
No More Passwords (with SSH)

Ted Dustman

March 30, 2009

mailto:dustman@cvrti.utah.edu

Contents

1 Introduction 1

1.1 Local or Remote? . 1

1.2 SSH Command Set . 1

2 Authentication Keys 2

2.1 Generating Keys . 2

2.2 Copying Keys . 3

3 The Agent 3

3.1 Priming the Agent . 4

3.2 Attaching the Agent . 5

4 Examples 5

4.1 Login Initialization . 5

4.2 Mac X11 . 7

4.3 Linux and XFree86 . 8

4.4 Shared Home Directory . 9

4.5 Cron Jobs . 10

4.6 Tramp . 10

i

1 Introduction

The purpose of this article is to introduce the use of the Secure Shell (SSH) and its Public-

Key Authentication features which allow, among other things, password-less logins.

This discussion in this article applies to the SSH implementation known as OpenSSH but
should apply to other ssh implementations as well.

This article assumes you are using an sh’ish type shell (bash, ksh, etc.).

In addition to this article you may want to read the manual pages for ssh, scp, ssh-keygen,
and ssh-agent. Also see the book SSH The Secure Shell, The Definitive Guide.

This document is online at www.cvrti.utah.edu/~dustman/no-more-pw-ssh.

1.1 Local or Remote?

In the discussions below the machine you are presently logged into is called the local (or
client) machine . This may be your desktop or portable computer at work or home or a
“main frame” that you have logged into from home or work.

A remote machine is one you login to from your local machine (called a remote login) or
it’s one on which you execute a command without actually performing a login (remote
command execution).

“Local” and “remote” are relative terms though. A “remote” machine becomes a “local”
machine once you have logged into it.

1.2 SSH Command Set

SSH consists of the following commands:

ssh Permits secure logins and remote command execution.

scp Performs secure remote file transfers.

ssh-keygen Generates public and private authentication keys for use by the other SSH
programs.

ssh-agent Manages public and private keys on behalf of its user. This command is the
key to our password-less world.

ssh-add Adds a key to the list of keys that are managed by an agent.

sftp A secure replacement for FTP which uses the SSH protocol. Not discussed further in
this article.

Below I will show you how to use these programs to perform secure logins, remote command
execution, and remote file transfers without using passwords.

1

2 Authentication Keys

SSH authentication keys are data that allow an ssh server running on a remote computer to
verify that you are who you claim to be. The following sections show you how to generate
keys on your local machine and how to install them on remote machines.

2.1 Generating Keys

We will generate three key pairs (each pair consists of a public key and a private key). One
to support the old SSH1 protocol still in use by some facilities. And two others that can be
used with the SSH2 protocol.

The first key is generated as follows:

ssh-keygen -t rsa1

Ssh-keygen will respond as follows:

Generating public/private rsa1 key pair.
Enter file in which to save the key (/Users/dustman/.ssh/identity):

Just press return. Then ssh-keygen will ask for a passphrase (twice). A passphrase is like
a password except it can be any length and can contain whitespace, punctuation, numbers,
almost anything. “Aunt Nellie’s toe nails smell like rotten eggs to me” is a valid passphrase.

Enter passphrase (empty for no passphrase):
Enter same passphrase again:

Don’t create an empty passphrase!

Ssh-keygen will then display some information and quit.

Now issue the following ssh-keygen commands to create the other keys:

ssh-keygen -t dsa

then

ssh-keygen -t rsa

Note that you are entering 3 separate passphrases. They may all have the same value or
each may be di↵erent from the others.

2

2.2 Copying Keys

You should now have 3 pairs of keys in the directory ~/.ssh. The files with the .pub
extension are the public key files. The others are the private key files.

identity identity.pub
id_dsa id_dsa.pub
id_rsa id_rsa.pub

You must copy the content of the public key files to every remote machine of interest.

You may need to create the directory ~/.ssh on the remote machines if it doesn’t exist:

cd ~
mkdir .ssh
chmod 700 .ssh

Now you’ve got to get the content of the public key files to the remote computers. The
easiest way is to open an editor on the local machine and then to connect to a remote
machine (via ssh of course) and start an editor there. Then you can cut and paste between
the editors (using whatever cut and paste mechanism your operating system provides).

The content of ~/.ssh/identity.pub on the local machine goes in the file ~/.ssh/authorized keys
on the remote machines.

The content of the ~/.ssh/id dsa.pub on the local machine goes in ~/.ssh/authorized keys
on the remote machines.

Likewise, the content of the ~/.ssh/id rsa.pub on the local machine is appended to
~/.ssh/authorized keys on the remote machines.

The file authorized keys may contain public key content from many clients. Simply put
each public key entry on a separate line.

3 The Agent

The Agent is the program, ssh-agent, that runs on the local machine and acts as your
proxy when an ssh command requires a passphrase.

Normally you would type a password or passphrase when requested by ssh or scp. However,
the agent can provide the passphrase for you. The trick is telling the SSH commands to
get the passphrase from the agent rather than you. First you must “prime” the agent and
then you must “attach” the agent to one or more processes.

