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Talk Overview 

• The idea of BEM and its advantages 

• The 2D potential problem 

• Numerical implementation 
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Idea of BEM 
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Idea of BEM 



5 

Advantages of BEM 

1) Reduction of problem dimension by 1 
 
•  Less data preparation time. 
•  Easier to change the applied mesh. 
•   Useful for problems that require 
    re-meshing. 
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Advantages of BEM 

2) High Accuracy  
• Stresses are accurate as there are 

no approximations imposed on the 
solution in interior domain points. 

• Suitable for modeling problems of 
rapidly changing stresses. 
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Advantages of BEM 

3) Less computer time and storage 
 
•   For the same level of accuracy as 

other methods BEM uses less 
number of nodes and elements. 
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Advantages of BEM 

4) Filter out unwanted information. 
•  Internal points of the domain are 

optional. 

• Focus on particular 
internal region. 

• Further reduces computer time. 
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Advantages of BEM 

1.  Reduction of problem dimension by 1. 
2.  High Accuracy. 
3.  Less computer time and storage. 
4.  Filter out unwanted information and so 

focus on section of the domain you are 
interested in. 
 
BEM is an attractive option. 
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The 2D potential problem 

• Where can BEM be applied? 
• Two important functions. 
• Description of the domain. 
• Mapping of higher to lower dimensions. 
• Satisfaction of the Laplace equations 

and how to deal with a singularity. 
• The boundary integral equation (BIE) 
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The 2D potential problem 
Where can BEM be applied? 
 

Where any potential problem is  
governed by a differential equation 
that satisfies the Laplace equation.  

(or any other behavior that has a related 
fundamental solution) 

 
e.g. The following can be analyzed with the 

    Laplace equation: fluid flow, torsion of bars, 
      diffusion and steady state heat 
      conduction. 
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The 2D potential problem 
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The 2D potential problem 
Two important functions. 
 

=φ

)(2 PQ−∂=∇ λ

  The function describing the 
property under analysis. e.g. 
heat. (Unknown) 

The fundamental solution of 
the Laplace equation.  
(These are well known) 
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The 2D potential problem 
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     Fundamental solution of the 2D 
Laplace equation for a concentrated 
source point at p is 
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Description of the domain 



15 

The 2D potential problem 
Mapping of higher to lower dimensions 
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•  Boundary of any domain is of a dimension 1 less than of the domain. 

•  In BEM the problem is moved from within the domain to its boundary. 

•  This means you must, in this case, map Area to Line. 

•  The well known ‘Greens Second Identity’ is used to do this. 

λφ ,
φ
λ

n∂
∂n

have continuous 1st and 2nd derivatives. 

unknown potential at any point. 
known fundamental solution at any point. 

unit outward normal. derivative in the direction of normal. 
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The 2D potential problem 
Satisfying the Laplace equation 

φThe unknown   

λ

02 =∇ φwill satisfy  everywhere in the solution domain. 

The known  fundamental solution satisfies 02 =∇ λ everywhere  

except the point p where it is singular. 
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The 2D potential problem 
How to deal with the singularity 
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•  Surround p with a small circle of radius ε , then 

examine solution as ε à 0 

•  New area is  (A – Aε ) 
•  New boundary is  (Γ  + Γε )  

Within area  (A – Aε) 

 

02 =∇ φ 02 =∇ λ& 

The left hand side of the equation is now 0 and the right is now … 
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The 2D potential problem 
How to deal with the singularity 
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The 2D potential problem 
How to deal with the singularity 
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on the boundary (Smooth surface), 
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The 2D potential problem 
The boundary integral equation 
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The 2D potential problem 
•  BEM can be applied where any potential problem is governed by 

a differential equation that satisfies the Laplace equation. 
    In this case the 2D form. 

  
•  A potential problem can be mapped from higher to lower 

dimension using Green’s second identity. 
 

•  Shown how to deal with the case of the singularity point. 
 

•  Derived the boundary integral equation (BIE) 

)()(),()(),()()( 12 QdQQPKQd
n

QPKPPC Γ−Γ
∂

∂
= ∫∫ ΓΓ

φ
φ

φ



22 

Numerical Implementation 

• Dirichlet, Neumann and mixed case. 
• Discretisation 
• Reduction to a form Ax=B 
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Numerical Implementation 
Dirichlet, Neumann and mixed case. 
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is given every point Q on the boundary. 

is given every point Q on the boundary. 

Mixed case – Either are given at point Q 



24 

Numerical Implementation 
Discretisation 
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Numerical Implementation 
Discretisation 
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Numerical Implementation 
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Numerical Implementation 

BzAx =

cAx =

Dirichlet Problem 

Bzc =

Neumann Problem 

Mixed case 

Matrix A and vector C are known 

Matrix B and vector C are known 

    Unknowns and knowns can be separated in to 
same form as above 
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Numerical Implementation 

    As each point p in the domain is expressed in terms of 
the boundary values, once all boundary values are known ANY 
potential value within the domain can now be found. 
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Boundary Element Method 
(BEM) 

THE END 
 
 
Book:  The Boundary Element Method  

         in Engineering  A.A.BECKER 
 


