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Motivation
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• Reconstructing Building Interiors from Images

• Furukawa et. al, ICCV 2009

• Multi-View Stereo for Community Photo Collections

• Goesele et. al, ICCV 2007



Motivation
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• Scene completion using millions of photographs

• James Hays and Alexei A.Efros, SIGGRAPH 2007

• Finding Paths through the World’s Photos

• Snavely et al , SIGGRAPH 2008



Motivation

• Atlas construction:
• Map population into a common 

coordinate space

• Learn about variability

• Describe difference from 
normal

• Development, evolution, disease

• Automatic segmentation

Joshi et al 2004 “Unbiased Diffeomorphic ... “
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Automatic Segmentation

• Compute the atlas
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Automatic Segmentation

• Compute the atlas

• Partition the atlas
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Automatic Segmentation

• Compute the atlas

• Partition the atlas

• Map labels from the atlas 
back to individuals
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Challenges

• Multi-image processing is challenging 
• Large amount of computation

• Excessive memory requirement
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• Solution - parallel processing system: 
• Supercomputer 

• GPU cluster

• the GPU is proven to be efficient for image 
processing tasks

However, large scale parallel processing is expensive 



Resource and Accessibility trade off 

Multi-GPU 
Workstation

Single GPU 
desktop

GPU Cluster Abundant 

Limited 

Resources Computing Level Accessibility 

Restricted

Feasible

Widely available 

Restricted

Applications 

Few 

Many

Plenty
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What are the building blocks of a multi-
image processing framework ?



Multi-image Operations

I1

Multi-Input Single-Output 
(MISO)

• add, mul, sub, divide, normalized 

• convolution, !lter

• max, min, range 

• average,  accumulate 

I2

In

O1

O2

On

I1

I2

In

O

Multi-Input Multi-Output 
(MIMO)

(Flynn's taxonomy classification)

All multi-image operators are presented either by MIMO or MISO
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Complex MIMO

Complex 
n-inputs & m-outputs

I1

I2

In

O1

O2

Om
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Complex MIMO

Complex 
n-inputs & m-outputs

I1

I2

In

O1

O2

Om

I1

I2

In

O1

m instances of MISO

I1

I2

In

O2

Basic 
MIMO & MISO

Decomposition 
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Sliding window MIMO complex
(Functions with memory stages)

 sliding window MIMO
I1 I2 InI3 I4 I5

O2 OnO3 O4 O5O1

I1 I2 InI3 I4 I5

O2 OnO3 O4 O5O1

current-buffer new input 
 basic MIMO-equivalent
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Out-of-Core MIP Challenges 
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In-core CPU out-of-core Device
Fully out-of-core

In-core Device

External CPU system 
memory

GPU global 
memory

Mem Size n-TB 10-256GB 512MB-6GB

Bandwidth 100MB/s 3-8 GB/s 140-200GB/s

Data transfer becomes bottleneck ! Solution: Asynchronous processing

1-mag difference

2-mags difference
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Analysis constraints

1 1 1 2 2 2MI operator

20

• Performance assumption
• Computation are uniform

• Data transfer are uniform

• Simple 3-stage pipeline

• Order independent processing
• We can order the data and perform the 

processing in that order

Mostly satisfied with 
preprocessed data

Satisfied with 
functions in practice

First level of
out-of-core 

processing models

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution



Asynchronous versus Synchronous

stream1

stream2

1 1 1

2

1 1 1 2 2 2no-stream
Ts = n× (Tu + Te + Td)
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CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution



Asynchronous versus Synchronous

stream1

stream2
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Asynchronous versus Synchronous

stream1

stream2

streamn-1
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n-1

n nstreamn

2

n

1 1 1 2 2 2no-stream

n-1 n-1

Ts = n× (Tu + Te + Td)

Ta = n× Tmax + (Tu + Te + Td − Tmax)
Tmax = max(Tu, Te, Td)

23

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution



Asynchronous versus Synchronous
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Optimal asynchronous 

runtime



Asynchronous versus Synchronous

stream1

stream2

streamn-1

50 20 60

50 20
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50 20streamn
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60

50 20 60 50 20 60no-stream

20 60
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n = 10 Ts = n× (Tu + Te + Td) = 1300

Ta = n× Tmax + (Tu + Te + Td − Tmax) = 670
Tmax = max(Tu, Te, Td) = 60



Asynchronous versus Synchronous

stream1

stream2

streamn-1

1 1 1

2 2

n-1

streamn

2

1 1 1 2 2 2no-stream

n-1 n-1
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n n n

Implicit streaming model
•Logical model
•Simple but cannot be used 

for out-of-core

Explicit streaming model
•Hardware aware
•Hardware independent



Hardware-aware Execution 

H2D

D2D

D2H

1

1

2

Teu = max(Te, Tu)

upload

execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution

Stream is assigned after the hardware execution unit

27
The system with two data transfer + one execution units



Hardware-aware Execution 
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Hardware-aware Execution 
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The system with two data transfer + one execution units



