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Computer modeling and simulation continue to grow more important to the field of bioengineering.
The reasons for this growing importance are manyfold. First, mathematical modeling has been shown
to be a substantial tool for the investigation of complex biophysical phenomena. Second, since the level
of complexity one can model parallels existing hardware configurations, advances in computer architec-
ture have made it feasible to apply the computational paradigm to complex biophysical systems. Hence,
while biologic complexity continues to outstrip the capabilities of even the largest computational systems,
the computational methodology has taken hold in bioengineering and has been used successfully to
suggest physiologically and clinically important scenarios and results.

This chapter provides an overview of numerical techniques that can be applied to a class of bioelectric
field problems. Bioelectric field problems are found in a wide variety of biomedical applications that
range from single cells [1], to organs [2], up to models that incorporate partial to full human structures
[3,4,5]. I describe some general modeling techniques that will be applicable, in part, to all the aforemen-
tioned problems. I focus this study on a class of bioelectric volume conductor problems that arise in
electrocardiography and electroencephalography.

I begin by stating the mathematical formulation for a bioelectric volume conductor, continue by
describing the model construction process, and follow with sections on numerical solutions and com-
putational considerations. I concluded with a section on error analysis coupled with a brief introduction
to adaptive methods.

Christopher R. Johnson
University of Utah
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12.1 Problem Formulation

As noted in Chap. 9, most bioelectric field problems can be formulated in terms of either the Poisson or
the Laplace equation for electrical conduction. Since Laplace’s equation is the homogeneous counterpart
of the Poisson equation, I will develop the treatment for a general three-dimensional Poisson problem
and discuss simplifications and special cases when necessary.

A typical bioelectric volume conductor can be posed as the following boundary value problem:

(12.1)

where Ω is the electrostatic potential, σ is the electrical conductivity tensor, and IV is the current per unit
volume defined within the solution domain, Ω. The associated boundary conditions depend on what
type of problem one wishes to solve. There are generally considered to be two different types of direct
and inverse volume conductor problems.

One type of problem deals with the interplay between the description of the bioelectric volume source
currents and the resulting volume currents and volume and surface voltages. Here, the problem statement
would be to solve Eq. (12.1) for Φ with a known description of IV and the Neumann boundary condition:

(12.2)

which says that the normal component of the electric field is zero on the surface interfacing with air
(here denoted by ΓT). This problem can be used to solve two well-known problems in medicine, the
direct EEG (electroencephalography) and ECG (electrocardiography) volume conductor problems. In
the direct EEG problem, one usually discretizes the brain and surrounding tissue and skull. One then
assumes a description of the bioelectric current source within the brain (this usually takes the form of
dipoles or multipoles) and calculates the field within the brain and on the surface of the scalp. Similarly,
in one version of the direct EEG problem, one utilizes descriptions of the current sources in the heart
(either dipoles or membrane current source models such as the FitzHugh-Nagumo and Beeler-Reuter,
among others) and calculates the currents and voltages within the volume conductor of the chest and
voltages on the surface of the torso. The inverse problems associated with these direct problems involve
estimating the current sources IV within the volume conductor from measurements of voltages on the
surface of either the head or body. Thus one would solve Eq. (12.1) with the boundary conditions

(12.3)

(12.4)

The first is the Dirichlet condition, which says that one has a set of discrete measurements of the voltage
of a subset of the outer surface. The second is the natural Neumann condition. While it does not look
much different than the formulation of the direct problem, the inverse formulations are ill-posed. The
bioelectric inverse problem in terms of primary current sources does not have a unique solution, and
the solution does not depend continuously on the data. Thus, to obtain useful solutions, one must try
to restrict the solution domain (i.e., number of physiologically plausible solutions) [11] for the former
case and apply so-called regularization techniques to attempt to restore the continuity of the solution on
the data in the latter case.

