Cellular Electrophysiology

Part 1: Resting and Action Potentials

‘N_/\ Cellular Electrophysiology Bioengineering 6000 CV Physiology

Cardiac Electrophysiology

Theory < » Simulation

N/

Experiment

« The membrane: structure, channels and gates

» The cell: resting potential, whole cell currents, cardiac
cell types

» The tissue: myocardial structure, propagation

» The heart: conduction system, extracellular
electrograms

‘N_"/-\ECG and the volume conductor: the heart in the thorax

Scale
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Membrane Composition
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FIGURE 2-1. Phospholipids.
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B PHOSPHOLIPID ICON

This icon is used in this text
to represent this and other
phospholipid molecules.

C MONOLAYER

Hydrophobic
lipid tails

7 Hydrophilic
head groups

Water

In an aqueous environment
polar hydrophilic head
groups orient toward the
polar water...

...and nonpolar
(hydrophobic) tails orient
away from the water.

Thus, a phospholipid
bilayer is formed.

D PHOSPHOLIPID BILAYER
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Proteins and the Membrane
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<——— Peripheral protein

Integral proteins

Some proteins are linked to

Extracellular space

Most integral membrane proteins

have membrane-spanning o-helical

domains of about 20 amino acids.

membrane phospholipids via
an oligosaccharide....

Peripheral proteins are i
noncovalently bonded i
with integral proteins. ;
|
i

Some have multiple membrane-
spanning domains.

Integral

...or are linked
directly to fatty
acids or prenyl
groups.

Cytosol

—
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Membrane Functions

Control of solutes’ movement
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Theory «————— Simulation

/

Experiment

Background Physics

= Theory
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Current and Ohm’s Law

« Without potential difference there | — iv — GV
is no current! R
* Without conductance, there is no
current.
« Ohm’s law: v(0) V(X)
— linear relationship between current and ——1
L

| |
voltage 0 X

— not universal, especially not in living «
systems
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Electricity Basics: Resistance

AMAAMNAAMS T AAA- Reg =R+ Rz + R

Ri <R, <R; = "N\~ 1Re=1/Ri+1/R2+ 1/Rs3

Geq=G1+ G2+ G3

I-V Curve Slope =1/R=G

L/ V
7_4
| =V/IR=VG
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Electricity Basics: Rectification

I-V Curve

(A)
U Slope = 1/R=G
- \

I=V/IR=VG
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Equilibrium

>~
~

Net Forces Equal Zero

No change over time

‘N_/\ Cellular Electrophysiology Bioengineering 6000 CV Physiology




Aqueous solution
€ =80

Outer vestibule

Water-filled
single filing

Inner vestibule

Cation hydrated
by polar H,O

molecules

g oeoeneoes s

Extracellular

Cytosdl
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lon Channel Permeability

An electron has a unitary charge
of 1.6022x10'° C

Cation+ has a charge of
qO= ZeO
where z is the valence

The attractive force between ions
is given by Coulombs law:

71 x Zp
F=—0—
er

€ is the Dielectric constant, a
parameter related to the properties of
the material capable of separating
charge
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lon Transport

Tubular lumen

Na* -
~ Glucose >
Passive
cotransport 5
(symporter) >

Na*
2CI-
K+

Cellular Electrophysiology

Blood

Active

—> Na'transport
ATPase (pump)
K oo

T

Channels

—=-=d==--> CI
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lon Transport

Tubular lumen Blood
Na*----B8--- >
—> Na*
ATPase
Kfreomno—o
Kte=-=-48F——--
Net K*
Apical — Basolateral
membrane membrane
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Forces
Diffusive Force Oc
J = —DVe — = DV?c

ot

Chemical Potential
nw = o + RT 111(0)

Electrical Force

F.= k.3
Electrical Potential
¢ =zFo
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Resting Potential
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Equilibrium Potential

Chemical gradient

a) Membrane is impermeable

b) Membrane becomes Y Som
. : - eminpermeable membrane
permeable to potassium only (K] M| ek butndcr)
(semipermeable) o ?// Eleclrostatic gradient
T
\I=Ueq

c) Equilibrium established .
when electrostatic and T DA Equilibrium

chemical gradients balance. !
(O] g
<=

N\
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Example Nernst Potentials

p_ 2, [Xh
8 lx],
X Nernst
F = @ log, & Potential
[X] 9 lon External Internal (mv)
Frog K 2.25 124 -101
muscle
Na 109 10.4 +59
Cl 77.5 1.5 -99
Squid K 20 400 -75
axon
Na 440 50 +55
Cl 560 108 -41
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Resting Potential

