High performance Multi-scale Image Processing Framework on Multi-GPUs

with applications for Unbiased Diffeomorphic Atlas Construction

> Linh Khanh Ha February 2011

Outline

I. Motivation

Image Processing Framework
Combining Probabilistic and Geometries
Streaming Out-of-core MIP
Conclusion

Outline

I. Motivation

Image Processing Framework
Combining Probabilistic and Geometries
Streaming Out-of-core MIP
Conclusion

Given a collection of anatomical images, what is the image of the "Average Anatomy"?

"Average Anatomy"

"Average Anatomy"

"Average Anatomy"

"Average Anatomy"

Geometric Average

"Average Anatomy" = Atlas Construction

A registration problem

- Find the "optimal" deformation h that deforms one object to the other
 - Desired constraint h is "diffeomorphic"
 - Diffeomorphic mapping registration on diffeomorphic space

Diffeomorphic mapping

Properties

- Continuous
- One to one (invertible)
- Topology is maintained

Non-linear registration

- High registration quality
- Infinite dimension
 - Doing statistic
- Volume, variation of shape

Applications

• Applications:

- Map population into a common coordinate space
 - Learn about variability
 - Describe difference from normal
- Development, evolution, disease
- Automatic segmentation

Joshi et al 2004 "Unbiased Diffeomorphic ..."

Unbiased = Consistent + Order independent

Automatic Segmentation

• Compute the atlas

Automatic Segmentation

- Compute the atlas
- Partition the atlas

Automatic Segmentation

- Compute the atlas
- Partition the atlas
- Map labels from the atlas back to individuals

Doing analysis on the population

Age regression analysis on ADNI dataset of 315 brain images

Atlas Construction is challenging

- Energy minimization problem:
 - Requires solving expensive ODEs, and PDEs
 - massive computational power
 - Large memory requirements
 - Hundreds of 3D images
 - Too slow (months) using CPUs

Joshi et al 2004 "Unbiased Diffeomorphic ..."

Solution from Parallel Computing

The World around us is massively parallel

Parallel Computing Past : high end of computing

(Blaise Barney "Introduction to Parallel computing")

Parallel Computing Nowadays : used in many research areas

(Blaise Barney "Introduction to Parallel computing")

Who is doing parallel computing ?

Top 500 statistic page http://www.top500.org/stats

Who is doing parallel computing

Why GPU Computing

Economical reason

- High performance
- Low power consumption
- Smaller footprint

Technical reason

- Fast for computational purpose
 - High computational power Teraflops/card
 - High memory bandwidth
- High scalability, unified programming model (CUDA, Open CL)
- 100x faster in many applications

Mass product support

- Appear in many products
- Constant technical improvement
- Game and medical research community

Recent success

- The active HPC research area in the past 10 years
 - Double performance every year
 - GPGPU, Unified computing model, Fermi, GPU cluster ...
- Fastest computing devices

GPU Computing is challenging

New programming concept

- Porting code is non trivial
- Rethinking about data structure and algorithms

Optimization is hard

- Code specific to systems
- Low level optimization
- Expert knowledge about the architecture

Lack of development tools

- Hard to debug and maintain
- Learning curve is high
- Time to product is high

But it is changing to give more pleasant programming experience.

In this thesis, we provide : Essential tools for researchers to harness GPU processing power ! A GPU framework

Outline

I. Motivation

Image Processing Framework
Combining Probabilistic and Geometries
Streaming Out-of-core MIP
Conclusion

High performance Image Processing framework on GPU

Fast Parallel Unbiased Diffeomorphic Atlas Construction on Multi-Graphics Processing Units Eurographic Symposium on Parallel Graphic and Visualization 2009 L. Ha, Jens Kruger and Claudio T. Silva

Multi-scale Unbiased Diffeomorphic Atlas Construction on Multi-GPUs GPU Computing Gems Volume I L. Ha, Jens Kruger, Sarang Joshi and Claudio T. Silva

Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures MICCAI 2010 Nikhil Singh, P. Thomas Fletcher, J. Samuel Preston, Linh Ha, Richard King, J. Stephen Marron, Michael Wiener and Sarang Joshi

