
High performance Multi-scale Image
Processing Framework on Multi-GPUs

 with applications for
Unbiased Diffeomorphic Atlas Construction

Linh Khanh Ha
February 2011

Outline
1. Motivation

2. Image Processing Framework

3. Combining Probabilistic and Geometries

4. Streaming Out-of-core MIP

5. Conclusion

2

Outline
1. Motivation

2. Image Processing Framework

3. Combining Probabilistic and Geometries

4. Streaming Out-of-core MIP

5. Conclusion

3

Given a collection of anatomical images,
what is the image of the “Average Anatomy” ?

“Average Anatomy”

“An anatomical object that requires least amount of energy in
total to deform to each individual of the population”

5

“Average Anatomy”

Intensity Average

6

“An anatomical object that requires least amount of energy in
total to deform to each individual of the population”

“Average Anatomy”

Intensity Average

7

“An anatomical object that requires least amount of energy in
total to deform to each individual of the population”

“Average Anatomy”

Geometric Average

8

“An anatomical object that requires least amount of energy in
total to deform to each individual of the population”

“Average Anatomy” = Atlas Construction

• A registration problem
• Find the “optimal” deformation h that deforms one object

to the other

• Desired constraint h is “diffeomorphic”

• Diffeomorphic mapping - registration on diffeomorphic
space

9

Diffeomorphic mapping

Non-linear registration
• High registration quality

• Infinite dimension

Doing statistic
• Volume, variation of shape

Properties
• Continuous

• One to one (invertible)

• Topology is maintained

10

Applications

• Applications:
• Map population into a common

coordinate space

• Learn about variability

• Describe difference from
normal

• Development, evolution, disease

• Automatic segmentation

Joshi et al 2004 “Unbiased Diffeomorphic ... “

11

Unbiased = Consistent + Order independent

Automatic Segmentation

• Compute the atlas

12

Automatic Segmentation

• Compute the atlas

• Partition the atlas

13

Automatic Segmentation

• Compute the atlas

• Partition the atlas

• Map labels from the atlas
back to individuals

14

Doing analysis on the population

Age regression analysis on ADNI dataset of 315 brain images

!"#$%&#'()"#$%&#*+ ,"#$%&#*(-"#$%&#.+

15

Atlas Construction is challenging

• Energy minimization
problem:
• Requires solving expensive

ODEs, and PDEs

• massive computational power

• Large memory requirements

• Hundreds of 3D images

• Too slow (months) using CPUs

Joshi et al 2004 “Unbiased Diffeomorphic ... “

Solution from Parallel Computing

16

The World around us is massively parallel

17

Parallel Computing
Past : high end of computing

18

(Blaise Barney “Introduction to Parallel computing”)

Parallel Computing
Nowadays : used in many research areas

19

(Blaise Barney “Introduction to Parallel computing”)

!"!!#$

%&"!!#$

'!"!!#$

(&"!!#$

!"
#$
%&
'(
")
)

!*
+$
,
$-
."
))

/"
0(
1,
'#
23
04
))

/3
$5
$4
6)
)

7$
0%
*5
-0
4)
)

8
'+
'9
'%
")
)

8
":
"0
%"
))

;5
"(
+#
$0
3(
%)
)

;0
"#
46
))

;0
.3
#$
0,
"0
+))

<3
0'
0(
")
)

=
"$
&1
6%
3(
%)
)

>
'#
?@
'#
")
)

A0
:$
#,
'-
$0
)B
"#
.3
("
))

A0
:$
#,
'-
$0
)C
#$
("
%%
30
4)
B"
#.
3(
")
)

D3
:"
)B
(3
"0
("
))

E
"?
3(
30
")
)

E
"?
3'
))

F"
%"
'#
(1
))

B"
#.
3(
")
)

B$
G
@
'#
")
)

H"
5"
($
,
,
))

I
"'
+1
"#
)'
0?
)7
53,
'+
")
F"
%"
'#
(1
))

I
I
I
))

I
"'
+1
"#
)<
$#
"(
'%
-0
4)
)

B"
,
3(
$0
?*
(+
$#
))

8
34
3+'
5)E
"?
3'
))

;0
+"
#+
'3
0,
"0
+))

J
$+
)B
&"
(3
K"
?)
)

F"
+'
35)
)

D$
43
%-
()
B"
#.
3(
"%
))

I1$)3%)?$304)&'#'55"5)($,&*-04))

Who is doing parallel computing ?

Top 500 statistic page

http://www.top500.org/stats

20

http://www.top500.org/stats
http://www.top500.org/stats

Why GPU Computing

• High performance

• Low power consumption

• Smaller footprint

Economical reason Mass product support

Technical reason

• Fast for computational purpose

• High computational power
Teraflops/card

• High memory bandwidth

• High scalability, unified programming
model (CUDA, Open CL)

• 100x faster in many applications

• Appear in many products

• Constant technical
improvement

• Game and medical research
community

Recent success

• The active HPC research area in
the past 10 years

• Double performance every year

• GPGPU, Unified computing
model, Fermi, GPU cluster ...