Hardware-aware Execution 

H2D

D2D

D2H
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Ted = max(Te, Td)
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Stream is assigned after the hardware execution unit
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Sync point

Hardware aware execution
•Physical model - hardware dependent model
•Memory consumption = number of execution units
•Maximal speed up factor = number of execution units



Hardware-independent Execution 

H2D

D2D

D2H

1
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n

n-1

4

n

Ta = Tu + Teu + (n− 2)× Tm + Ted + Td

Tm = max(Tu + Td, Te)

Tu Teu Tm Tm Ted

Td

Stream is assigned after the function stage

31The system with one data transfer + one execution units



Hardware-independent Execution 
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Stream is assigned after the function stage
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Hardware independent execution
•Functional model - hardware independent model
•Memory consumption = number of streams
•Potential speed up factor of the algorithm 

           = number of streams



Extension to Full Out-of-Core MIP

1

1

1

1
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Functional streams

upload
execution

download

CPU to GPU memory transfer

GPU to CPU memory transfer

GPU program execution
d-upload disk to CPU memory transfer

d-download CPU to disk memory transfer

Full 
Out-Of-Core

Out-Of-Core GPU
In-core CPU= +

Out-Of-Core
CPU transfers

+

The hardware independent extension to 
full out-of-core MIP is proven to be optimal
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Ideal condition runtime

    Weight Ratio  U    E   D    Sync  Impl  U_ED  UE_D  UED  EDU  DUE

10

40

65

100

120

130

200

0.08 347 53 322 720 670 674 674 672 672 672

0.3 347 204 322 874 673 679 679 672 672 672

0.5 347 334 322 1003 679 682 692 672 672 672

0.77 347 515 322 1185 849 853 873 683 683 683

0.93 347 619 322 1289 953 957 977 690 690 690

1 347 671 322 1339 1006 1010 1028 695 695 695

1.54 347 1031 322 1700 1366 1370 1390 1057 1057 1057

Ratio  U    E   D    Sync  Impl  U_ED  UED 
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347 671 322 1339 1006 1010 695

347 1031 322 1700 1366 1370 1057

0

1000

2000

0.08 0.3 0.5 0.77 0.93 1 1.54

Asynchronous runtime - ideal condition
Ti

m
e(

m
s)

Processing ratio r = E / (U + D)

Sync

Implicit=U_ED=UD_E

UED=EDU=DUE

E U,D

r = E/(U+D) <<1 1 >>1

Function type Transfer dominant Balance Processing 
dominant

Speed up benefit Low High (2) Low

34The system with one data transfer + one execution units
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Data dominant

Execution dominant

Balance regionTransient point
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Asynchronous Processing in Practice: 
Degrading Conditions 



Forced synchronization

• Reasons
• Synchronization calls

• Call to external functions without asynchronous support

• Asynchronous mismatch

• Cross-stream functions (in-stream synchronization)

Stream 1

Stream 2

Stream 3

required to preserve semantic order of a program

Stream 1

Stream 2

Stream 3

Sync = Barrier

Blocked

Blocked

BlockedBlocked

Blocked

Signal And Wait

Signal And Wait

Time
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Order-independent Streaming Mode

• Reordering is available for stages of different images

i i i

i

i-1

i-2

i i+1 ii-1 i-1 i-1

iloop order
(time)

order
independence

upload execution download

original execution order
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Order-independent Streaming Mode

• Reordering is available for stages of different images

i i i

i

ii-1

i-2

i+1

i-1

i i+1 ii-1 i-1 i-1

i i+1loop order
(time)

order
independence

upload execution download

original execution order
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Order-independent Streaming Mode

• Reordering is available for stages of different images

i i i

i

i

i

i-1

i-2

i+1

i-1

i+1

i

i i+1 ii-1 i-1 i-1

i i+1 i+2loop order
(time)

order
independence

loop order
(time)

upload execution download

original execution order
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Solution for forced synchronization

• Reordering reduces penalty of forced synchronization in 
execution stage

i-1

i

i-1

i-2

i

i-2

sync-
point U

-E-D
U

-D
-E

sync-
point 
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Solution for forced synchronization

• Reordering reduces penalty of forced synchronization in 
execution stage

ii-1

i

i-1

i-2

i+1

i

i-1

i

i-2

i+1

i-1

sync-
point U

-E-D
U

-D
-E

sync-
point 

sync-
point 

sync-
point 
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Solution for forced synchronization