Advantages

• High performance basic operations

We found optimal approach for basic image processing functions

Advanced functions

• **ODE Integration**
$$h_i^{k+1} = h_i^k(x + \epsilon v_i^k(x))$$

GPU hardware tri-linear interpolation using 3D texture (50x time faster)

Advanced functions

PDE Solvers

a. Update boundaries

b. Blocking SOR on X-Y plane

c. Update time line (Z-plane)

- FFT-based solver
- Iterative solvers
 - Block SOR
 - CG template solver

Multi-scale framework

Increase details

Increase quality

Speed up convergence

Decrease computation

Different registration algorithms

• Greedy Iterative algorithm

• LDDMM algorithm

Single GPU - Multi-GPUs - GPU clusters

Performance and Scalability

Part I : Conclusion

In part I we present

- A general image processing framework
 - Basic/Advanced functions
 - Multi-scale framework
 - Unbiased Atlas Construction implementation
 - Multi-GPU
 - GPU clusters

• Next:

- A registration challenge
- Efficient computation on irregular grid

Outline

I. Motivation

Image Processing Framework
Combining Probabilistic and Geometries
Streaming Out-of-core MIP
Conclusion

Image Registration Driven by Combined Probabilistic and Geometric Descriptors MICCAI 2010 Linh Ha, Marcel Prastawa, Guido Gerig, John H. Gilmore, Claudio T. Silva and Sarang Joshi

How to incorporate extra information (surfaces, lines...) to improve registration quality ?

Early brain development **Registration challenge**

Subjects 180 - two weeks 180 - two years 180 - two weeks 180 - two years

- Total volume grows 115%
- Cerebellum grows 235% lacksquare

a. Large-scale deformation

Two-intensity distribution of wm

One intensity distribution of wm b. Intensity distribution change

• We need robust registration

- Handle large deformation
- Don't rely on raw intensity measurement

Multi-compartment Registration

Represent brain anatomies using "Multi-compartment model"

Currents Norm

Given two anatomies A_1, A_2 find a transformation h that minimizes $\hat{h} = \operatorname*{arg\,min}_h E(h \cdot A_1, A_2)^2 + D(h, e)^2$

Metric between anatomies

$$\sum_{c=1}^{N_c} \|p_{1,c}(x) - p_{2,c}(x)\|_k^{L^2} + \sum_{j=1}^{N_s} \|[\mathcal{M}_{1,j}(2) - \mathcal{M}_{2,j}(2)]\|_k^2$$

Metric between surfaces by using the "currents norm"

$$\|[\mathcal{M}(2)]\|_{k}^{2} = \sum_{f=1}^{N_{f}} \sum_{f'=1}^{N_{f}} \langle \eta(f), \eta(f') \rangle \, k(c(f), c(f'))$$

 $\|[\mathcal{M}_{1,j}(2) - \mathcal{M}_{2,j}(2)]\|_{k} = \|[\mathcal{M}_{1}(2) \cup (-\mathcal{M}_{2}(2))]\|_{k}$

Particle Mesh Computation

PM computation

- O(N log N)
- GPU friendly Fast

Brute force

- $O(N_f \times N_f)$
- Memory, computation intensive
 Slow

Registration result

Registration results of neonates mapped to two-year olds. From left to right: (a) neonatal T1 image after affine registration, (b) reference T1 image at 2-years, followed by (c) neonatal T1 after deformable mutual information registration using B-splines, and (d) our 39 method.

Quantitative performance

$$Overlap(h.S0, S2) = \frac{|h.S0 \cap S2|}{|S2|}$$

	Subject	0012	0102	0106	0121	0130	0146	0156	0174	0177	0180
White matter	MI	0.329	0.155	0.281	0.384	0.379	0.230	0.257	0.300	0.350	0.301
	P+G	0.497	0.397	0.442	0.453	0.482	0.414	0.461	0.440	0.478	0.442
Cerebellum	MI	0.755	0.212	0.588	0.515	0.732	0.820	0.713	0.569	0.631	0.777
	P+G	0.881	0.821	0.875	0.878	0.858	0.899	0.907	0.885	0.896	0.892

Dual Computation

Regular Grid

Irregular Grid

Splatting

GPU-friendly domain

Demo: Registration using geometry

Demo: Registration using geometry

Part 2 : Conclusion

• What have been done so far

- High performance processing framework
- Solution for a registration challenge
 - Efficient computation on irregular domain