• Fastest computing devices

21

GPU Computing is challenging

 New programming concept
• Porting code is non trivial

• Rethinking about data structure
and algorithms

 Optimization is hard
• Code specific to systems

• Low level optimization

• Expert knowledge about the
architecture

 Lack of development tools
• Hard to debug and maintain

• Learning curve is high

• Time to product is high

But it is changing to give more
pleasant programming experience.

In this thesis, we provide :
Essential tools for researchers to harness GPU processing power !

 A GPU framework
22

Outline
1. Motivation

2. Image Processing Framework

3. Combining Probabilistic and Geometries

4. Streaming Out-of-core MIP

5. Conclusion

23

High performance Image Processing
framework on GPU

Fast Parallel Unbiased Diffeomorphic Atlas Construction on Multi-
Graphics Processing Units
Eurographic Symposium on Parallel Graphic and Visualization 2009
L. Ha, Jens Kruger and Claudio T. Silva

Multi-scale Unbiased Diffeomorphic Atlas Construction on Multi-
GPUs
GPU Computing Gems Volume I
L. Ha, Jens Kruger, Sarang Joshi and Claudio T. Silva

Multivariate Statistical Analysis of Deformation Momenta Relating
Anatomical Shape to Neuropsychological Measures
MICCAI 2010
Nikhil Singh, P. Thomas Fletcher, J. Samuel Preston, Linh Ha, Richard
King, J. Stephen Marron, Michael Wiener and Sarang Joshi

24

http://www.sci.utah.edu/~lha/egpgv.htm
http://www.sci.utah.edu/~lha/egpgv.htm
http://www.sci.utah.edu/~lha/egpgv.htm
http://www.sci.utah.edu/~lha/egpgv.htm
http://www.vis.uni-stuttgart.de/egpgv/
http://www.vis.uni-stuttgart.de/egpgv/
http://www.sci.utah.edu/~lha/multiscale.htm
http://www.sci.utah.edu/~lha/multiscale.htm
http://www.sci.utah.edu/~lha/multiscale.htm
http://www.sci.utah.edu/~lha/multiscale.htm
http://miccai2010.org/
http://miccai2010.org/
http://www.sci.utah.edu/~lha/lddmm.htm
http://www.sci.utah.edu/~lha/lddmm.htm
http://www.sci.utah.edu/~lha/lddmm.htm
http://www.sci.utah.edu/~lha/lddmm.htm
http://miccai2010.org/
http://miccai2010.org/
http://miccai2010.org/
http://miccai2010.org/
http://miccai2010.org/
http://miccai2010.org/

Advantages

• High performance basic operations

Lerp : x = ay + bz

Norm: x = (y-a)/b + c

0

1.5

3.0

4.5

6.0

2 4 6 8 10 12 14 162 4 6 8 10 12 14 162 4 6 8 10 12 14 16

Binary operators vs n-ary operators

T
im

e
 (
m

s
)

Size of inputs (millions)

Memcpy bi-Op Norm
n-Op Norm bi-Op Lerp
n-Op Lerp

Lerp : x = ay + bz

Norm: x = (y-a)/b + c

25

We found optimal approach for basic image
processing functions

Advanced functions

• ODE Integration

Destination Volume Source Volume Trilinear Interpolation

F-1

GPU hardware tri-linear interpolation using 3D texture
 (50x time faster)

26

hk+1
i = hk

i (x + εvk
i (x))

Advanced functions

• PDE Solvers

Boundary points

Update boundary of ith iteration

Update boundary of ith+1 iteration

Compute block

1

2 2 2 2

3 3 3 3

 4

RemoveLoad

5

9

 8

12

16

20

24

6 6 6 6

-2 -2 -2 -2

7 7 7 7

11 11 11 11

10 10 10 10

Load step Update step Remove step

Z
-s

lic
e

15 15 15 15

14 14 14 1419 19 19 19

-1 -1 -1 -1-6 -6 -6 -6

a. Update boundaries b. Blocking SOR on X-Y plane c. Update time line (Z-plane)

• FFT-based solver

• Iterative solvers

• Block SOR

• CG template solver 27

(α∇2 + β∇+ γ)v(x) = F (x)

Multi-scale framework

Increase details

Decrease computation

Speed up convergence

Level 2 Level 1 Level 0 Final result

Increase quality

28

Different registration algorithms

• Greedy Iterative algorithm

v0

v1

v2

v3

v4

v5

source t1 t2 t3 t4 dest

• LDDMM algorithm

!"#$" !"%*' !"%&' !"%()*'

!(#$*!(%*' !(%&' !(%()*'

!"#

!"#

$%&'()*(+,-(%

!".

!".