3

3.1 Priming the Agent

To “prime” the agent issue the following commands (on the local machine):

ssh_info_file=~/.ssh-agent-info-‘hostname‘
ssh-agent >$ssh_info_file
chmod 600 $ssh_info_file
. $ssh_info_file
ssh-add ~/.ssh/identity
ssh-add ~/.ssh/id_dsa
ssh-add ~/.ssh/id_rsa

Each ssh-add command will prompt you for the appropriate passphrase.

Note the output of hostname is appended to the name of the ssh agent info file. This
distinguishes the name of the file from other instances of the file that may be created in a
multi-host, shared home directory environment.

It’s convenient to capture this sequence in a shell script:

#!/bin/bash
Creates an ssh-agent, writes ssh agent info
to the file ’~/.ssh-agent-info-‘hostname‘’ and then prompts
user for keys. Then any shell can use the agent
by sourcing the contents of ~/.ssh-agent-info-‘hostname‘:
. ~/ssh-agent-info-‘hostname‘

ssh_info_file=~/.ssh-agent-info-‘hostname‘
ssh-agent >$ssh_info_file
chmod 600 $ssh_info_file
. $ssh_info_file
for i in identity id_dsa id_rsa
do

ssh-add .ssh/\$i
done

Save this script as ssh prime in your home directory. Now you can type:

source ssh_prime

You need only “prime” your agent once each time you reboot your machine. The agent will
stay active across logins.

4

Now you should be able to connect, without entering a password, to all remote machines
that have the public keys you generated earlier.

Note that the shell command source ssh prime both primes the agent and attaches it to
the current shell process (and its children). However, in some cases (example given below),
you may need to explicitly attach the agent to a process after the agent has been primed.

3.2 Attaching the Agent

Attaching the agent to a process is easy. For example, start a new terminal session and
type:

. ~/.ssh-agent-info-‘hostname‘

This attaches the agent to the terminal process (as well as any future processes that are
children of the terminal process).

Now you should be able to connect, without entering a password, to all remote machines
that have the public keys you generated earlier.

See the examples below for more ssh tricks.

4 Examples

The following examples show some uses of the ssh passphrase agent. All examples assume
you have generated keys and have moved the public keys to remote machines of interest.

4.1 Login Initialization

It is easy to forget to prime an agent. The login script presented below will “remind”
you to prime your agent. When inserted into your login initialization script (.profile or
.bash login) the script will check for a running agent. If the script does not find a running
agent then it will create one (by running ssh prime). The script then attaches your shell
to the agent.

Insert the following script into a file named ssh agent.sh.

ssh_start_agent() {
ssh-agent >$SSH_AGENT_INFO
chmod 600 $SSH_AGENT_INFO

}

5

ssh_add() {
source $SSH_AGENT_INFO
for i in id_dsa id_rsa
do
ssh-add ~/.ssh/$i

done
}

ssh_ask_start_agent() {
echo -n "Start ssh agent (y,n)? "
read yorn
if test "$yorn" == "y"

then
ssh_start_agent
ssh_add
source $SSH_AGENT_INFO >/dev/null

fi
}

ssh_setup_agent() {
hostname=‘hostname‘
export SSH_AGENT_INFO=~/.ssh-agent-${hostname}
if test -f $SSH_AGENT_INFO
then

source $SSH_AGENT_INFO >/dev/null
if ! (ps -p "$SSH_AGENT_PID" | egrep ’^ *’"$SSH_AGENT_PID"’ .*ssh-agent$’) >/dev/null
then

echo Found inactive $SSH_AGENT_INFO
ssh_ask_start_agent

else
echo Using active $SSH_AGENT_INFO.

source $SSH_AGENT_INFO >/dev/null
fi

else
echo Found no $SSH_AGENT_INFO
ssh_ask_start_agent

fi
}

ssh_setup_agent

Put the following into your .profile or .bash login file:

6

test -f ssh_agent.sh && source ssh_agent.sh

4.2 Mac X11

Mac X11 is an X11 server that run, among other things, terminal applications that can be
used to connect to remote machines.

In this example we will create an agent and attach it to an X11 server so you never need to
type another password when executing SSH commands from within the X11 environment.

1. Startup Apple’s Terminal application.

2. Type ~/ssh_prime (but only if you’ve not done this during a previous login).

3. Type . ~/.ssh-agent-info-‘hostname‘ (but only if you skipped the previous step)

4. Start the X11 server by typing:

open -a /Applications/X11.app

5. Quit the Terminal application.

Now from within X11, start a terminal application (e.g., eterm or xterm) and “ssh” to a
remote machine:

ssh a.remote.machine

Perhaps you have an item in the Mac X11 Applications menu that connects to a remote
machine. Try it out.

Now try copying a local file to a remote machine using scp:

scp afile a.remote.machine:

Now try copying a remote file to your local machine:

scp a.remote.machine:afile .

Now try issuing a command on the remote machine:

ssh a.remote.machine ’uptime’

Try the same command from within emacs or vi (using their shell command execution
features).

