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Talk Overview

e The idea of BEM and its advantages
e The 2D potential problem

e Numerical implementation
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Idea of BEM

Numerical methods in
continuum mechanics

Finite Element Boundary Finite
FEM Element Difference
BEM FDM

: D
Domain Elements Boundary Elements Internal Cells
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Idea of BEM

Boundary of the domain

R

~———_____Elements
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Advantages of BEM

1) Reduction of problem dimension by 1

e |ess data preparation time.

e Easier to change the applied mesh.

e Useful for problems that require
re-meshing.
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Advantages of BEM

2) High Accuracy

e Stresses are accurate as there are
no approximations imposed on the
solution in interior domain points.

e Suitable for modeling problems of
rapidly changing stresses.
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Advantages of BEM

3) Less computer time and storage

e For the same level of accuracy as
other methods BEM uses less
number of nodes and elements.
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Advantages of BEM

4) Filter out unwanted information.

e Internal points of the domain are
optional.

e Focus on particular {
internal region. \\

e Further reduces computer time.
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Advantages of BEM

. Reduction of problem dimension by 1.
. High Accuracy.
Less computer time and storage.

. Filter out unwanted information and so
focus on section of the domain you are
interested in.

D W N B

BEM iIs an attractive option.
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The 2D potential problem

e Where can BEM be applied?

e Two important functions.

e Description of the domain.

e Mapping of higher to lower dimensions.

e Satisfaction of the Laplace equations
and how to deal with a singularity.

e The boundary integral equation (BIE)
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The 2D potential problem

Where can BEM be applied?

Where any potential problem is
governed by a differential equation
that satisfies the Laplace equation.

(or any other behavior that has a related
fundamental solution)

e.g. The following can be analyzed with the
Laplace equation: fluid flow, torsion of bars,

diffusion and steady state heat
conduction.
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The 2D potential problem

The Laplace equation for 2D

g 90 0P _
Vg = 6‘x+8y = ()

V*=V.V=Laplacian operator
@ = Potential function

X,V = (Cartesian coordinate axis
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The 2D potential problem

Two important functions.

The function describing the
property under analysis. e.g.
heat. (Unknown)

via=o0-p) The fundamental solution of
the Laplace equation.
(These are well known)
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The 2D potential problem
Description of the domain

Fundamental solution of the 2D
PN Laplace equation for a concentrated
poinf y
source point at p is

Outward normal n

/l(paQ) = :

27T

1
n
r(ps Q)}

Where

l r(p.0) =[x, ~x, ] (¥, -3, })
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The 2D potential problem

Mapping of higher to lower dimensions

« Boundary of any domain is of a dimension 1 less than of the domain.
* In BEM the problem is moved from within the domain to its boundary.
* This means you must, in this case, map Area to Line.

* The well known ‘Greens Second Identity’ is used to do this.

2 2 _ IA 99
L(¢V - AV2p)dA _f(¢ - Aan)

@, have continuous 1t and 2" derivatives.

@  unknown potential at any point.
A known fundamental solution at any point.

n unit outward normal. o derivative in the direction of normal. s
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The 2D potential problem
Satisfying the Laplace equation

The unknown ¢ will satisfy V2¢ = () everywhere in the solution domain.

The known fundamental solution A4 satisfies VA=0 everywhere

except the point p where it is singular.

1

MpdIS=lit

1
r(p,0) }
r(0.0) = (06, ~ 3, F + (¥, 3, ]
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The 2D potential problem

How to deal with the singularity

 Surround p with a small circle of radius € , then
examine solutionas € - 0

* Newareais (A—At)
« New boundaryis (I +T¢)
(Vor-aviglaa= (p22-292\ar
L—Aé‘ I'+l'e al’l al’l
Within area (A—Ag) V¢=0 & V°A=0

The left hand side of the equation is now 0 and the right is now ...
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The 2D potential problem

How to deal with the singularity

A 499 A g
f(¢an Ao )aT+ €(¢8n Aan)

The second term must be evaluated and to do this let JI" = eda

/\R And use the fact that M’ A or _ I
\ on  or on 2717/

18

C Am /centre for analysis, scientific computing and applications



I! I ! technische universiteit eindhoven

The 2D potential problem

How to deal with the singularity

oA d 1 on | 1
A e 8 L R e

1
= E(szj) slg

(1 Evaluated with p in the domain,
C(P)=11/2 on the boundary (Smooth surfac:e),\D"“‘a"n P

| 0 and outside the boundary. ﬁj
/ —1
0

C(P)= Py For coarse surfaces
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The 2D potential problem
The boundary integral equation

0P

on

C(P)H(P) = [ K,(P,0) L dT(0) - [ K,(P.O}(Q) dT(Q)

Where K1 and K2 are the known fundamental solutions and are equal to

K,(P,0) = “(; Q)

K,(P,0) = AM(P,Q)

C(P) = %
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The 2D potential problem

e BEM can be applied where any potential problem is governed by
a differential equation that satisfies the Laplace equation.

In this case the 2D form.

e A potential problem can be mapped from higher to lower
dimension using Green’s second identity.

e Shown how to deal with the case of the singularity point.

e Derived the boundary integral equation (BIE)

CPYH(P) = [ K,(P,0) 22dT(Q) - [ K, (P.OW(Q)dT(Q)
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Numerical Implementation

e Dirichlet, Neumann and mixed case.
e Discretisation
e Reduction to a form Ax=B
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Numerical Implementation
Dirichlet, Neumann and mixed case.

Z_%r@ - [ K,(P,OM(Q)dT(Q)
n
0

The unknowns of the above are values on the boundary and are ¢, —

on

C(P)H(P) = [ K;(P.0)

Dirichlet Problem

—Q ¢ is given every point Q on the boundary.

Neumann Problem

g—¢ is given every point Q on the boundary.
n

Mixed case — Either are given at point Q
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Numerical Implementation
Discretisation

IElement lj

Unknowns

\\ Q
% ¢(Q)K(B,Q )T, - 2 " K(P.0,)T,
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Numerical Implementation

Discretisation

Let K= frj K\(P,0)dl, K, = frj K,(P,Q,)dr,

Unknowns

/Nl\,

Y .
7=l on Jj=1
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Numerical Implementation

o) =9(Q;) when i=]
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Numerical Implementation

Neumann Problem

Ax =c Matrix A and vector C are known /
<4//Q
Dirichlet Problem
C = BZ Matrix B and vector C are known
Mixed case
Ax = Bz Unknowns and knowns can be separated in to

same form as above
27
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Numerical Implementation

As each point p in the domain is expressed in terms of
the boundary values, once all boundary values are known ANY
potential value within the domain can now be found.

0P

n

C(P)H(P) = [ K,(P,0) L dT(0) - [ K,(P,O)p(Q) T (Q)

IElement 1?
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Boundary Element Method
(BEM)

THE END

Book: The Boundary Element Method
In ENngineering A.A.BECKER
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