29

Single GPU - Multi-GPUs - GPU clusters

30

Performance and Scalability

31

Part 1 : Conclusion

• In part 1 we present
• A general image processing framework

• Basic/Advanced functions

• Multi-scale framework

• Unbiased Atlas Construction implementation

• Multi-GPU

• GPU clusters

• Next:
• A registration challenge

• Efficient computation on irregular grid

32

Outline
1. Motivation

2. Image Processing Framework

3. Combining Probabilistic and Geometries

4. Streaming Out-of-core MIP

5. Conclusion

33

Image Registration Driven by Combined Probabilistic and Geometric
Descriptors
MICCAI 2010
Linh Ha, Marcel Prastawa, Guido Gerig, John H. Gilmore, Claudio T.
Silva and Sarang Joshi

http://www.sci.utah.edu/~lha/image_current.htm
http://www.sci.utah.edu/~lha/image_current.htm
http://www.sci.utah.edu/~lha/image_current.htm
http://www.sci.utah.edu/~lha/image_current.htm

How to incorporate extra information
(surfaces, lines...) to improve registration
quality ?

Early brain development
Registration challenge

• We need robust registration
• Handle large deformation

• Don’t rely on raw intensity measurement

35

!"#$%$&'($'))*+ !"#$%$&'($,)-.+ !"#$%$&'($'))*+ !"#$%$&'($,)-.+

/'(%01&)1+0&,$
20+&.034&0(1$(5$'6

71)$01&)1+0&,$
20+&.034&0(1$(5$'6

38$91&)1+0&,$20+&.034&0(1$:;-1<)$$

! /(&-=$>(=46)$<.('+$!!?@

! A).)3)==46$<.('+$$$BC?@

-8$D-.<)%+:-=)$2)5(.6-&0(1$$

E43F):&+

Multi-compartment Registration

• Represent brain anatomies using “Multi-compartment
model”

36

Currents Norm

Given two anatomies A1,A2 find a transformation h that minimizes

ĥ = arg min
h

E(h · A1,A2)2 + D(h, e)2

Metric between anatomies

Metric between surfaces by using the “currents norm”

‖[M(2)]‖2
k =

Nf∑

f=1

Nf∑

f ′=1

〈η(f), η(f ′)〉 k(c(f), c(f ′))

Nc∑

c=1

‖p1,c(x)− p2,c(x)‖L2

k +
Ns∑

j=1

‖[M1,j(2)−M2,j(2)]‖2
k

‖[M1,j(2)−M2,j(2)]‖k = ‖[M1(2) ∪ (−M2(2))]‖k 37

 PM computation
• O(N log N)

• GPU friendly - Fast

Particle Mesh Computation

Build grid

Splat ing Update grid
(integration)

Interpolation

 Brute force
• O(Nf x Nf)

• Memory, computation intensive
- Slow

38

Registration result
(a) (b) (c) (d)

(0012)

(0102)

(0106)

Registration results of neonates mapped to two-year olds. From left to right: (a) neonatal
T1 image after affine registration, (b) reference T1 image at 2-years, followed by (c)
neonatal T1 after deformable mutual information registration using B-splines, and (d) our
method. 39

Quantitative performance

Overlap(h.S0, S2) =
|h.S0 ∩ S2|

|S2|

40

Dual Computation

Interpolation

Splatting

Regular Grid Irregular Grid

GPU-friendly domain

41

Demo:
Registration using geometry

42

Demo:
Registration using geometry

43

Part 2 : Conclusion

• What have been done so far
• High performance processing framework

• Solution for a registration challenge

• Efficient computation on irregular domain

• Next
• Define multi-image processing (MIP) operations

• How to perform Out-of-Core MIP on GPUs

• Asynchronous processing

• Degrading challenge and solution

44

Outline
1. Motivation

2. Image Processing Framework

3. Combining Probabilistic and Geometries

4. Streaming Out-of-core MIP

5. Conclusion
MIP = Multi-Image Processing

45

Optimal Multi-Image Processing Streaming Framework on Parallel
Heterogeneous Systems
Submitted to EGPGV 2011
Linh Ha, Jens Kruger, Joao Comba, Sarang Joshi and Claudio T.
Silva

i

i-1

i-2

i+1

i

i-1

i

i-1

i-2

i+1

i

i-1

i+2

i+1

i

i+2

i+1

i-1

CPU to GPU GPU to CPUGPU - GPU
Incident

sync-point

(a) U
-P-D

(b) U
-D

-P

http://www.sci.utah.edu/~lha/image_current.htm
http://www.sci.utah.edu/~lha/image_current.htm
http://www.sci.utah.edu/~lha/image_current.htm
http://www.sci.utah.edu/~lha/image_current.htm

Why we need Out-Of-Core ?

Multi-GPU
Workstation

Single GPU
desktop

GPU Cluster Abundant

Limited

Resources Computing Level Accessibility

Restricted

Feasible

Widely available

Restricted

Applications

Few

Many

Plenty

46

What are the building blocks of a multi-
image processing framework ?