In all cases above you should not need to enter any passwords.

7

4.3 Linux and XFree86

[Note: The information in this section may be out of date or otherwise incorrect—I haven’t
had a linux box in a while.]

If your local machine is a Linux box you will want to prime the agent after logging in but
before starting XFree86 (the X11 server on most Linux boxes). This example is the Linux
equivalent of the previous example.

To do this you may need to change the operating system’s run level. You will want to
change the run level (which is normally 5) so the system boots into multiuser mode with
networking support but does not start XFree86. This is run level 3. You’ll need super user
privileges to do this.

Edit the file /etc/inittab. It will look something like this:

id:5:initdefault:
si::sysinit:/etc/rc.d/rc.sysinit
l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Change the first line to this:

id:3:initdefault:

Save the file and reboot your machine.

Your machine will not start up with its usual pretty login screen. Instead your fancy monitor
will be turned into an old fashioned dumb terminal (but only temporarily).

Type in your user name and password when prompted. Now prime your passphrase agent
the usual way:

~/ssh_prime

Note that you only need to do this if haven’t done it during a previous login.

Now attach to the agent (but only if you skipped the previous step):

. ~/.ssh-agent-info-‘hostname‘

8

Now start up XFree86:

startx

You now get back your pretty GUI and you no longer need to type in any SSH passphrases.
Try executing some SSH commands.

4.4 Shared Home Directory

In a work or school environment you may have an account which gives you access to more
than one computer. Usually your account is setup so that your home directory is shared by
all machines. It is easy to setup password-less SSH amongst all computers. There are two
cases to consider though.

Case 1 You want password-less access to all machines on a remote network from your
local machine.

In this case you only need to copy your local public keys to your account on the remote
computer network. Then you will have password-less SSH access from your local machine
to all machines on the network (after priming and attaching the passphrase agent on the
local machine of course).

Note that this does not give you password-less access between the machines on the remote
network. The next case handles this situation.

Case 2 Note: This section is confusing (and only marginally useful). Beware.

You want password-less access between the machines on the remote network (or local net-
work if you login to a console or terminal attached to a machine on the network).

Log in to any host on the network. Generate keys as shown previously. Copy the content
of the public key files to the authorized keys and authorized keys2 files in your ~/.ssh
directory. Prime and attach the agent. Be sure to append the name of the host to the name
of the ssh agent info file.

Log into another host on the network, either from the original local host or from a host
on the network. Prime and attach an agent on the new host, remembering to append the
name of the host to the name of the ssh agent info file. Repeat the priming and attaching
steps each time you log into a host—you will create password-less logins between hosts on
the network.

9

4.5 Cron Jobs

Say you are generating a bunch of data on your local machine once each hour. And you’ve
also got to copy that data to a remote machine once each hour. So you think “Gee, that’s
a job for cron”. So you write a script for cron to execute:

#!/bin/sh
makedata input output # a program that generates data.
scp -q -B output a.remote.machine: # copy output to remote machine.

But then you realize that each time your cron script tries to copy data to the remote machine
it (your script) will be asked for a passphrase that it cannot provide.

Ah, but you are smarter than the average Nerd. So you modify your script as follows:

#!/bin/sh
makedata input output # a program that generates data.
. ~/.ssh-agent-info-‘hostname‘ >/dev/null # attach agent to script’s process.
scp output a.remote.machine: # copy output to remote machine.

Now the agent will provide the password and your cron job will succeed.

4.6 Tramp

This section assumes that emacs (or xemacs) has been started as the child of a process that
has been attached to an ssh agent, e.g., X11 or OroborOSX (see section ??).

Tramp is lisp package that gives emacs the ability to edit remote files as if they were local
files.

Tramp may use a number of methods for accessing files on a remote machine. The only
transfer method discussed here is the “scp external” method because it works well with the
ssh techniques discussed in this article.

You must first install Tramp as per its instructions. Then add the following to your .emacs
file:

(add-to-list ’load-path "path/to/tramp/lisp/")
(require ’tramp)
(setq tramp-default-method "scp")

10

http://tramp.sourceforge.net/

where path/to/tramp/lisp is the path to the Tramp lisp files (you may not need this
line— talk to your sysadm).

Now within emacs you may refer to remote files and directories much as you would local
ones only using a slighty di↵erent syntax. For example, the path to your home directory on
the machine named remote is /remote:. Note mandatory use of the leading “/” character
and the trailing “:” character.

And /remote:.emacs refers to the .emacs file in your home directory on the machine re-

mote. Finally the path /eegah.cvrti.utah.edu:/cvswork/docs/no-more-pw-ssh.tex
refers to, well, you get the idea.

11

	Introduction
	Local or Remote?
	SSH Command Set

	Authentication Keys
	Generating Keys
	Copying Keys

	The Agent
	Priming the Agent
	Attaching the Agent

	Examples
	Login Initialization
	Mac X11
	Linux and XFree86
	Shared Home Directory
	Cron Jobs
	Tramp

