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Abstract. While level sets have demonstrated a great potential for 3D medical
image segmentation, their usefulness has been limited by two problents. Firs
3D level sets are relatively slow to compute. Second, their formulatioallysu
entails several free parameters which can be very difficult to corraatly for
specific applications. This paper presents a tool for 3D segmentatiorethest

on level-set surface models computed at interactive rates on comngoalithiics
cards (GPUs). The interactive rates for solving the level-set PDEth&eiser
immediate feedback on the parameter settings, and thus users can s
arate parameters and control the shape of the model in real time. \Weddwund

that this interactivity enables users to produce good, reliable segmentasion
supported by qualitative and quantitative results.

1 Introduction

This paper describes a new, general-purpose segmentatibthat relies on interac-
tive deformable models implemented as level sets. Whild E=ts have demonstrated
a great potential for 3D medical image segmentation, tregfuiness has been limited
by slow computation times combined with intensive parameteing. The proposed
tool updates a level-set surface model at interactive mieommodity graphics cards
(GPUs), such as those that are commonly found on consuwergersonal comput-
ers. We demonstrate the effectiveness of this tool by a gatimé comparison to a
specialized tool and the associated gold standard for dfppmblem: brain tumor
segmentation [1, 2]. This paper make the following contidns:

— A 3D segmentation tool that uses a new level-set deformatabver to achieve
interactive rates (approximately 15 times faster thaniptevsolutions).

— A mapping of the sparse, level-set computation to a GPU, amanerical scheme
for retaining a thin band structure in the solution, and aahtechnique for dynamic
memory management between the CPU and GPU.

— Quantitative and qualitative evidence that interactivellset models are effective
for brain tumor segmentation.

2 Background and Related Work
2.1 Level Sets

This paper relies on an implicit representation of deforimahrface models called the
method oflevel sets. The use of level sets has been widely documented in the aledic
imaging literature, and several works give more comprefensviews of the method
and the associated numerical techniques [3]. Here we mezeigw the notation and
describe the particular formulation that is relevant te fhéper.

An implicit model is a surface representation in which thefate consists of all
pointsS = {Z|¢(z) = 0}, whereg : R3 — R. Level-set methods relate the motion of
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that surface to a PDE on the volume, id2/0t = —V¢ - 0(t), wheres(t) describes
the point-wise velocity of the surface. Within this framewone can implement a wide
range of deformations by defining an appropriatEor segmentation, the velocity often
consists of a combination of two terms [4, 5]
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whereD is a data term that forces the model toward desirable featnt@e input data,
the termV - (V¢/|V¢|) is the mean curvature of the surface, which forces the sairfac
to have less area (and remain smooth), and [0, 1] is a free parameter that controls
the degree of smoothness in the solution.

The behavior of the model is mostly characterized by thet@ataand how it relates
to the image. Invariably, the data term introduces freematars, and the proper tuning
of those parameters, along with is critical to making the model behave in a desirable
manner.

For the work in this paper we have chosen a very simple spaedifun to demon-
strate the effectiveness afteractivity in level-set solvers. The speed function at any
one point is based solely on the input intenditgt that point:

D(I)=e—|I-T|, 2

[Vo| |aD(Z) + (1 — a)V

whereT controls the brightness of the region to be segmented aodtrols the range

of greyscale values arourd that could be considered inside the object. Thus when
the model lies on a voxel with a greyscale level betw&en ¢ andT + ¢, the model
expands and otherwise it contracts. The speed term is draahéathus the effects of
D diminish as the model approaches the boundaries of regibnsengreyscale levels
lie within theT" & e range. Even with this simple scheme a user would have tofgpeci
three different parameters, ¢, anda, aswell as an initialization. This speed termis a
simple approximation to a one-dimensional statisticadsiféer, which assumes a single
density (with noise) for the regions of interest.
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Fig. 1. (@) A speed function based on image intensity causes the model to eapanckgions

with greyscale values within the specified range and contract othenhjsgfficient implemen-

tations of level sets entail computing the solution only near the moving wawefr

=

If a user were to initialize a model in a volume and use the gpesnm in eq (2)
without the curvature term the results would be virtually game as a simple flood fill
over the region bounded by the upper and lower thresholdseMer, the inclusion of
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the curvature term alleviates the critidahking problem that arises when using flood
filling as a segmentation technique.