ﬁ( } Electrostatic (Vy, = 80mV)
- +
l + = Chemical (Vg =94mV)
61.5 log([K*]; / [K*]o)
Net Gradient o

[K+]i \ » 7105

—

K*o

Membrane _gq |-
potential

or Vy, (mV) 60 |- e
. —70 |-
- + Electrostatic (v, = 80mV) 80 T Depolarzed
. -90 ; o
l - + Chemical (Veq=70mV) IO i T Resting potential
61.5 log([Nat], / [Na*;) _110|2 \ l Hyperpolarized
_100 L1 i | [

1 |
. 0.2 05 1.0 25 10 20 50 100
Net Gradient X

[Na+]o \ [N_a+]i_ - _/\ C_ Extracellular K~ concdntration or [K'], (mM)
What determines K* Nernst
: . Potential
resting potential?
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Resting Potential

« All ions contribute
» Goldman-Hodgkin-Katz Equation

RT (z? Pyt M ous + 37 Pay [AW)
F

E,=—In
Z;N PM;" [Mz—i_]%n + erv PA;F [Aj_]out
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Cardiac Action Potentials

‘N_/\ Cellular Electrophysiology Bioengineering 6000 CV Physiology




DriVing Force Sign convention is

inside relative to outside.

Vn = -80 mV (electrical)

Veq = -94 mV (chemical)

Vp = Vn- Ve = 14 mV (net)

Driving Force =V - Veqis the potential available to
drive ions across the membrane.

Membrane resistance = Rn is the resistance of the
membrane through a specific channel for a specific ion.

I _ Vm - ‘/eq
Ry,
Ohm’s Law: links these parameters and describes
the membrane current.
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Action Potentials-Positive Feedback

Increase in gy,

Depolarization

Na flux

» What starts the positive feedback?
» What stops the positive feedback?
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Cardiac Action Potential

0 |
mV :
Na threshold (-65mV)  p-r--reemeemcbromemesmenenene s A .
-80 . 1
Na* current j 1

K* current E —1 I = depolarizing
! I | =repolarizing

_

300-350 ms
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Cardiac Cell Currents

===)p Chemical K+
T2

===)p Chemical Na+

<= E|ectrostatic

_N_/\ Note: Only includes relevant currents, i.e., for which G > 0
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Driving Force: Sodium
At AP peak:

Chemical Veq = 70 mV
Electrical V= 10 mV
1 Net Vg- -60 mV

[Na*]o

Is there ever a time when the
Net Gradient (driving force) = 07

What stops the Na-current?

mV
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Sodium Channel Behavior

Depolarization
(voltage)

Inactivation Repolarization
(time) (voltage, time)

_

Recovery
(voltage, time)

Note: voltage and time dependence
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Summary: Membrane Channel

A A

layer

© A~

Voltage dependence

Time, voltage, and
/Iigand dependent

Aqueous
pore

3 WORKING HYPOTHESIS
FOR A CHANNEL

The channel is drawn as a transmembrane
macromolecule with a hole through the
center. The external surface of the mole-
cule is glycosylated. The functional re-
gions, selectivity filter, gate, and sensor
are deduced from voltage-clamp experi-
ments but have not yet been charted by
structural studies. We have yet to learn
how they actually look.

Channel protein

Anchor
protein
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Cardiac lon Currents

Na* Ca?z*
| | 2K* 3Na*
in i

NV NV

w ) | ) v v | |
[ 3Na* Ca?*
K+ Na-K Na-Ca Ca
pump exchanger pump
lon channels Carrier mediated ion transport
+ Passive ion movement * Na-K and Ca pumps require ATP
« Driven by concentration and + Capable of driving against
electrostatic gradients concentration gradient
« Channels are selective » Na-Ca exchange does not require
ATP

+ Gates control opening
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Summary: Cardiac Action Potential

Resting potential depends
almost entirely on [K+].

Na channels require time at |Naf
potentials more negative than

|Caf

SCN5A (Na,, 1.5)

-65 mV in order to recovery. IK'+_

Without it, they will remain s

inactive. | /

Slow (Ca++) channels have a - \/;:/-—\
threshold of -35 mV lks

The plateau represents lkr /\
balance between Ca++ and K+ e —— j&
currents.