Multi-image Operations

I1

Multi-Input Single-Output
(MISO)

• add, mul, sub, divide, normalized

• convolution, !lter

• max, min, range

• average, accumulate

I2

In

O1

O2

On

I1

I2

In

O

Multi-Input Multi-Output
(MIMO)

(Flynn's Taxonomy classification)

All multi-image operators are presented either by MIMO or MISO

48

Complex MIMO

Complex
n-inputs & m-outputs

I1

I2

In

O1

O2

Om

49

Complex MIMO

Complex
n-inputs & m-outputs

I1

I2

In

O1

O2

Om

I1

I2

In

O1

m instances of MISO

I1

I2

In

O2

Basic
MIMO & MISO

Decomposition

50

Sliding window MIMO complex
(Functions with memory stages)

 sliding window MIMO
I1 I2 InI3 I4 I5

O2 OnO3 O4 O5O1

I1 I2 InI3 I4 I5

O2 OnO3 O4 O5O1

current-buffer new input
 basic MIMO-equivalent

51

Out-of-Core MIP Challenges

!"#$%&'()&

*+,-

!"#$%&'()&

.*/0+

12"0&02&

3+4/%+

3+4/%+&02&

12"0

560+*$,7&8+82*#

In
p

u
t file

s
O

u
tp

u
t file

s

9:;&8+82*#

In
p

u
t b

u
ffe

rs

O
u

tp
u

t b
u

ffe
rs

3+4/%+&8+82*#

:*2%<&2=+*,02*"

:
,
*,
77+
7&

:
*2
%
+
+
"
/$
>
&

-
+
4
/%
+

?@70/A2BC+%0"

DEE?F(" GHF("

3
+
4
/%
+
&0
2
&

3
+
4
/%
+

D
I
J
H
F
("

In-core CPU out-of-core Device
Fully out-of-core

In-core Device

External CPU system
memory

GPU global
memory

Mem Size n-TB 10-256GB 512MB-6GB

Bandwidth 100MB/s 3-8 GB/s 140-200GB/s

Data transfer becomes bottleneck ! Solution: Asynchronous processing

1-mag difference

2-mags difference

52

Asynchronous versus Synchronous

stream1

stream2

1 1 1

2

1 1 1 2 2 2no-stream

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution

Ts = n× (Tu + Te + Td)

53

Asynchronous versus Synchronous

stream1

stream2

1 1 1

2 2

1 1 1 2 2 2no-stream

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution

Ts = n× (Tu + Te + Td)

54

Asynchronous versus Synchronous

stream1

stream2

streamn-1

1 1 1

2 2

n-1

n nstreamn

2

n

1 1 1 2 2 2no-stream

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution

n-1 n-1

Ts = n× (Tu + Te + Td)

Ta = n× Tmax + (Tu + Te + Td − Tmax)
Tmax = max(Tu, Te, Td)

55

Hardware-aware Execution

H2D

D2D

D2H

1

1

2

Teu = max(Te, Tu)

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution

Stream is assigned after the hardware execution unit

56
The system with two data transfer + one execution units

Hardware-aware Execution

H2D

D2D

D2H

1

1

1

2

2

3

Teu = max(Te, Tu)

Tmax

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution

Stream is assigned after the hardware execution unit

57
The system with two data transfer + one execution units

Hardware-aware Execution

H2D

D2D

D2H

1

1

1

2

2

3

2

3

4

n-2

n-1

n

n

n-1 nTeu = max(Te, Tu)

TmaxTmax Tmax

Ted = max(Te, Td)

Ta = n× Tmax + (Tu + Teu + Ted + Td − 2× Tmax)

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution

Stream is assigned after the hardware execution unit

58
The system with two data transfer + one execution units

Hardware-independent Execution

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution

H2D

D2D

D2H

1

1

1

2

2

3

3

n-2

n-1

n

n

n-1

4

n

Ta = Tu + Teu + (n− 2)× Tm + Ted + Td

Tm = max(Tu + Td, Te)

Tu Teu Tm Tm Ted

Td

Stream is assigned after the function stage

Hardware-independent model is proven to be optimal
(EGPGV 2011) 59

Extension to Full Out-of-Core MIP

1

1

1

1

1

2

2

2

2

5

5

3

3

4

2

4

6

3

43

Functional streams

upload
execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution
d-upload disk to CPU memory transfer

d-download CPU to disk memory transfer

Full
Out-Of-Core

Out-Of-Core GPU
In-core CPU= +

Out-Of-Core
CPU transfers

+

The hardware independent extension to
full out-of-core MIP is proven to be optimal

60

Ideal condition runtime

 Weight Ratio U E D Sync Impl U_ED UE_D UED EDU DUE

10

40

65

100

120

130

200

0.08 347 53 322 720 670 674 674 672 672 672

0.3 347 204 322 874 673 679 679 672 672 672

0.5 347 334 322 1003 679 682 692 672 672 672

0.77 347 515 322 1185 849 853 873 683 683 683

0.93 347 619 322 1289 953 957 977 690 690 690

1 347 671 322 1339 1006 1010 1028 695 695 695

1.54 347 1031 322 1700 1366 1370 1390 1057 1057 1057

Ratio U E D Sync Impl U_ED UED

0.08

0.3

0.5

0.77

0.93

1

1.54

347 53 322 720 670 674 672

347 204 322 874 673 679 672

347 334 322 1003 679 682 672

347 515 322 1185 849 853 683

347 619 322 1289 953 957 690

347 671 322 1339 1006 1010 695

347 1031 322 1700 1366 1370 1057

0

1000

2000

0.08 0.3 0.5 0.77 0.93 1 1.54

Asynchronous runtime - ideal condition
Ti

m
e(

m
s)