Another bioelectric direct/inverse formulation poses both the problems in terms of scalar values at
the surfaces. For the EEG problem, one would take the surface of the brain (cortex) as one bounded
surface and the surface of the scalp as the other surface. The direct problem would involve making
measurements of voltage of the surface of the cortex at discrete locations and then calculating the voltages

∇ ⋅ ∇ = −σ Φ ΩIV    in

σ∇ ⋅ =Φ Γn 0   in T
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on the surface of the scalp. Similarly, for the ECG problem, voltages could be measured on the surface
of the heart and used to calculate the voltages at the surface of the torso, as well as within the volume
conductor of the thorax. To formulate the inverse problems, one uses measurements on the surface of
the scalp (torso) to calculate the voltages on the surface of the cortex (heart). Here, we solve Laplace’s
equation instead of Poisson’s equation, because we are interested in the distributions of voltages on a
surface instead of current sources within a volume. This leads to the following boundary value problem:

(12.5)

(12.6)

(12.7)

For this formulation, the solution to the inverse problem is unique [17]; however, there still exists the
problem of continuity of the solution on the data. The linear algebra counterpart to the elliptic boundary
value problem is often useful in discussing this problem of noncontinuity. The numerical solution to all
elliptic boundary value problems (such as Poisson and Laplace problems) can be formulated in terms of
a set of liner equations AΦ = b. For the solution of Laplace’s equation, the system can be reformulated as

(12.8)

where Φin is the vector of data on the inner surface bounding the solution domain (the electrostatic
potentials on the cortex or heart, for example), Φout is the vector of data that bound the outer surface
(the subset of voltage values on the surface of the scalp or torso, for example), and A is the transfer matrix
between Φout and Φin, which usually contains the geometry and physical properties (conductivities,
dielectric constants, etc.) of the volume conductor. The direct problem is then simply (well) posed as
solving Eq. (12.8) for Φout given Φin. Likewise, the inverse problem is to determine Φin given Φout.

A characteristic of A for ill-posed problems is that it has a very large condition number. In other words,
the ill-conditioned matrix A is very near to being singular. Briefly, the condition number is defined as
κ(A) = �A� ·�A–1� or the ratio of maximum to minimum singular values measured in the L2 norm. The
ideal problem conditioning occurs for orthogonal matrices which have κ(A) ≈ 1, while an ill-conditioned
matrix will have κ(A) � 1. When one inverts a matrix that has a very large condition number, the
inversion process is unstable and is highly susceptible to errors. The condition of a matrix is relative. It
is related to the precision level of computations and is a function of the size of the problem. For example,
if the condition number exceeds a linear growth rate with respect to the size of the problem, the problem
will become increasingly ill-conditioned. See [36] for more about the condition number of matrices.

A number of techniques have arisen to deal with ill-posed inverse problems. These techniques include
truncated singular value decomposition (TSVD), generalized singular value decomposition (GSVD),
maximum entropy, and a number of generalized least squares schemes, including Twomey and Tikhonov
regularization methods. Since this chapter is concerned more with the numerical techniques for approx-
imating bioelectric field problems, the reader is referred to [12–15] to further investigate the regularization
of ill-posed problems. A particularly useful reference for discrete ill-posed problems is the Matlab package
developed by Per Christian Hansen, which is available via netlib [16].

12.2 Model Construction and Mesh Generation

Once we have stated or derived the mathematical equations that define the physics of the system, we
must figure out how to solve these equations for the particular domain we are interested in. Most
numerical methods for solving boundary value problems require that the continuous domain be broken
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up into discrete elements, the so-called mesh or grid, which one can use to approximate the governing
equation(s) using the particular numerical technique (finite element, boundary element, finite difference,
or multigrid) best suited to the problem.

Because of the complex geometries often associated with bioelectric field problems, construction of
the polygonal mesh can become one of the most time-consuming aspects of the modeling process. After
deciding on the particular approximation method to use (and the most appropriate type of element),
one needs to construct a mesh of the solution domain that matches the number of degrees of freedom
of the fundamental element. For the sake of simplicity, we will assume that we will use linear elements,
either tetrahedrons, which are usually used for modeling irregular three-dimensional domains, or hexa-
hedrons, which are used for modeling regular, uniform domains.

There are several different strategies for discretizing the geometry into fundamental elements. For
bioelectric field problems, two approaches to mesh generation have become standard: the divide and
conquer (or subsequent subdivision) strategy and the Delaunay triangulation strategy.

In using the divide and conquer strategy, one starts with a set of points that define the bounding
surface(s) in three dimensions (contours in two dimensions). The volume (surface) is repeatedly divided
into smaller regions until a satisfactory discretization level has been achieved. Usually, the domain is
broken up into eight-node cubic elements, which can then be subdivided into five (minimally) or six
tetrahedral elements if so desired. This methodology has the advantage of being fairly easy to program;
furthermore, commercial mesh generators exist for the divide and conquer method. For use in solving
bioelectric field problems, its main disadvantage is that it allows elements to overlap interior boundaries.
A single element may span two different conductive regions, for example, when part of an element
represents muscle tissue (which could be anisotropic) and the other part of the element falls into a region
representing fat tissue. It then becomes very difficult to assign unique conductivity parameters to each
element and at the same time accurately represent the geometry.