The purpose of this paper is not to advocate for any one steformulation or
speed function, but rather to address an issue that is relevavirtually all level-set
segmentation strategies; that is, a good segmentatiomdsp® a proper specification
of free parameters and the initialization.

Solving level-set PDEs on a volume requires proper numesa@emes [6] and en-
tails a significant computational burden. Stability reggithat the surface can progress
at most a distance of one voxel at each iteration, and thugia fumber of iterations
are required to compute significant deformations. Efficedgorithms for solving the
general level-set equations rely on the observation thahwtone time step the only
parts of the solution that are important are those adjacetitet moving surface (near
points wherep = 0). In light of this several authors [7, 8] have proposed nucaér
schemes that compute solutions for only those voxels taat i small number of lay-
ers adjacent to the surface as shown in Figure 1b. Howeven, with a narrow band
of computation, updates rates with these algorithms usimgentional processors on
typical medical data sets (e 256> voxels) are not interactive.

2.2 Graphics Processing Units

GPUs have been developed primarily for the computer ganmidgstry, but over the

last several years researchers have come to recognize théaw &ost, high perfor-

mance computing platforms. Two important trends in GPU kigraent, increased

programmability and higher precision arithmetic procegshave helped to foster new
non-gaming applications.

Graphics processors outperform central processing uBRdJE)—often by more
than an order of magnitude—because of trstieaming architecture and dedicated
high-speed memory. In the streaming model of computatimaya of input data are
processed identically by the same computatiemmel to produce output data streams.
The GPU takes advantage of the data-level parallelism @mtiém this model by having
many identical processors execute the computation inlparal

This paper presents a GPU computational model that supghartsmic, sparse grid
problems. These problems are difficult to solve efficientifhvicPUs for two reasons.
The first is that in order to take advantage of the GPU'’s palisith, the streams being
processed must be large, contiguous blocks of data, andjtltlpoints near the level-
set surface model must lpacked into a small number of textures. The second difficulty
is that the level set moves with each time step, and thus ttieedaepresentation must
readily adapt to the changing position of the model. Se®idescribes how our design
addresses these challenges.
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Fig. 2. (a) The modern graphics processor computation pipeline. (b) Timged method relies
on packing active tiles into 2D texture—a compressed format.
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3 System Design and Implementation
3.1 Interface and Usage

Our system consists of a graphical user interface (GUI)phegents the user with two
volume slices and a control panel. The first slice window ldigpthe current segmenta-
tion as a yellow line overlaid on top of the MRI data. The setslice viewing window
displays a visualization of the speed function that cleddiineates the positive and
negative regions. The GUI has controls for setting the tlfmee speed parameters, a
start/stop button to control the solver, and controls teshe 3D segmentation to file.
The user can query greyscale values in the MRI slice viewgcegate spherical surface
models. A screen shot of our interface is shown in Fig. 3.
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Fig. 3. The user interface of our segmentation application. The center windowssé slice of
the MRI volume overlaid with the current segmentation. The right windoplalys the sign of
the speed function.

3.2 GPU Level Set Solver Implementation

This section gives a high-level description of our GPU les&fl solver. A comprehen-
sive description is available in Lefohn et al. [9].

The efficient solution of the level-set PDEs relies on upagbtnly voxels that are
on or near the isosurface. The narrow band and sparse fieltbdgetchieve this by
operating on sequences of heterogeneous operations.Heksatrow band and sparse
field CPU-based solvers, our sparse GPU level-set solvepatasa only those voxels
near the isosurface. To run efficiently on GPUs, howeversolution must also have the
following characteristics: efficiently updated texturaskd data structures, scatter
write operations, and be highly data-parallel. We achiéese goals by decomposing
the volume into a set of small 2D tiles (elg x 16 pixels each). Only those tiles with
non-zero derivatives are stored on the GPU (Fig. 2b). Thetseetiles are packed, in an
arbitrary order, into a large 2D texture on the GPU. The 3@lleet PDE is computed
directly on this compressed format.