• Reordering reduces penalty of forced synchronization in 
execution stage

i+1ii-1

i

i-1

i-2

i+1

i

i-1

i

i-2

i+1

i-1

i+2

i+1

i

i+2

i-1

sync-
point U

-E-D
U

-D
-EStage 

Reordering

sync-
point 

sync-
point 

sync-
point 

sync-
point 

sync-
point 
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Degrading condition runtime

Weight Ratio U E1 E2 E D Sync Impl U_ED UE_D UED EDU DUE

10

40

65

100

120

130

150

150

0.05 347 53 997 1050 322 1698 1663 1654 1389 1340 1054 1652

0.2 347 204 820 1024 322 1698 1664 1506 1389 1191 1054 1498

0.32 347 334 694 1028 322 1698 1664 1380 1389 1067 1055 1369

0.5 347 515 514 1029 322 1698 1664 1370 1389 1056 1199 1199

0.6 347 619 411 1030 322 1698 1664 1370 1389 1056 1296 1101

0.65 347 671 360 1031 322 1698 1664 1370 1389 1054 1346 1055

0.75 347 773 257 1030 322 1698 1664 1370 1457 1124 1448 1055

0.95 347 976 51 1027 332 1698 1667 1372 1651 1317 1650 1054
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Upload DownloadChangeE1 E2

Total runtime per iteration - fixed

Implicit 

Synchronous 

UE_D 

U_ED 

Hardware-aware Exc 
EDU 

UED 

Hardware-Independent Exc 

DUE 



Degrading condition runtime
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Transient points

E1< TU Tu<E1<E2 E1>E2>TD E2>TD

EUD UED UED DUE

Optimal strategy lookup table 



Functions in practice

97

Function U E D Sync Impl Hrd-aware Hrd-indp
Max 347 13 0 360 349 349 349
Energy 692 20 0 710 698 700 698
Averaging 347 20 11 378 360 363 361
Normalization 347 28 322 694 696 687 677
Gaussian 347 431 322 1099 735 770 678
Atlas 201446 213423 1359583 555204 NA 372567 340356

Table 4.1. Runtime comparison of regular functions with different streaming strategies

Though we show the results with execution-dominant function here, we also draw the

same conclusions from transfer-dominant and balanced functions.

4.7.3 Regular out-of-core functions

On the third experiment, we focus on the regular out-of-core function sets such as

a maximum value of all images, normalization, averaging, Gaussian filtering, product

(energy computation), and atlas building. The results from Table 4.7.3 confirm that when

the computation only requires simple functions (max, product, normalization, averaging,

etc. ), the asynchronous streaming does give you the benefit of hiding the computational

cost. However, it is negligible in comparison to the transfer cost. As the complexity of the

functions increases (for example, Gaussian filtering function), we start seeing significant

benefits of asynchronous streaming strategies, especially with the hardware independent

model. In atlas construction, which is performed on the ADNI dataset that we mentioned

on Figure 4.1, as we increase the complexity of computational functions and reduce

the cost of data transfer by merging all the functions together on a single loop, we

yield significant performance improve over the synchronous out-of-core version. The

performance is compared to the in-core performance (execution time only) even though

we could process a significant larger amount of data than that of an in-core version.

Overall, our results confirm our theoretical analysis. All the strategies are able to

achieve optimal performance, however, only the hardware-independent model gives the

best performance in all the tests. In the degenerate cases, the implicit model completely

fails. The presence of synchronization points makes it impossible to find an efficient

schedule automatically. Note that in this case–a greedy approach—which immediately

executes whenever the resource is available—also fails. The hardware-aware model gives

better performance even with the degenerate cases, although it is optimal. It is always

possible to find the best runtime between hardware-independent implementations. In
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fails. The presence of synchronization points makes it impossible to find an efficient

schedule automatically. Note that in this case–a greedy approach—which immediately

executes whenever the resource is available—also fails. The hardware-aware model gives

better performance even with the degenerate cases, although it is optimal. It is always

possible to find the best runtime between hardware-independent implementations. In

Note: Full Out-Of-Core Atlas Construction takes 1h40 minutes 
with Async. execution and 2 hours with Sync. execution to finish
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b. Random-permuation regression 
atlas construction with  cohort = 3

c. Random-permuation regression 
atlas construction with cohort = 9

a. Intensity average image d. Full-di!eomorphic atlas construction
Number of images 156

Approximate Atlas versus Complete Atlas









     







 









     





Permutation regression
• Number of tests = 100
• Cohort = 3 takes 40 minutes
• Cohort = 9 takes 2 hours

Exact out-of-core computation
takes 6 minutes
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Conclusion

• This paper presents
• Multi-image processing framework

• Multi-image operators

• Efficient asynchronous execution model

• Hardware independent model is optimal

• Degrading problem and solution based on reordering strategy

Software package will be available to download at
http://www.sci.utah.edu/software/13/370-atlaswerks.html