A second method of mesh generation is the Delaunay triangulation strategy. Given a three-dimensional
set of points that define the boundaries and interior regions of the domain to be modeled, one tessellates
the point cloud into an optimal mesh of tetrahedra. For bioelectric field problems, the advantages and
disadvantages tend to be exactly contrary to those arising from the divide and conquer strategy. The
primary advantage is that one can create the mesh to fit any predefined geometry, including subsurfaces,
by starting with points that define all the necessary surfaces and subsurfaces and then adding additional
interior points to minimize the aspect ratio. For tetrahedra, the aspect ratio can be defined as 4 
(ρk /hk), where ρk denotes the diameter of the sphere circumscribed about the tetrahedron, and hk is the
maximum distance between two vertices. These formulations yield a value of 1 for an equilateral tetra-
hedron and a value of 0 for a degenerate (flat) element [18]. The closer to the value of 1, the better. The
Delaunay criterion is a method for minimizing the occurrence of obtuse angles in the mesh, yielding
elements that have aspect ratios as close to 1 as possible, given the available point set. While the ideas
behind Delaunay triangulation are straightforward, the programming is nontrivial and is the primary
drawback to this method. Fortunately, there exist public domain, two-dimensional versions, including
one from netlib called sweep2.c from the directory Voronoi, as well as at least one three-dimensional
package [41]. For more information on mesh generation and various aspects of biomedical modeling,
see [19–27].

12.3 Numerical Methods

Because of the geometric complexity of and numerous inhomogeneities inherent in anatomic structures
in physiologic models, solutions of bioelectric field problems are usually tractable (except in the most
simplified of models) only when one employs a numerical approximation method such as the finite
difference (FD), the finite element (FE), boundary element (BE), or the multigrid (MG) method to solve
the governing field equation(s).

3 2⁄
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Approximation Techniques: The Galerkin Method

The problem posed in Eq. (12.1) can be solved using any of the aforementioned approximation schemes.
One technique that addresses three of the previously mentioned techniques (FD, FE, and BE) can be
derived by the Galerkin method. The Galerkin method is one of the most widely used methods for
discretizing elliptic boundary value problems such as Eq. (12.1) and for treating the spatial portion of
time-dependent parabolic problems, which are common in models of cardiac wave propagation. While
the Galerkin technique is not essential to the application of any of the techniques, it provides for a
unifying bridge between the various numerical methods. To express the problem in a Galerkin form, one
begins by rewriting Eq. (12.1) as

(12.9)

where A is the differential operator, A = � ·(σ�). An equivalent statement of Eq. (12.9) is, find Φ such
that (AΦ + Iv ,

–
Φ) = 0. Here,

–
Φ is an arbitrary test function, which can be thought of physically as a virtual

potential field, and the notation (φ1, φ2) � ∫Ω φ1 φ2 dΩ denotes the inner products in L2(Ω). Applying
Green’s theorem, one can equivalently write

(12.10)

where the notation 〈φ1, φ2〉 � ∫s φ1 φ2 dS denotes the inner product on the boundary S. When the Dirichlet,
Φ = Φ0, and Neumann, σ�Φ ·n = 0, boundary conditions are specified on S, one obtains the weak form
of Eq. (12.1):

. (12.11)

It is understood that this equation must hold for all test functions
–
Φ, which must vanish at the boundaries

where Φ = Φ0. The Galerkin approximation φ to the weak-form solution Φ in Eq. (12.11) can be expressed
as

(12.12)

The trial functions ψi, i = 0, 1, … , N form a basis for an N + 1 dimensional space S. One can define
the Galerkin approximation to be the element φ ∈ S that satisfies

(12.13)

Since our differential operator A is positive definite and self adjoint [i.e., (AΦ, Φ) ≥ α(Φ, Φ) > 0 for
some nonzero positive constant α and (AΦ,

–
Φ) = (Φ, A

–
Φ), respectively], then we can define a space E

with an inner product defined as (Φ,
–
Φ)E = (AΦ,

–
Φ) � a(Φ,

–
Φ) and norm (the so-called energy norm)

equal to

(12.14)
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The solution Φ of Eq. (12.9) satisfies