Next

- Define multi-image processing (MIP) operations
- How to perform Out-of-Core MIP on GPUs
 - Asynchronous processing
 - Degrading challenge and solution

Outline

I. Motivation

2. Image Processing Framework

3. Combining Probabilistic and Geometries

4. Streaming Out-of-core MIP

5. Conclusion

MIP = Multi-Image Processing

Optimal Multi-Image Processing Streaming Framework on Parallel Heterogeneous Systems Submitted to EGPGV 2011 Linh Ha, Jens Kruger, Joao Comba, Sarang Joshi and Claudio T. Silva

Why we need Out-Of-Core ?

Applications **Computing Level** Accessibility Resources **GPU** Cluster Few Abundant Restricted Multi-GPU Many Restricted Feasible Workstation Single GPU Widely available Plenty Limited desktop

What are the building blocks of a multiimage processing framework ?

Multi-image Operations

(Flynn's Taxonomy classification)

Multi-Input Multi-Output (MIMO)

- add, mul, sub, divide, normalized
- convolution, filter

Multi-Input Single-Output (MISO)

• max, min, range

In

• average, accumulate

All multi-image operators are presented either by MIMO or MISO

Complex MIMO

Complex n-inputs & m-outputs

Complex MIMO

Decomposition Complex Basic MIMO & MISO n-inputs & m-outputs O_1 O_1 **1**₁ **1**1 1 **O**₂ **O**₂ **|**₂ 2 2 **I**_n O_{m} l_n In m instances of MISO

Out-of-Core MIP Challenges

Fully out-of-core

	External		GPU global memory	
Mem Size	n-TB	10-256GB	512MB-6GB	I-mag difference
Bandwidth	I00MB/s	3-8 GB/s	140-200GB/s	2-mags difference

Data transfer becomes bottleneck ! Solution: Asynchronous processing 52

Hardware-aware Execution

Stream is assigned after the hardware execution unit

<u>u</u> pload	CPU to GPU memory transfer					
<u>e</u> xecution	GPU program execution					
<u>d</u> ownload	GPU to CPU memory transfer					

The system with two data transfer + one execution units

Hardware-aware Execution

Stream is assigned after the hardware execution unit

<u>u</u> pload	CPU to GPU memory transfer				
<u>e</u> xecution	GPU program execution				
<u>d</u> ownload	GPU to CPU memory transfer				

The system with two data transfer + one execution units

Hardware-aware Execution

Stream is assigned after the hardware execution unit

<u>u</u> pload	CPU to GPU memory transfer				
<u>e</u> xecution	GPU program execution				
<u>d</u> ownload	GPU to CPU memory transfer				

The system with two data transfer + one execution units

Hardware-independent Execution

Stream is assigned after the function stage

$T_a = T_u + T_{eu} + (n-2) \times T_m + T_{ed} + T_d$ $T_m = max(T_u + T_d, T_e)$

<u>u</u> pload	CPU to GPU memory transfer					
<u>e</u> xecution	GPU program execution					
<u>d</u> ownload	GPU to CPU memory transfer					

Hardware-independent model is proven to be optimal (EGPGV 2011)

Extension to Full Out-of-Core MIP

The hardware independent extension to full out-of-core MIP is proven to be optimal

				I			
1.54	347	1031	322	1700	1366	1370	1057
1	347	671	322	1339	1006	1010	695
0.93	347	619	322	1289	953	957	690
0.77	347	515	322	1185	849	853	683
0.5	347	334	322	1003	679	682	672

Processing ratio r = E / (U + D)

r = E/(U+D)	<<	IK	>>
Function type	Transfer dominant	Balance	Processing dominent
Speed up benefit	Low	High (2)	Low

Asynchronous Processing in Practice: Degrading Conditions

Forced synchronization

required to preserve semantic order of a program

• Reasons

- Synchronization calls
- Call to external functions without asynchronous support
- Asynchronous mismatch
- Cross-stream functions (in-stream synchronization)