Processing ratio r = E / (U + D)

Sync

Implicit=U_ED=UD_E

UED=EDU=DUE

E U,D

r = E/(U+D) <<1 1 >>1

Function type Transfer dominant Balance Processing
dominent

Speed up benefit Low High (2) Low

61

Asynchronous Processing in Practice:
Degrading Conditions

Forced synchronization

• Reasons
• Synchronization calls

• Call to external functions without asynchronous support

• Asynchronous mismatch

• Cross-stream functions (in-stream synchronization)

Stream 1

Stream 2

Stream 3

required to preserve semantic order of a program

Stream 1

Stream 2

Stream 3

Sync = Barrier

Blocked

Blocked

BlockedBlocked

Blocked

Signal And Wait

Signal And Wait

Time

63

Order-independent Streaming Mode

• Reordering is available for stages of different images

i i i

i

i-1

i-2

i i+1 ii-1 i-1 i-1

iloop order
(time)

order
independence

upload execution download

original execution order

64

Order-independent Streaming Mode

• Reordering is available for stages of different images

i i i

i

ii-1

i-2

i+1

i-1

i i+1 ii-1 i-1 i-1

i i+1loop order
(time)

order
independence

upload execution download

original execution order

65

Order-independent Streaming Mode

• Reordering is available for stages of different images

i i i

i

i

i

i-1

i-2

i+1

i-1

i+1

i

i i+1 ii-1 i-1 i-1

i i+1 i+2loop order
(time)

order
independence

loop order
(time)

upload execution download

original execution order

66

Solution for forced synchronization

• Reordering reduces penalty of forced synchronization in
execution stage

i-1

i

i-1

i-2

i

i-2

sync-
point U

-E-D
U

-D
-E

sync-
point

67

Solution for forced synchronization

• Reordering reduces penalty of forced synchronization in
execution stage

ii-1

i

i-1

i-2

i+1

i

i-1

i

i-2

i+1

i-1

sync-
point U

-E-D
U

-D
-E

sync-
point

sync-
point

sync-
point

68

Solution for forced synchronization

• Reordering reduces penalty of forced synchronization in
execution stage

i+1ii-1

i

i-1

i-2

i+1

i

i-1

i

i-2

i+1

i-1

i+2

i+1

i

i+2

i-1

sync-
point U

-E-D
U

-D
-EStage

Reordering

sync-
point

sync-
point

sync-
point

sync-
point

sync-
point

69

Degrading condition runtime

Weight Ratio U E1 E2 E D Sync Impl U_ED UE_D UED EDU DUE

10

40

65

100

120

130

150

150

0.05 347 53 997 1050 322 1698 1663 1654 1389 1340 1054 1652

0.2 347 204 820 1024 322 1698 1664 1506 1389 1191 1054 1498

0.32 347 334 694 1028 322 1698 1664 1380 1389 1067 1055 1369

0.5 347 515 514 1029 322 1698 1664 1370 1389 1056 1199 1199

0.6 347 619 411 1030 322 1698 1664 1370 1389 1056 1296 1101

0.65 347 671 360 1031 322 1698 1664 1370 1389 1054 1346 1055

0.75 347 773 257 1030 322 1698 1664 1370 1457 1124 1448 1055

0.95 347 976 51 1027 332 1698 1667 1372 1651 1317 1650 1054

Ratio U E1 E2 E Sync Impl U_ED UE_D UED EDU DUE

0.05

0.2

0.32

0.5

0.6

0.65

0.75

0.95

347 53 997 1050 1698 1663 1654 1389 1340 1054 1652

347 204 820 1024 1698 1664 1506 1389 1191 1054 1498

347 334 694 1028 1698 1664 1380 1389 1067 1055 1369

347 515 514 1029 1698 1664 1370 1389 1056 1199 1199

347 619 411 1030 1698 1664 1370 1389 1056 1296 1101

347 671 360 1031 1698 1664 1370 1389 1054 1346 1055

347 773 257 1030 1698 1664 1370 1457 1124 1448 1055

347 976 51 1027 1698 1667 1372 1651 1317 1650 1054

0

1000

2000

0.05 0.2 0.32 0.5 0.6 0.65 0.75 0.95

Streaming with degeneracy
Ti

m
e

(m
s)

Synchronous ratio r = (E1/(E2+E1))

Upload, Download
E1

E2

E = E1 + E2

DUE
UED

EDU

U_EDUE_D

Sync

Implicit

70

Functions in practice

97

Function U E D Sync Impl Hrd-aware Hrd-indp
Max 347 13 0 360 349 349 349
Energy 692 20 0 710 698 700 698
Averaging 347 20 11 378 360 363 361
Normalization 347 28 322 694 696 687 677
Gaussian 347 431 322 1099 735 770 678
Atlas 201446 213423 1359583 555204 NA 372567 340356

Table 4.1. Runtime comparison of regular functions with different streaming strategies

Though we show the results with execution-dominant function here, we also draw the

same conclusions from transfer-dominant and balanced functions.