For each PDE time step update, the 3D neighborhoods of alpir the active
tiles must be sampled from the compressed 2D compressedtfdfor each active tile,
the CPU sends texture coordinates, i.e. memory addressi®e GPU for each of the
tiles that share a side or an edge in the 3D volume. Using teatf&re coordinates, the
GPU performs neighborhood lookups to produce the compédtefpartial derivatives
(finite differences) used for the gradient and curvaturewations, which are in turn
used to update values of



Interactive, GPU-Based Level Sets for 3D Segmentation

After the level-set embedding is updated, the GPU’s autmnmaipmapping capa-
bilities to create a bit vector image that summarizes theistaf each tile. Each pixel
in this coarse texture contains a bit code that identifielsaf tile, as well as any of its
six cardinal neighbors, need to be active for the next tirap.sthis small image< 64
kB) is read back by the CPU and used to update the data stegchat track the active
volume regions. The CPU then sends the texture coordinatesetices for the new
set of active tiles to the GPU, and the next PDE iteration mpmated.

This GPU-based level-set solver achieves a speedup of tiftegn times over a
highly-optimized, sparse-field, CPU-based solver. Alldienarks were run on an Intel
Xeon 1.7 GHz processor with 1 GB of RAM and an ATl Radeon 97@0&PU. For the
tumor segmentations performed in the user study, the GB8ebsolver ran at 60-70
time steps per second while the CPU version ran at 7-8 stegepend. The final steps
of the cerebral cortex segmentation shown in figure 5 ran spser second on the
GPU and 0.25 steps per second on the CPU.

4 User Study

The purpose of this study was to determine if our algorithm pgeoduce volumetric
delineations of brain tumor boundaries comparable to tdose by experts (e.g. radi-
ologists or neurosurgeons) using traditional hand-cairiguWe applied our method to
the problem of brain tumor segmentation using data fronmBitaén Tumor Segmenta-
tion Database, which is made available by the Harvard Medical School aBtgham
and Women’s Hospital (HBW) [1, 2]. The HBW database consitsrm3D 1.5T MRI
brain tumor patient datasets selected by a neurosurgeomeggesentative sampling
of a larger clinical database. For each of the ten cases #reralso four independent
expert hand segmentations of one randomly selectedi2®in the region of the tumor.

We chose nine cases for our study: three meningioma (caSgarid 6 low grade
glioma (4-6, 8-10). One case, number 7, was omitted becamgsielinspection showed
it that its intensity structure was too complicated to bensexgted by the proposed
tool—such a problem remains as future work, as we will diséasSection 5. We
performedno preprocessing on the data, and there are no hidden parameters in this
study—all parameters in our system were set by the userslitimeg as they interacted
with the data and the models.

Five users were selected from among the staff and studeats group and trained
briefly to use our software. We asked each user to delineatéuth 3D boundaries
of the tumor in each of the nine selected cases. We set no itiniteon the users and
recorded their time to complete each tumor. None of our usere experts in reading
radiological data. It was not our intention to test for tumecognition (tissue classi-
fication), but rather to test whether parameters could bected for our algorithm to
produce a segmentation which mimics those done by the exg@@ricontrol for tumor
recognition, we allowed each user to refer to a single stimmfan expert segmentation.
Users were told to treat this hand segmentation slice asdedar understanding the
difference between tumor and non-tumor tissue. Our assamigtthat an expert would
not need such an example.
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4.1 Metrics

We consider three factors in evaluating our segmentatighodd10]: validity of the re-
sults (accuracy), reproducibility of the results (premmi and efficiency of the method
(time). To quantify accuracy we established a ground tredmfthe expert segmented
slices using the STAPLE method [11]. This method is essigntissophisticated aver-
aging scheme that accounts for systematic biases in thevibelo experts in order to
generate a fuzzy ground truthl{) as well as sensitivity and specificity paramaters (
andgq respectively) for each expert and each case. The grourddegimentation values
for each case are represented as an image of values betweemdene that indicates
the probability of each pixel being in the tumor. Each subgamerates a binary seg-
mentation which, compared against the ground truth, gieéses to obtaimp andqg for
that subject. For our analysis we also considered a thirdienédtal correct fraction
which is the total number of correctly classified pixels (@reed byl1') as a percentage
of the total size of the image.