• Future work
• Reduce the constraints  

• Out-of-core processing for general data structure
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Question and Answer
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Hardware independent optimality
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When hardware independent is faster than 
hardware aware
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When out-of-core is faster than in-core

1

a. In-core execution (without asynchronous execution)
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2 1

b. Out-of-core using asynchronous execution 

n 2 n 1 2 n

1 2 3 1 2 3
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1 2 n-1 n 1

1 2 n

n-1 n

TEn× Tu n× Td

TE
TdTu

• Reasons
• The data transfer can be hidden completely by 

execution

max(Tu, Td) < Te1

max(Tu, Td) < Te2



Atlas construction algorithm
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on future hardware. Our experimental results show that our
hardware-independent model adapts to underlying hardware
configurations, out-performs other streaming strategies, and
gives optimal performance in all tests.

We also evaluated the efficiency of streaming models, and
presented an quantitative evaluation that serves as a model
for developers. We have investigated an optimal streaming
strategy in unfavorable conditions based on reordering from
order-independent properties of the explicit-streaming mod-
els. We also give insight to the causes of unfavorable stream-
ing conditions that help developers locate the performance
degradation points in their implementations. Though we use
a GPU computational model to illustrate the efficiency, our
framework makes no specific assumptions about the under-
lying architecture and hence can be generalized to any het-
erogeneous parallel processing systems.

9. Apppendix

1: Input : N volume inputs
2: Output: Template atlas volume
3: for k = 1 to max_iters do
4: Fix images Ik

i , compute the template Îk = 1
N

∑N
i=1 Ik

i wi

∑N
i=1 wi

5: for i = 1 to N do {loop over the images}
6: Fix the template Îk, solve pairwise-matching prob-

lem between Ik
i and Îk

7: Update deformed image Ik
i with current velocity

8: end for
9: end for

Algorithm 1: Atlas construction framework

1: Input : N input images
2: Output: N processed output images
3: for k = 1 to N do
4: Upload the k-th image from the storage device to the

processing device
5: Process the input in-core on the processing device
6: Download the output image back to the storage device
7: end for
Algorithm 2: Synchronous out-of-core MIMO operators

1: Input : N input volumes
2: Output: few numbers(sum, max/min, etc) or single out-

put image
3: for k = 1 to N do
4: Upload the k-th image from the storage device to the

processing device
5: Process the input in-core on the precessing device
6: Update the accumulated output buffer on the process-

ing device
7: end for
8: Write the final output to the storage device

Algorithm 3: Synchronous out-of-core MISO operators

1: Input : N input volumes
2: Output: N processed output volumes
3: for k = 1 to N do
4: Load the data iImg[k] from storage device to process-

ing device, dk on the stream k-th
5: end for
6: for k = 1 to N do
7: Apply the operator on data do = oper(dk) on the

stream k-th
8: end for
9: for k = 1 to N do

10: Write output do to the storage device oImg[k] on the
stream k-th

11: end for
Algorithm 4: Implicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di[3] and
device input buffers do[3]

2: Output: N processed output volumes
3: for k = 1 to N +2 do
4: if k <= N then
5: Load the data iImg[k] from storage device to device

buffer di[k%3] on theH2D stream
6: end if
7: if k > 1 and k−1 <= N then
8: Apply the operator on device buffer do[(k −

1)%3] = oper(di[(k−1)%3]) on D2D stream
9: end if

10: if k > 2 and k−2 <= N then
11: Write output do[(k− 2)%3] to the storage device

oImg[(k−2)] on the D2H stream
12: end if
13: Synchronize streams
14: end for

Algorithm 5: Explicit pipelining MIMO operator

1: Input : N input volumes, device input buffers di[2] and
device input buffers do[2]

2: Output: single volume output or few values (max, min,
sum ..)

3: for k = 1 to N +1 do
4: if k <= N then
5: Load the data iImg[k] from storage device to device

buffer di[k%2] on theH2D stream
6: end if
7: if k > 1 and k−1 <= N then
8: Apply the operator on device buffer do[(k −

1)%2] = oper(di[(k−1)%2]) on D2D stream
9: end if

10: Store/Accumulate result on processing device
11: Synchronize streams
12: end for

Algorithm 6: Explicit pipelining MISO operator
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on future hardware. Our experimental results show that our
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configurations, out-performs other streaming strategies, and
gives optimal performance in all tests.
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strategy in unfavorable conditions based on reordering from
order-independent properties of the explicit-streaming mod-
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on future hardware. Our experimental results show that our
hardware-independent model adapts to underlying hardware
configurations, out-performs other streaming strategies, and
gives optimal performance in all tests.
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