4.7.3 Regular out-of-core functions

On the third experiment, we focus on the regular out-of-core function sets such as

a maximum value of all images, normalization, averaging, Gaussian filtering, product

(energy computation), and atlas building. The results from Table 4.7.3 confirm that when

the computation only requires simple functions (max, product, normalization, averaging,

etc.), the asynchronous streaming does give you the benefit of hiding the computational

cost. However, it is negligible in comparison to the transfer cost. As the complexity of the

functions increases (for example, Gaussian filtering function), we start seeing significant

benefits of asynchronous streaming strategies, especially with the hardware independent

model. In atlas construction, which is performed on the ADNI dataset that we mentioned

on Figure 4.1, as we increase the complexity of computational functions and reduce

the cost of data transfer by merging all the functions together on a single loop, we

yield significant performance improve over the synchronous out-of-core version. The

performance is compared to the in-core performance (execution time only) even though

we could process a significant larger amount of data than that of an in-core version.

Overall, our results confirm our theoretical analysis. All the strategies are able to

achieve optimal performance, however, only the hardware-independent model gives the

best performance in all the tests. In the degenerate cases, the implicit model completely

fails. The presence of synchronization points makes it impossible to find an efficient

schedule automatically. Note that in this case–a greedy approach—which immediately

executes whenever the resource is available—also fails. The hardware-aware model gives

better performance even with the degenerate cases, although it is optimal. It is always

possible to find the best runtime between hardware-independent implementations. In

Note: Full Out-Of-Core Atlas Construction takes 1h40 minutes
with Async. execution and 2 hours with Sync. execution to finish

71

b. Random-permuation regression
atlas construction with cohort = 3

c. Random-permuation regression
atlas construction with cohort = 9

a. Intensity average image d. Full-di!eomorphic atlas construction
Number of images 156

Approximate Atlas versus Complete Atlas

Permutation regression
• Number of tests = 100
• Cohort = 3 takes 40 minutes
• Cohort = 9 takes 2 hours

Exact out-of-core computation
takes 6 minutes

72

Conclusion

• The thesis presents
• A high performance Image Processing Framework

• Multi-scale implementation

• Multi-GPUs and GPU-cluster implementation

• A robust registration method combines probabilistic and
geometries

• Efficient computation on irregular domain

• An optimal out-of-core MIP framework

Software package is available to download at
http://www.sci.utah.edu/software/13/370-atlaswerks.html

• Future work
• Extend diffeomorphic framework to handle cracks

• Extend computation to irregular domain

• Out-of-core processing for general data structure

73

http://www.sci.utah.edu/software/13/370-atlaswerks.html
http://www.sci.utah.edu/software/13/370-atlaswerks.html

Acknowledgment

• Grants:
• 5R01EB007688, MH064065, P41 RR023953 and NSF grant

CNS-0751152

• Vietnam Education Foundation

• Thank
• Advisor: Cláudio T. Silva

• Co-advisors: Sarang Joshi, Jens Krüger

• Committee members: Joao Comba, P.Thomas Fletcher

• Mentors at IBM, Exxon Mobile: James Klosowski, Wagner Correa,
Mark Dobin, Dominique G.Gillard

• VGC group: Huy, Emanuel, Erik, Steven, Carlos, John, Tiago,

• Collaborators: Marcel Prastawa, Guido Gerig, Sam Preston, Thomas
Fogal ...

• People at SCI, School of Computing

74Thank you for attending my talk

http://www.sci.utah.edu/people/csilva.html
http://www.sci.utah.edu/people/csilva.html

Question and Answer

75

76

paper1017 / Multi-Image Processing Streaming Framework 9

on future hardware. Our experimental results show that our
hardware-independent model adapts to underlying hardware
configurations, out-performs other streaming strategies, and
gives optimal performance in all tests.

We also evaluated the efficiency of streaming models, and
presented an quantitative evaluation that serves as a model
for developers. We have investigated an optimal streaming
strategy in unfavorable conditions based on reordering from
order-independent properties of the explicit-streaming mod-
els. We also give insight to the causes of unfavorable stream-
ing conditions that help developers locate the performance
degradation points in their implementations. Though we use
a GPU computational model to illustrate the efficiency, our
framework makes no specific assumptions about the under-
lying architecture and hence can be generalized to any het-
erogeneous parallel processing systems.

