

Summary of Mammalian Respiration

Functions of Respiratory System

- Supply O₂, remove CO₂
- · Eliminate heat
- Moisten air prevent alveoli from drying out
 - manage water loss
- Increase venous return:
 Pressure is negative in chest
- Maintain pH
 - Remove CO₂ at rate it is produced to prevent dangerous fluctuations in pH
- Defend against foreign matter
 - largest surface area exposed to atmosphere; 30 times that of the skin
 - Olfactory sensation

Gas Transfer

Ventilation

Cilia move mucus to pharynx **Dust particle** Condition air to BTPS Mucus layer - Warming to 37°C Watery saline layer – Humidifying to 100% Cilia - Filter out particles · Nose breathing allows better conditioning Goblet cell · Mucus traps particles, Nucleus of immunoglobulins neutralize columnar microorganisms epithelial cell • Smoking paralyzes cilia Basement membrane Gas Transfer Bioengineering 6000 CV Physiology

Functional Anatomy: Mammalian Lung

- · Air ducts
 - Trachea to terminal bronchioles
 - Cartilage, smooth muscle
 - Cilia move mucus along ducts for cleaning
- · Respiratory portions
 - Respiratory bronchioles to alveoli
 - Alveoli interconnected by pores of Kohn (10 µm diameter)
 - Smooth muscle (point of regulation)
 - Number of terminal partitions increase (and size decreases) from amphibians to reptiles, to mammals
 - Smaller mammals have more respiratory surface (and more O₂ uptake) per weight than large ones.

Airway Branching Cross-sectional Division Diameter (mm) How many? Name area (cm) Trachea 15-22 0 2.5 1 1 10-15 2 Primary bronchi Conducting system Smaller 2 4 bronchi 3 4 1-10 5 6-11 1 x 10⁴ 100 2 x 10⁴ 12-23 0.5-1 Bronchioles 8 x 10⁷ 5 x 10³ change surface 24 0.3 3-6 x 10⁸ >1 x 10⁶ Alveoli Surface area: 50-100 m² Varies from 10-24 Gas Transfer Bioengineering 6000 CV Physiology

Heat and Water Loss

- · In mammals, air is heated and humidified
- Nose has extensive circulation to supply water
- Conservation by:
 - Nose cools during inhalation from humidification
 - Absorbs heat from exhaled gas
 - Condensation in the nose retains water for next inhalation
- Breathing through mouth removes more heat, but also moisture
- Longer noses better at conserving water

Tracheal Systems

- Structure:
 - Air tubes that penetrate into the body, invaginations
 - Trachea have adjustable openings to conserve water, keep out dust
 - Trachea branch to level of individual cells, dead end into (but not inside) the cells
 - Air sacs to store gas and help insect float
- Ventilation:
 - by diffusion and convention of gases, compression of air sacs
 - Opening and closing of trachea
 - Some species use trachea only during high demand, otherwise surface is enough for diffusion

Rebreathing Bubbles

- In winter, beaver exhales under water and air is trapped under the ice
- Bubble initially has low O₂ but absorbs it over time
- Beaver rebreaths the bubbles to extract the new O₂