(12.15)

and the approximate Galerkin solution obtained by solving Eq. (12.13) satisfies

(12.16)

Subtracting Eq. (12.15) from Eq. (12.16) yields

(12.17)

The difference φ – Φ denotes the error between the solution in the finite dimensional space V and the
N + 1 dimensional space S. Equation (12.17) states that the error is orthogonal to all basis functions
spanning the space of possible Galerkin solutions. Consequently, the error is orthogonal to all elements
in S and must therefore be the minimum error. Thus the Galerkin approximation is an orthogonal
projection of the true solution Φ onto the given finite dimensional space of possible approximate
solutions. Therefore, the Galerkin approximation is the best approximation in the energy space E. Since
the operator is positive definite, the approximate solution is unique. Assume for a moment that there
are two solutions, φ1 and φ2, satisfying

(12.18)

respectively. Then the difference yields

(12.19)

The function arising from subtracting one member from another member in S also belongs in S; hence
the difference function can be expressed by the set of A orthogonal basis functions spanning S:

(12.20)

When i ≠ j, the terms vanish due to the basis functions being orthogonal with respect to A. Since A is
positive definite,

(12.21)

Thus ∆φ i = 0, i = 0, … , N, and by virtue of Eq. (12.20), δφ = 0, such that φ1 = φ2. The identity contradicts
the assumption of two distinct Galerkin solutions. This proves the solution is unique [28].

The Finite-Difference Method

Perhaps the most traditional way to solve Eq. (12.1) utilizes the finite-difference approach by discretizing
the solution domain Ω using a grid of uniform hexahedral elements. The coordinates of a typical grid

A I Si v i iΦ, ,       ψ ψ ψ( ) = −( ) ∀ ∈( )

A I Si v i iφ ψ ψ ψ, ,       ( ) = −( ) ∀ ∈( )

A Si i
E

iφ ψ ϕ ϕ ψ ψ−( )( ) = −( ) = ∀ ∈( )Φ , ,       0

A I A I Si v i i v i iφ ψ ψ φ ψ ψ ψ1 2, ,       , ,       ( ) = −( ) ( ) = −( ) ∀ ∈( )

A Si iφ φ ψ ψ1 2 0−( )( ) = ∀ ∈( ),       
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j

N
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0

A i Ni iΦ Φ,       , ,( ) > = …0 0
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point are x = lh, y = mh, z = nh (l, m, n = integers), and the value of Φ(x, y, z) at a grid point is denoted
by Φl,m,n. Taylor’s theorem can then be used to provide the difference equations. For example,

(12.22)

with similar equations for Φl–1,m,n, Φl,m+1,n, Φl,m–1,n,…. The finite-difference representation of Eq. (12.1) is

(12.23)

or, equivalently,

(12.24)

If one defines the vector Φ to be [Φ1,1,1 L Φ1,1,N–1 L Φ1,N–1,1 L ΦN–1,N–1,N–1]T to designate the (N – 1)3

unknown grid values and pull out all the known information from (24), one can reformulate Eq. (12.1)
by its finite-difference approximation in the form of the matrix equation AΦ = b, where b is a vector
that contains the sources and modifications due to the Dirichlet boundary condition.

Unlike the traditional Taylor’s series expansion method, the Galerkin approach utilizes basis functions,
such as linear piecewise polynomials, to approximate the true solution. For example, the Galerkin
approximation to sample problem (12.1) would require evaluating Eq. (12.13) for the specific grid
formation and specific choice of basis function:

(12.25)

Difference quotients are then used to approximate the derivatives in Eq. (12.25). Note that if linear basis
functions are utilized in Eq. (12.25), one obtains a formulation that corresponds exactly with the standard
finite-difference operator. Regardless of the difference scheme or order of basis function, the approxima-
tion results in a linear system of equations of the form AΦ = b, subject to the appropriate boundary
conditions.

The Finite-Element Method

As seen earlier, in the classic numerical treatment for partial differential equation—the finite-difference
method—the solution domain is approximated by a grid of uniformly spaced nodes. At each node, the
governing differential equation is approximated by an algebraic expression that references adjacent grid
points. A system of equations is obtained by evaluating the previous algebraic approximations for each
node in the domain. Finally, the system is solved for each value of the dependent variable at each node.
In the finite-element method, the solution domain can be discretized into a number of uniform or
nonuniform finite elements that are connected via nodes. The change of the dependent variable with
regard to location is approximated within each element by an interpolation function. The interpolation
function is defined relative to the values of the variable at the nodes associated with each element. The
original boundary value problem is then replaced with an equivalent integral formulation [such as
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Eq. (12.13)]. The interpolation functions are then substituted into the integral equation, integrated, and
combined with the results from all other elements in the solution domain. The results of this procedure
can be reformulated into a matrix equation of the form AΦ = b, which is subsequently solved for the
unknown variables [20, 29].