9. Apppendix

1: Input : N volume inputs
2: Output: Template atlas volume
3: for k = 1 to max_iters do
4: Fix images Ik

i , compute the template Îk = 1
N

∑N
i=1 Ik

i wi

∑N
i=1 wi

5: for i = 1 to N do {loop over the images}
6: Fix the template Îk, solve pairwise-matching prob-

lem between Ik
i and Îk

7: Update deformed image Ik
i with current velocity

8: end for
9: end for

Algorithm 1: Atlas construction framework

1: Input : N input images
2: Output: N processed output images
3: for k = 1 to N do
4: Upload the k-th image from the storage device to the

processing device
5: Process the input in-core on the processing device
6: Download the output image back to the storage device
7: end for
Algorithm 2: Synchronous out-of-core MIMO operators

1: Input : N input volumes
2: Output: few numbers(sum, max/min, etc) or single out-

put image
3: for k = 1 to N do
4: Upload the k-th image from the storage device to the

processing device
5: Process the input in-core on the precessing device
6: Update the accumulated output buffer on the process-

ing device
7: end for
8: Write the final output to the storage device

Algorithm 3: Synchronous out-of-core MISO operators

1: Input : N input volumes
2: Output: N processed output volumes
3: for k = 1 to N do
4: Load the data iImg[k] from storage device to process-

ing device, dk on the stream k-th
5: end for
6: for k = 1 to N do
7: Apply the operator on data do = oper(dk) on the

stream k-th
8: end for
9: for k = 1 to N do

10: Write output do to the storage device oImg[k] on the
stream k-th

11: end for
Algorithm 4: Implicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di[3] and
device input buffers do[3]

2: Output: N processed output volumes
3: for k = 1 to N +2 do
4: if k <= N then
5: Load the data iImg[k] from storage device to device

buffer di[k%3] on theH2D stream
6: end if
7: if k > 1 and k−1 <= N then
8: Apply the operator on device buffer do[(k −

1)%3] = oper(di[(k−1)%3]) on D2D stream
9: end if

10: if k > 2 and k−2 <= N then
11: Write output do[(k− 2)%3] to the storage device

oImg[(k−2)] on the D2H stream
12: end if
13: Synchronize streams
14: end for

Algorithm 5: Explicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di[2] and
device input buffers do[2]

2: Output: single volume output or few values (max, min,
sum ..)

3: for k = 1 to N +1 do
4: if k <= N then
5: Load the data iImg[k] from storage device to device

buffer di[k%2] on theH2D stream
6: end if
7: if k > 1 and k−1 <= N then
8: Apply the operator on device buffer do[(k −

1)%2] = oper(di[(k−1)%2]) on D2D stream
9: end if

10: Store/Accumulate result on processing device
11: Synchronize streams
12: end for

Algorithm 6: Explicit pipelining MISO operator

References
[Ala92] ALATTAR A.: A probabilistic filter for eliminating tem-

poral noise in time-varying image sequences. In Circuits and Sys-

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2011)

77

paper1017 / Multi-Image Processing Streaming Framework 9

on future hardware. Our experimental results show that our
hardware-independent model adapts to underlying hardware
configurations, out-performs other streaming strategies, and
gives optimal performance in all tests.

We also evaluated the efficiency of streaming models, and
presented an quantitative evaluation that serves as a model
for developers. We have investigated an optimal streaming
strategy in unfavorable conditions based on reordering from
order-independent properties of the explicit-streaming mod-
els. We also give insight to the causes of unfavorable stream-
ing conditions that help developers locate the performance
degradation points in their implementations. Though we use
a GPU computational model to illustrate the efficiency, our
framework makes no specific assumptions about the under-
lying architecture and hence can be generalized to any het-
erogeneous parallel processing systems.

9. Apppendix

1: Input : N volume inputs
2: Output: Template atlas volume
3: for k =1 to max_iters do
4: Fix images Ik

i , compute the template Îk =1
N

∑N
i=1 Ik

i wi

∑N
i=1 wi

5: for i =1 to N do {loop over the images}
6: Fix the template Îk, solve pairwise-matching prob-

lem between Ik
i and Îk

7: Update deformed image Ik
i with current velocity

8: end for
9: end for

Algorithm 1: Atlas construction framework

1: Input : N input images
2: Output: N processed output images
3: for k =1 to N do
4: Upload the k-th image from the storage device to the

processing device
5: Process the input in-core on the processing device
6: Download the output image back to the storage device
7: end for
Algorithm 2: Synchronous out-of-core MIMO operators

1: Input : N input volumes
2: Output: few numbers(sum, max/min, etc) or single out-

put image
3: for k =1 to N do
4: Upload the k-th image from the storage device to the

processing device
5: Process the input in-core on the precessing device
6: Update the accumulated output buffer on the process-

ing device
7: end for
8: Write the final output to the storage device

Algorithm 3: Synchronous out-of-core MISO operators

1: Input : N input volumes
2: Output: N processed output volumes
3: for k =1 to N do
4: Load the data iImg[k]from storage device to process-

ing device, dk on the stream k-th
5: end for
6: for k =1 to N do
7: Apply the operator on data do =oper (dk) on the

stream k-th
8: end for
9: for k =1 to N do

10: Write output do to the storage device oImg[k]on the
stream k-th

11: end for
Algorithm 4: Implicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di[3]and
device input buffers do[3]

2: Output: N processed output volumes
3: for k =1 to N + 2 do
4: if k <=N then
5: Load the data iImg[k]from storage device to device

buffer di[k%3]on theH2D stream
6: end if
7: if k > 1 and k−1 <=N then
8: Apply the operator on device buffer do[(k −

1)%3] =oper (di[(k−1)%3])on D2D stream
9: end if

10: if k > 2 and k−2 <=N then
11: Write output do[(k− 2)%3]to the storage device

oImg[(k−2)]on the D2H stream
12: end if
13: Synchronize streams
14: end for

Algorithm 5: Explicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di[2]and
device input buffers do[2]

2: Output: single volume output or few values (max, min,
sum ..)