Some cardiac cells depolarize

Time

. 100
spontaneously; most do not. i
Nature Cell Biology 6, 1039 - 1047 (2004)
Thomas J. Jentsch, Christian A. Hibner & Jens C. Fuhrmann
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Theory <«——» Simulation
Experiment

= Experiment

Cellular Electrophysiology
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Measuring Membrane Potential

1x

Unity Gain High Impedance

Cellular Electrophysiology

Amplifier

Ground
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Optical Methods

A MICROELECTRODE METHOD

This voltmeter measures
membrane potential.

Ag/AgClin
3M KClI

Process

NEURON

'; \Cell body
%

Axon

C MICROELECTRODE VERSUS DYE

Stimiius Current pulse
Micro- s~~~
electrode
Membralne Dye
potentia Relative
(mV) fluorescence
(measured by
electrode)

0 Time (msec)

Cellular Electrophysiology

B FLUORESCENT DYE METHOD

Light F
source\E .

__—Photodetector
Dichroic ~—__
mirror :

Emitted red light
changes with
membrane
potential (mV).

Fluorescent dye
in the cell membrane

D CELL BODY VERSUS PROCESSES

E ey L
Stimulus
Cell body s
Thin processes saaas
Relative

fluorescence

0 Time (msec)
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Whole Cell Currents (Voltage Clamp)

For each ion type:

’iK(V, t) = (Vm — EK)gK(V, ?f)

Cellular Electrophysiology

Outward
activation I

C

V, [mV]

Inward

inactivation

10 J I_

-40
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L ese @
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g5s 8
> «
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g
(b) Amplifier
Axon [
’» Reference electrode

[ Recording electrode

—
L Stimulus
n

Voltgge Clamp in HH

Control amplifier

l + /
c d ¥
omman
_i__§igr1a_l__ - ;_‘fm___
Control = Voltage
l current amplifier
— Axon

Time (ms)

Simulation of Cell EP

Voltage-sensing
electrode

Membrane current

it ivd

e

1

II’T]
-

P

Current electrodes
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Voltage Clamp Results

* Note use of Na
Channel blocker
to isolate Na
current

* |V curve is
nonlinear

J\I/\

A=

normal Ringer

—
!
v /
,
!

150 nM TTX *

B=

Ve

Y
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Single Channel (Unitary) Currents

-10 mV

J\I/\

Channel current (pA)
OpA|: closed
open —L

2 channels open

Membrane voltage (mV)

Time

]

-80 mV
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Membrane Patch Clamp

Amplifier

(a) Patch-clamping setup

Depolarizing

Gentle
suction

T

CYTOSOL

Plasma membrane

(b) Membrane patch isolating
ion channel(s)

50mYy

Voltage

Current

Channels
closed

=

voltage step

=

WT
1 pA
L

W

Inactivated
Time

Open

Cellular Electrophysiology
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Two different

channels

Single Channel Examples
A

B

Kv2.1/Kv9.3 500 ms
50 mV
-80 mV —l I-—
C
Kv2.1/Kv9.3

Current as
function of
voltage

Cellular Electrophysiology

I (pA)
2.0 Kv2.1/Kv9.3
16 14.5 pS Current/
12 Voltage

’ characteristic
G:s Kv2.1
04 8.5pS

0% 0 40 80

I (pA) V (mV)
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Theory «————— Simulation

N/

Experiment

Simulations
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Membrane Equivalent Circuit

TTTTITIT ¢ T
UL & LALILLAL

Charged Polar Head

Lipid Bilayer

|lauueyn

A PARALLEL-PLATE CAPACITOR LIPID MEMBRANE

ouT ouTt

Charge, Q

Medium dielectric
constant, e
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Hodgkin-Huxley Formalism

» Qualitative concepts

e Quantitative formulation and simulation
(see next lecture)

» Sir Alan Hodgkin
—1914-1988

 Sir Andrew Huxley
—-1917-2012
— brother of Aldous Huxley

* Nobel Prize: 1963

a
\ *
'
. J
Huxiey
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Single Channel Model

a, B, v: state transition probabilities,

—N/\ (functions of v and t)
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HH Derivation and Homework
Assignment
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Control of Heart Rate - Pacemaking
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Pacemaker Cells in the Heart

SA Node

* Note difference in basic AP shape: why?
* Note unstable (depolarizing baseline): why?
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Regulation of Heart Rate

SA
Node

ACh

Epi/NE;
* increases l; (B+-
adrenergic . . ACh:
receptory * increases pg

* reduces I
(muscarinic receptor)

Pacemaker and ECC Bioengineering 6000 CV Physiology