The formulation of the finite-element approximation starts with the Galerkin approximation, (σ�Φ,
�

—

Φ) = –(Iv,
—

Φ), where
—

Φ  is our test function. Now one can use the finite-element method to turn the
continuous problems into a discrete formulation. First, one discretizes the solution domain,
Ω = UE

e=1Ω e, and defines a finite dimensional subspace Vh ⊂ V = {
—

Φ:
—

Φ is continuous on Ω, �
—

Φ is piece-
wise continuous on Ω}. One usually defines parameters of the function

—

Φ ∈ Vh at node points αi =
—

Φ(xi),
i = 0, 1, … , N. If one now defines the basis functions ψi ∈ Vh as linear continuous piecewise functions
that take the value 1 at node points and zero at other node points, then one can represent the
function

—

Φ  ∈ Vh as

(12.26)

such that each
—

Φ ∈ Vh can be written in a unique way as a linear combination of the basis functions
Ψi ∈ Vh. Now the finite-element approximation of the original boundary value problem can be stated as

(12.27)

Furthermore, if Φh ∈ Vh satisfies problem (12.27), then we have (σ�Φh, �Ψi) = –(Iv, Ψi) [30]. Finally,
since Φh itself can be expressed as the linear combination

(12.28)

one can then write problem (12.27) as

(12.29)

subject to the Dirichlet boundary condition. Then the finite-element approximation of Eq. (12.1) can
equivalently be expressed as a system of N equations with N unknowns ξi, …, ξN (the electrostatic
potentials, for example). In matrix form, the preceding system can be written as Aξ = b, where A = (aij)
is called the global stiffness matrix and has elements (aij) = (σij �Ψi, �Ψj), while bi = –(Iv, Ψi) and is
usually termed the load vector.

For volume conductor problems, A contains all the geometry and conductivity information of the
model. The matrix A is symmetric and positive definite; thus it is nonsingular and has a unique solution.
Because the basis function differs from zero for only a few intervals, A is sparse (only a few of its entries
are nonzero).

Application of the FE Method for 3D Domains

Now let us illustrate the concepts of the finite-element method by considering the solution of Eq. (12.1)
using linear three-dimensional elements. One starts with a 3D domain Ω that represents the geometry
of our volume conductor and breaks it up into discrete elements to form a finite dimensional subspace
Ωh. For 3D domains, one has the choice of representing the function as either tetrahedra
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(12.30)

or hexahedra

(12.31)

Because of space limitations, let us restrict the development to tetrahedra, knowing that it is easy to
modify the formulas for hexahedra. Take out a specific tetrahedra from the finite dimensional subspace
and apply the previous formulations for the four vertices:

(12.32)

or

(12.33)

which define the coordinate vertices, and

(12.34)

which defines the coefficients. From Eqs. (12.30) and (12.34) one can express Φ̃ at any point within the
tetrahedra,

(12.35)

or, most succinctly,

(12.36)

Φ̃ i is the solution value at node i, and N = SC–1 is the local shape function or basis function. This can be
expressed in a variety of ways in the literature (depending, usually, on whether you are reading engineering
or mathematical treatments of finite element analysis):

(12.37)

where

(12.38)
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Now that a suitable set of basis functions is available, one can find the finite-element approximation
to the 3D problem. The original problem can be formulated as

(12.39)

where

(12.40)

and

(12.41)

The finite-element approximation to the original boundary value problem is

(12.42)

which has the equivalent form

(12.43)

where

(12.44)

which can be expressed by the matrix and vector elements.

(12.45)

and

(12.46)

Fortunately, these quantities are easy to evaluate for linear tetrahedra. As a matter of fact, there are closed-
form solutions for the matrix elements (aij):
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and, for the right hand side, one has, assuming constant sources,

(12.49)

which have the compact forms

(12.50)

and

(12.51)

Now one adds up all the contributions from each element into a global matrix and global vector:

(12.52)

where Nel is equal to the total number of elements in the discretized solution domain, and i represents
the node numbers (vertices). This yields a linear system of equations of the form AΦ = b, where Φ is
the solution vector of voltages, A represents the geometry and conductivity of the volume conductor,
and b represents the contributions from the current sources and boundary conditions.