To assess interoperator precision in segmentations, we theemetric proposed
by [10], which consists of pairwise comparisons of the aaatify of the intersection
of the positive classifications divided by the cardinalifytiee union of positive clas-
sifications. To analyze efficiency, we calculated the avetatpl time (user time plus
processing time) taken for a segmentation.

4.2 Results

For a typical segmentation of a tumor using our tool a usenliscthrough slices until
they find the location of the tumor. With a mouse, the userigaentensity values in
the tumor and sets initial values for the parameferand e based on those intensity
values. They initialize a sphere near or within the tumor anitiate deformation of
that spherical model. As the model deforms the user sctuitaigh slices, observing
its behavior and modifying parameters. Using the immedeeback they get on the
behavior of the model, they continue modifying parametet# the model boundaries
appear to align with those of the tumor. In a typical 5 min@ssson, a user will modify
the model parameters between 10 and 30 times.

Figure 4 shows graphs of average;, andc values for the experts and the users in
our study. Error bars represent the standard deviationsech$sociated values for the
experts and the users in our study.
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Fig. 4. Results from the user study in compare with expert hand contouringlrameoverall
comparable performance with a tendency to underestimate the regionarf tu

The performance of the experts and our users varies casesby loat in almost
all cases the performance of our users was within the rangeidérmances of the
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experts. The average correct fraction of our users wasrlib#ie the experts in 4 out of
9 cases. A general trend is that our users tended to undeagstihe tumor relative to
the experts, as indicated by lower valuegofhis is consistent with our experiences
with hand segmentations and level set models— with handocoing users tend to
overestimate structures, and with level sets the curvagune tends to reduce the size
of convex structures.

The segmentations in our study show a substantially higkgred of precision
than the expert hand segmentations. Mean precision [10%aell users and cases was
94.04% =+ 0.04% while the mean precision across all experts and caseS65% +
0.07%. Regarding efficiency, the average time to complete a segtiem (all users, all
cases) was + 3minutes. Only5% — 10% of this time is spent processing the level-set
surface. This compares favorably with the 3-5 hours reduive a typical 3D segmen-
tation done by hand.

Fig.5. (&) An expert hand segmentation of a tumor from the HBW databasess$igwificant
inter-slice artifacts. (b) A 3D segmentation of the same tumor from oneeo$tibjects in our
study. (c) A segmentation of the cerebral cortex from a 256 x 256 xMRbvolume using the
same tool took 6 minutes.

The accuracy and precision of subjects using our tool coegpaell with the au-
tomated brain tumor segmentation results of Kaus, et al.Whp use a superset of
the same data used in our study. They report an average tuooleme fraction of
99.68% =+ 0.29%, while the average correct volume fraction of our users 99a83% +
0.13%. Their method required similar average operator times)(&ihutes), but unlike
the proposed method their classification approach reqairbgdequent processing times
of approximately 75 minutes. That method, like many othgnsentation methods dis-
cussed in the literature, includes a number of hidden pagasjevhich were not part
of their analysis of timing or performance.

The metrics requiring ground truth were computed on onlynglsi2D slice, which
was extracted from the 3D segmentations, because of theityoalr expert data. Our
experience is that computer-aided segmentation toolemenfelatively better for 3D
segmentations because the hand contours typically show sfgnter-slice inconsisten-
cies and fatigue. Figures 5a—b show a segmentation by amtexjtie hand contouring
compared with a segmentation done by one of our subjectseSaraptured movies of
a user interacting with our system are available online 2t [1

5 Summary and Conclusions

A careful implementation of a sparse level-set solver on b @Rvides a new tool for
interactive 3D segmentation. Users can manipulate separamaters simultaneously
in order to find a set of values that are appropriate for ap#er segmentation task.
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The quantitative results of using this tool for brain tumegmentation suggest that it is
compares well with hand contouring and state-of-the-adraated methods. However,
the tool as built and tested is quite general, and it has ndelnigharameters. Thus, the
same tool can be used to segment other anatomy (e.g. Figure 5¢

The current limitations are mostly in the speed functiontiwednterface. The speed
function used in this paper is quite simple and easily ex@édndithin the current frame-
work, to include image edges, more complicated greyscaifigs, and vector-valued
data.
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