as the sum of discrete planar patches. The continuous
integral is thereby replaced by a sum of terms, each of which represents an approximation of the
local integral over a single patch. For the forward/inverse problem discussed here, each of the
integrals in equations 7 and 8 must be replaced by a summation over all the triangular elements

in a surface, eg., from equation 7
[ bndn ~ > @i, (16)

where the integral over the continuous heart surface Sy has been replaced by a sum over Ny
triangular elements of the term p’ ;; ®%;, which includes an approximation of the integral over the

triangle element.
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Boundary element approaches differ in how they treat the integration over the planer elements.
If the value of the scalar field is constant, or can be assumed so, then the integration is relatively
simple and may even have a closed analytical solution. Barr et al. used this approach for their
solution to the forward problem in electrocardiography?. The accuracy of the constant value as-
sumption is a function of the rate of spatial change of the scalar value and the size of the discrete
planar elements; if the elements are chosen small enough and the field varies slowly, then the as-
sumption is valid. This condition leads to a second approach to boundary elements in which each
original element is subdivided and a constant value is assigned to each of the resulting subelements.
The specifics of this technique, which has been used by several investigators for electrocardiographic
problems!®?2, depend on exactly how the triangle is subdivided, and how potentials are assigned
to the resulting (constant) subelements. One important advantage of this method is that it permits
adaptive solutions in which subdivision — if necessary, recursive subdivision — occurs only where

and when required, resulting in increased computational efficiency.

A third approach to approximating the integrals in boundary elements is to allow the scalar
value to vary over the surface element and then employ numerical surface integration (numerical
quadrature) techniques for each element. In the model presented here, we used elements in which the
potential was allowed to vary linearly with distance over each element, combined with numerical
quadrature based on a method by Radon®. The formulation of the linear variation was first
described for mechanical engineering problems by Cruse?® and involves a bilinear interpolation
technique using the potentials at each vertex of the triangle and the distances from each vertex to
the desired point inside the triangle?'. The numerical quadrature then becomes a weighted average

of the potentials at the vertices.
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Figure legends and tables

Figure 1 Relative error and correlation coefficient for the inverse solution from a single dipole
source for two different values of the regularization parameter ¢ with Gaussian noise added to the
torso potentials before inverting. Noise level was computed as a percentage of the noiseless torso
potential. Each value used for the graphs represents the mean of 20 runs with a random value of

noise. Left-hand axis is scaled for relative error and right-hand axis for correlation coefficient.

Figure 2 Comparison of regularization operators on inverse solutions computed with linear tri-
angular elements. Discrete dipole potentials (left-hand column) are compared with inversely cal-
culated equivalents from Tikhonov zero-order (middle column) and Laplacian (right-hand column)

regularization for all three dipole orientations.

Figure 3 Measured torso and computed epicardial potentials distributions for four sequential in-
stants in time. The two outside columns contain body-surface equipotential maps displayed in a
cylindrical projection with the anterior surface in the left half of each map and the posterior surface
in the right half. The six shaded circles mark to locations of leads VitoVs. To the inside of each
body-surface maps is the corresponding computed epicardial map, projected on an apical polar
view of the heart. Superimposed on each epicardial map is a shaded outline of the patient’s coro-
nary arteries, with an arrow marking the site of the angioplasty balloon during inflation (proximal
LAD in this case). The scalar ECG tracings at the top of the outside columns show a torso lead
corresponding to V3, with a vertical bar marking the four instants in time from which the maps
were taken. Isopotential contour spacing in all plots is logarithmic over one decade, based on a
fixed sequence of 1.0, 1.5, 2.2, 3.3, 4.7, 6.8, and 10.0, which is scaled by factors of 10 until the
mantissa of the largest extremum falls below 10. For example, in the first body surface map of
the figure, the largest extremum is -237.92, so that contours are fixed at +222., +150., 100, +68,
+47, £33, and +22. Solid lines indicate positive values, broken lines, negative values. The left
hand maps were recorded from the patient just prior to balloon inflation (Pre-inflation); the right
hand set were recorded at the latter stages of the inflation, just prior to release of balloon pressure
(Peak-inflation).

Figure 4 ST isointegral difference maps from seven different patients undergoing PTCA. In the
left hand column are body surface distributions and in the right, the corresponding computed

epicardial maps. Markings and scaling conventions are the same as in Figure 3, and the shaded
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outline of the coronaries was customized for each patient. The coronary artery which was dilated
during PTCA is indicated in the upper right hand corner of each map; the upper left corner contains
the patient number. Maximum and minimum values are located at the plus and minus signs in each
map and values shown are relative differences, each difference map being scaled by the rms value
of its control map. In panel A, are maps from two cases of LAD artery inflation (patients 3196 and
3229) and from two cases of RC artery inflation (patients 3230 and 3235). Panel B contains maps
from two patients with LCx artery angioplasty (patient 3211 and 3223) and maps from both LAD
and RC artery inflations in the same patient 3200.

Figure 5 The geometry of the forward/inverse problem. In panel A, the observation point p is

placed on the outer bounding body surface, Sp; in panel B, p lies on the inner bounding heart

surface Sg. The € terms are the associated solid angles.

26



Table 1: Test of the forward solution for a single dipole source. Calculated torso potentials from
both forward solutions were compared with simulated data. Units for the rms error and maximum
error are pV, assuming unit values of torso conductivity and dipole moment. The axes of the
torso geometry were oriented from right to left arm (z-axis), cranio-caudally (y-axis), and anterio-
posterior (z-axis).

Test of Forward Solution Accuracy — Dipole Source

Model Type Source RMS Error Max. Error Rel. Error Corr. Coeff.

Subdivision
X dipole 0.54 1.12 0.086 0.997
Y dipole 0.68 1.53 0.089 0.998
7Z dipole 0.57 1.23 0.090 0.996
Linear
X dipole 0.32 0.95 0.050 0.999
Y dipole 0.64 0.13 0.082 0.997
Z dipole 0.45 0.16 0.070 0.998
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