For the finite-difference method, it turns out that the Dirichlet boundary condition is easy to apply,
while the Neumann condition takes a little extra effort. For the finite-element method, it is just the
opposite. The Neumann boundary condition

(12.53)

is satisfied automatically within the Galerkin and variational formulations. This can be seen by using
Green’s divergence theorem,

(12.54)

and applying it to the left-hand side of the Galerkin finite-element formulation:

(12.55)
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If one multiples the original differential equation, �2Φ = –Iv , by an arbitrary test function and integrates,
one obtains

(12.56)

where the boundary integral term ∂Φ/∂n vanishes, and one obtains the standard Galerkin finite-element
formulation.

To apply the Dirichlet condition, one has to work a bit harder. To apply the Dirichlet boundary
condition directly, one usually modifies the (aij) matrix and bi vector such that one can use standard
linear system solvers. This is accomplished by implementing the following steps. Assuming that the ith
value of ui is known,

1. Subtract from the ith member of the right-hand side the product of aij and the known value of
Φi (call it

—

Φ i); this yields the new right-hand side, b̂ii = bi – aij

—

Φ j.
2. Zero the ith row and column of A: âij = âji = 0.
3. Assign âii = 1.
4. Set the jth member of the right-hand side equal to Φi.
5. Continue for each Dirichlet condition.
6. Solve the augmented system ÂΦ = b̂v .

The Boundary-Element Method

The bioelectric field problems with isotropic domains (and few inhomogeneities), another technique,
called the boundary-element method, may be used. This technique utilizes information only on the
boundaries of interest and thus reduces the dimension of any field problem by one. For differential
operators, the response at any given point to sources and boundary conditions depends only on the
response at neighboring points. The FD and FE methods approximate differential operators defined on
subregions (volume elements) in the domain; hence direct mutual influence (connectivity) exists only
between neighboring elements, and the coefficient matrices generated by these methods have relatively
few nonzero coefficients in any given matrix row. As is demonstrated by Maxwell’s laws, equations in
differential forms often can be replaced by equations in integral forms; e.g., the potential distribution in
a domain is uniquely defined by the volume sources and the potential and current density on the
boundary. The boundary-element method uses this fact by transforming the differential operators defined
in the domain to integral operators defined on the boundary. In the boundary-element method [31–33],
only the boundary is discretized; hence the mesh generation is considerably simpler for this method than
for the volume methods. Boundary solutions are obtained directly by solving the set of linear equations;
however, potentials and gradients in the domain can be evaluated only after the boundary solutions have
been obtained. Since this method has a rich history in bioelectric field problems, the reader is referred
to some of the classic references for further information regarding the application of the BE method to
bioelectric field problems [6, 42–44].

Solution Methods and Computational Considerations

Application of each of the previous approximation methods to Eq. (12.1) yields a system of linear
equations of the form AΦ = b, which must be solved to obtain the final solution. There is a plethora of
available techniques for the solutions of such systems. The solution techniques can be broadly categorized
as direct and iterative solvers. Direct solvers include Gaussian elimination and LU decomposition, while
iterative methods include Jacobi, Gauss-Seidel, successive overrelaxation (SOR), and conjugate gradient
(CG) methods, among others. The choice of the particular solution method is highly dependent on the
approximation technique employed to obtain the linear system, on the size of the resulting system, and

I v v d
n

v dS v d a vv , ,( ) = − ∇( ) = − ∂
∂

+ ∇ ⋅∇ = ( )∫ ∫ ∫2Φ Ω Φ Φ Ω Φ
Ω Γ Ω
© 2000 by CRC Press LLC



on accessible computational resources. For example, the linear system resulting from the application of
the FD or FE method will yield a matrix A that is symmetric, positive definite, and sparse. The matrix
resulting from the FD method will have a specific band-diagonal structure that is dependent on the order
of difference equations one uses to approximate the governing equation. The matrix resulting from the
FE method will be exceedingly sparse and only a few of the off-diagonal elements will be nonzero. The
application of the BE method, on the other hand, will yield a matrix A that is dense and nonsymmetric
and thus requires a different choice of solver.