Order-independent Streaming Mode

• Reordering is available for stages of different images

Order-independent Streaming Mode

• Reordering is available for stages of different images

Order-independent Streaming Mode

• Reordering is available for stages of different images

Solution for forced synchronization

 Reordering reduces penalty of forced synchronization in execution stage

Solution for forced synchronization

 Reordering reduces penalty of forced synchronization in execution stage

Solution for forced synchronization

 Reordering reduces penalty of forced synchronization in execution stage

0.05	347	53	997	1050	1698	1663	1654	1389	1340	1054
0.2	347	204	820	1024	1698	1664	1506	1389	1191	1054
0.32	347	334	694	1028	1698	1664	1380	1389	1067	1055
0.5	347	515	514	1029	1698	1664	1370	1389	1056	1199
0.6	347	619	411	1030	1698	1664	1370	1389	1056	1296
0.65	347	671	360	1031	1698	1664	1370	1389	1054	1346
0.75	347	773	257	1030	1698	1664	1370	1457	1124	1448
0.95	347	976	51	1027	1698	1667	1372	1651	1317	1650

Functions in practice

Function	U	E	D	Sync	Impl	Hrd-aware	Hrd-indp
Max	347	13	0	360	349	349	349
Energy	692	20	0	710	698	700	698
Averaging	347	20	11	378	360	363	361
Normalization	347	28	322	694	696	687	677
Gaussian	347	431	322	1099	735	770	678
Atlas	201446	213423	1359583	555204	NA	372567	340356

Note: Full Out-Of-Core Atlas Construction takes 1h40 minutes with Async. execution and 2 hours with Sync. execution to finish

Approximate Atlas versus Complete Atlas

a. Intensity average image

b. Random-permuation regression atlas construction with cohort = 3

c. Random-permuation regression atlas construction with cohort = 9

d. Full-diffeomorphic atlas construction Number of images 156

Permutation regression
Number of tests = 100
Cohort = 3 takes 40 minutes
Cohort = 9 takes 2 hours

Exact out-of-core computation takes 6 minutes
Conclusion

• The thesis presents

- A high performance Image Processing Framework
 - Multi-scale implementation
 - Multi-GPUs and GPU-cluster implementation
- A robust registration method combines probabilistic and geometries
 - Efficient computation on irregular domain
- An optimal out-of-core MIP framework

• Future work

- Extend diffeomorphic framework to handle cracks
- Extend computation to irregular domain
- Out-of-core processing for general data structure
 Software package is available to download at
 http://www.sci.utah.edu/software/13/370-atlaswerks.html

Acknowledgment

• Grants:

- 5R01EB007688, MH064065, P41 RR023953 and NSF grant CNS-0751152
- Vietnam Education Foundation

• Thank

- Advisor: <u>Cláudio T. Silva</u>
- Co-advisors: Sarang Joshi, Jens Krüger
- Committee members: Joao Comba, P.Thomas Fletcher
- Mentors at IBM, Exxon Mobile: James Klosowski, Wagner Correa, Mark Dobin, Dominique G.Gillard
- VGC group: Huy, Emanuel, Erik, Steven, Carlos, John, Tiago,
- Collaborators: Marcel Prastawa, Guido Gerig, Sam Preston, Thomas Fogal ...
- People at SCI, School of Computing Thank you for attending my talk

Question and Answer

- 1: **Input** : *N* volume inputs
- 2: **Output**: Template atlas volume
- 3: for k = 1 to max_iters do
- 4: Fix images I_i^k , compute the template $\hat{I}^k = \frac{1}{N} \frac{\sum_{i=1}^N I_i^k w_i}{\sum_{i=1}^N w_i}$
- 5: **for** i = 1 to N **do** {loop over the images}
- 6: Fix the template \hat{I}^k , solve pairwise-matching problem between I_i^k and \hat{I}^k
- 7: Update deformed image I_i^k with current velocity
- 8: end for
- 9: end for

Algorithm 1: Atlas construction framework

- 1: **Input** : *N* input images
- 2: **Output**: *N* processed output images
- 3: **for** k = 1 to *N* **do**
- 4: Upload the *k*-th image from the storage device to the processing device
- 5: Process the input in-core on the processing device
- 6: Download the output image back to the storage device
- 7: end for

Algorithm 2: Synchronous out-of-core MIMO operators