3: for k =1 to N + 1 do
4: if k <=N then
5: Load the data iImg[k]from storage device to device

buffer di[k%2]on theH2D stream
6: end if
7: if k > 1 and k−1 <=N then
8: Apply the operator on device buffer do[(k −

1)%2] =oper (di[(k−1)%2])on D2D stream
9: end if

10: Store/Accumulate result on processing device
11: Synchronize streams
12: end for

Algorithm 6: Explicit pipelining MISO operator

References
[Ala92] ALATTAR A.: A probabilistic filter for eliminating tem-

poral noise in time-varying image sequences. In Circuits and Sys-

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2011)

78

paper1017 / Multi-Image Processing Streaming Framework 9

on future hardware. Our experimental results show that our
hardware-independent model adapts to underlying hardware
configurations, out-performs other streaming strategies, and
gives optimal performance in all tests.

We also evaluated the efficiency of streaming models, and
presented an quantitative evaluation that serves as a model
for developers. We have investigated an optimal streaming
strategy in unfavorable conditions based on reordering from
order-independent properties of the explicit-streaming mod-
els. We also give insight to the causes of unfavorable stream-
ing conditions that help developers locate the performance
degradation points in their implementations. Though we use
a GPU computational model to illustrate the efficiency, our
framework makes no specific assumptions about the under-
lying architecture and hence can be generalized to any het-
erogeneous parallel processing systems.

9. Apppendix

1: Input : N volume inputs
2: Output: Template atlas volume
3: for k =1 to max_iters do
4: Fix images Ik

i , compute the template Îk =1
N

∑N
i=1 Ik

i wi

∑N
i=1 wi

5: for i =1 to N do {loop over the images}
6: Fix the template Îk, solve pairwise-matching prob-

lem between Ik
i and Îk

7: Update deformed image Ik
i with current velocity

8: end for
9: end for

Algorithm 1: Atlas construction framework

1: Input : N input images
2: Output: N processed output images
3: for k =1 to N do
4: Upload the k-th image from the storage device to the

processing device
5: Process the input in-core on the processing device
6: Download the output image back to the storage device
7: end for
Algorithm 2: Synchronous out-of-core MIMO operators

1: Input : N input volumes
2: Output: few numbers(sum, max/min, etc) or single out-

put image
3: for k =1 to N do
4: Upload the k-th image from the storage device to the

processing device
5: Process the input in-core on the precessing device
6: Update the accumulated output buffer on the process-

ing device
7: end for
8: Write the final output to the storage device

Algorithm 3: Synchronous out-of-core MISO operators

1: Input : N input volumes
2: Output: N processed output volumes
3: for k =1 to N do
4: Load the data iImg[k]from storage device to process-

ing device, dk on the stream k-th
5: end for
6: for k =1 to N do
7: Apply the operator on data do =oper (dk) on the

stream k-th
8: end for
9: for k =1 to N do

10: Write output do to the storage device oImg[k]on the
stream k-th

11: end for
Algorithm 4: Implicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di[3]and
device input buffers do[3]

2: Output: N processed output volumes
3: for k =1 to N + 2 do
4: if k <=N then
5: Load the data iImg[k]from storage device to device

buffer di[k%3]on theH2D stream
6: end if
7: if k > 1 and k−1 <=N then
8: Apply the operator on device buffer do[(k −

1)%3] =oper (di[(k−1)%3])on D2D stream
9: end if

10: if k > 2 and k−2 <=N then
11: Write output do[(k− 2)%3]to the storage device

oImg[(k−2)]on the D2H stream
12: end if
13: Synchronize streams
14: end for

Algorithm 5: Explicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di[2]and
device input buffers do[2]

2: Output: single volume output or few values (max, min,
sum ..)

3: for k =1 to N + 1 do
4: if k <=N then
5: Load the data iImg[k]from storage device to device

buffer di[k%2]on theH2D stream
6: end if
7: if k > 1 and k−1 <=N then
8: Apply the operator on device buffer do[(k −

1)%2] =oper (di[(k−1)%2])on D2D stream
9: end if

10: Store/Accumulate result on processing device
11: Synchronize streams
12: end for

Algorithm 6: Explicit pipelining MISO operator

References
[Ala92] ALATTAR A.: A probabilistic filter for eliminating tem-

poral noise in time-varying image sequences. In Circuits and Sys-

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2011)