The choice of the optimal solver is further complicated by the size of the system versus access to
computational resources. Sequential direct methods are usually confined to single workstations, and thus
the size of the system should fit in memory for optimal performance. Sequential iterative methods can
be employed when the size of the system exceeds the memory of the machine; however, one pays a price
in terms of performance, since direct methods are usually much faster than iterative methods. In many
cases, the size of the system exceeds the computational capability of a single workstation, and one must
resort to the use of clusters of workstations and/or parallel computers.

While new and improved methods continue to appear in the numerical analysis literature, my studies
comparing various solution techniques for direct and inverse bioelectric field problems have resulted in
the conclusion that the preconditioned conjugate gradient methods and multigrid methods are the best
overall performers for volume conductor problems computed on single workstations. Specifically, the
incomplete Choleski conjugate gradient (ICCG) method works well for the FE method,1 and the precon-
ditioned biconjugate gradient (BCG) methods are often used for BE methods. When clusters of worksta-
tions and/or parallel architectures are considered, the choice is less clear. For use with some high-
performance architectures that contain large amounts of memory, parallel direct methods such as LU
decomposition become attractive; however, preconditioned conjugate gradient methods still perform well.

A discussion of parallel computing methods for the solution of biomedical field problems could fill
an entire text. Thus the reader is directed to the following references on parallel scientific computing
[45–47].

Comparison of Methods

Since there is not enough space to give a detailed, quantitative description of each of the previously
mentioned methods, an abbreviated summary is given of the applicability of each method in solving
different types of bioelectric field problems.

As outlined earlier, the FD, FE, and BE methods can all be used to approximate the boundary value
problems that arise in biomedical research problems. The choice depends on the nature of the problem.
The FE and FD methods are similar in that the entire solution domain must be discretized, while with
the BE method only the bounding surfaces must be discretized. For regular domains, the FD method is
generally the easiest method to code and implement, but the FD method usually requires special mod-
ifications to define irregular boundaries, abrupt changes in material properties, and complex boundary
conditions. While typically more difficult to implement, the BE and FE methods are preferred for
problems with irregular, inhomogeneous domains and mixed boundary conditions. The FE method is
superior to the BE method for representing nonlinearity and true anisotropy, while the BE method is
superior to the FE method for problems where only the boundary solution is of interest or where solutions
are wanted in a set of highly irregularly spaced points in the domain. Because the computational mesh
is simpler for the BE method than for the FE method, the BE program requires less bookkeeping than
an FE program. For this reason, BE programs are often considered easier to develop than FE programs;
however, the difficulties associated with singular integrals in the BE method are often highly underesti-
mated. In general, the FE method is preferred for problems where the domain is highly heterogeneous,
whereas the BE method is preferred for highly homogeneous domains.

1This is specifically for the FE method applied to elliptic problems. Such problems yield a matrix that is symmetric
and positive definite. The Choleski decomposition only exists for symmetric, positive-definite matrices.
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12.4 Adaptive Methods

Thus far how one formulates the problem, discretizes the geometry, and finds an approximate solution
have been discussed. Now one is faced with answering the difficult question pertaining to the accuracy
of the solution. Without reference to experimental data, how can one judge the validity of the solutions?
To give oneself an intuitive feel for the problem (and possible solution), consider the approximation of
a two-dimensional region discretized into triangular elements. The finite-element method will be applied
to solve Laplace’s equation in the region.

First, consider the approximation of the potential field Φ(x, y) by a two-dimensional Taylor’s series
expansion about a point (x, y):

(12.57)

where h and k are the maximum x and y distances within an element. Using the first two terms (up to
first-order terms) in the preceding Taylor’s expansion, one can obtain the standard linear interpolation
function for a triangle:

(12.58)

where A is the area of the triangle. Likewise, one could calculate the interpolant for the other two nodes
and discover that

(12.59)

is constant over the triangle (and thus so is the gradient in y as well). Thus one can derive the standard
linear interpolation formulas on a triangle that represents the first two terms of the Taylor’s series
expansion. This means that the error due to discretization (from using linear elements) is proportional
to the third term of the Taylor’s expansion:

(12.60)

where Φ is the exact solution. One can conjecture, then, that the error due to discretization for first-
order linear elements is proportional to the second derivative. If Φ is a linear function over the element,
then the first derivative is a constant and the second derivative is zero, and there is no error due to
discretization. This implies that the gradient must be constant over each element. If the function is not
linear or the gradient is not constant over an element, the second derivative will not be zero and is
proportional to the error incurred due to “improper” discretization. Examining Eq. (12.60), one can
easily see that one way to decrease the error is to decrease the size of h and k. As h and k go to zero, the
error tends to zero as well. Thus decreasing the mesh size in places of high errors due to high gradients
decreases the error. As an aside, note that if one divided Eq. (12.9) by hk, one can also express the error
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in terms of the elemental aspect ratio h/k, which is a measure of the relative shape of the element. It is
easy to see that one must be careful to maintain an aspect ratio as close to unity as possible.

The problem with the preceding heuristic argument is that one has to know the exact solution a priori
before one can estimate the error. This is certainly a drawback considering that one is trying to accurately
approximate Φ.

Convergence of a Sequence of Approximate Solutions

Let’s try to quantify the error a bit further. When one considers the preceding example, it seems to make
sense that if one increases the number of degrees of freedom used to approximate the function, the accuracy
must approach the true solution. That is, one would hope that the sequence of approximate solutions will
converge to the exact solution as the number of degrees of freedom (DOF) increases indefinitely:

(12.61)

This is a statement of pointwise convergence. It describes the approximate solution as approaching arbi-
trarily close to the exact solution at each point in the domain as the number of DOF increases.

Measures of convergence often depend on how the closeness of measuring the distance between
functions is defined. Another common description of measuring convergence is uniform convergence,
which requires that the maximum value of �Φ(x) – Φ̃n(x)� in the domain vanish as N → ∞. This is
stronger than pointwise convergence because it requires a uniform rate of convergence at every point in
the domain. Two other commonly used measures are convergence in energy and convergence in mean,
which involve measuring an average of a function of the pointwise error over the domain [40].

In general, proving pointwise convergence is very difficult except in the simplest cases, while proving
the convergence of an averaged value, such as energy, is often easier. Of course, scientists and engineers
are often much more interested in ensuring that their answers are accurate in a pointwise sense than in
an energy sense because they typically want to know values of the solution Φ(x) and gradients �Φ(x)
at specific places.

One intermediate form of convergence is called the Cauchy convergence. Here, one requires the
sequences of two different approximate solutions to approach arbitrarily close to each other:

(12.62)

While the pointwise convergence expression would imply the preceding equation, it is important to note
that the Cauchy convergence does not imply pointwise convergence, since the functions could converge
to an answer other than the true solution.

While one cannot be assured of pointwise convergence of these functions for all but the simplest cases,
there do exist theorems that ensure that a sequence of approximate solutions must converge to the exact
solution (assuming no computational errors) if the basis functions satisfy certain conditions. The theo-
rems can only ensure convergence in an average sense over the entire domain, but it is usually the case
that if the solution converges in an average sense (energy, etc.), then it will converge in the pointwise
sense as well.

Energy Norms

The error in energy, measured by the energy norm, is defined in general as [37–39]

(12.63)
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where e = Φ(x) – Φ̃n(x), and L is the differential operator for the governing differential equation [i.e., it
contains the derivatives operating on Φ(x) and any function multiplying Φ(x)]. For physical problems,
this is often associated with the energy density.

Another common measure of convergence utilizes the L2 norm. This can be termed the average error
and can be associated with errors in any quantity. The L2 norm is defined as

(12.64)

While the norms given above are defined on the whole domain, one can note that the square of each
can be obtained by summing element contributions:

(12.65)

where i represents an element contribution and m the total element number. Often for an optimal finite-
element mesh, one tries to make the contributions to this square of the norm equal for all elements.

While the absolute values given by the energy or L2 norms have little value, one can construct a relative
percentage error that can be more readily interpreted:

(12.66)

This quantity, in effect, represents a weighted RMS error. The analysis can be determined for the whole
domain or for element subdomains. One can use it in an adaptive algorithm by checking element errors
against some predefined tolerance η0 and increasing the DOF only of those areas above the predefined
tolerance.

Two other methods, the p and the hp methods, have been found, in most cases, to converge faster
than the h method. The p method of refinement requires that one increase the order of the bias function
that was used to represent the interpolation (i.e., linear to quadratic to cubic, etc.) The hp method is a
combination of the h and p methods and has recently been shown to converge the fastest of the three
methods (but, as you might imagine, it is the hardest to implement). To find out more about adaptive
refinement methods, see [27, 30, 34, 35, 37, 40].
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