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Abstract. While level sets have demonstrated a great potential for 3D medical
image segmentation, their usefulness has been limited by two problems. First,
3D level sets are relatively slow to compute. Second, their formulation usually
entails several free parameters which can be very difficult to correctlytune for
specific applications. This paper presents a tool for 3D segmentation thatrelies
on level-set surface models computed at interactive rates on commoditygraphics
cards (GPUs). The interactive rates for solving the level-set PDE givethe user
immediate feedback on the parameter settings, and thus users can tune three sep-
arate parameters and control the shape of the model in real time. We have found
that this interactivity enables users to produce good, reliable segmentation, as
supported by qualitative and quantitative results.

1 Introduction

This paper describes a new, general-purpose segmentation tool that relies on interac-
tive deformable models implemented as level sets. While level sets have demonstrated
a great potential for 3D medical image segmentation, their usefulness has been limited
by slow computation times combined with intensive parameter tuning. The proposed
tool updates a level-set surface model at interactive rateson commodity graphics cards
(GPUs), such as those that are commonly found on consumer-level personal comput-
ers. We demonstrate the effectiveness of this tool by a quantitative comparison to a
specialized tool and the associated gold standard for a specific problem: brain tumor
segmentation [1, 2]. This paper make the following contributions:

– A 3D segmentation tool that uses a new level-set deformationsolver to achieve
interactive rates (approximately 15 times faster than previous solutions).

– A mapping of the sparse, level-set computation to a GPU, a newnumerical scheme
for retaining a thin band structure in the solution, and a novel technique for dynamic
memory management between the CPU and GPU.

– Quantitative and qualitative evidence that interactive level-set models are effective
for brain tumor segmentation.

2 Background and Related Work

2.1 Level Sets

This paper relies on an implicit representation of deformable surface models called the
method oflevel sets. The use of level sets has been widely documented in the medical
imaging literature, and several works give more comprehensive reviews of the method
and the associated numerical techniques [3]. Here we merelyreview the notation and
describe the particular formulation that is relevant to this paper.

An implicit model is a surface representation in which the surface consists of all
pointsS = {x̄|φ(x̄) = 0}, whereφ : <3 7→ <. Level-set methods relate the motion of
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that surface to a PDE on the volume, i.e.∂φ/∂t = −∇φ · v̄(t), wherev̄(t) describes
the point-wise velocity of the surface. Within this framework one can implement a wide
range of deformations by defining an appropriatev̄. For segmentation, the velocity often
consists of a combination of two terms [4, 5]

∂φ

∂t
= |∇φ|

[

αD(x̄) + (1 − α)∇ ·
∇φ

|∇φ|

]

, (1)

whereD is a data term that forces the model toward desirable features in the input data,
the term∇ · (∇φ/|∇φ|) is the mean curvature of the surface, which forces the surface
to have less area (and remain smooth), andα ∈ [0, 1] is a free parameter that controls
the degree of smoothness in the solution.

The behavior of the model is mostly characterized by the dataterm and how it relates
to the image. Invariably, the data term introduces free parameters, and the proper tuning
of those parameters, along withα, is critical to making the model behave in a desirable
manner.

For the work in this paper we have chosen a very simple speed function to demon-
strate the effectiveness ofinteractivity in level-set solvers. The speed function at any
one point is based solely on the input intensityI at that point:

D(I) = ε − |I − T |, (2)

whereT controls the brightness of the region to be segmented andε controls the range
of greyscale values aroundT that could be considered inside the object. Thus when
the model lies on a voxel with a greyscale level betweenT − ε andT + ε, the model
expands and otherwise it contracts. The speed term is gradual, and thus the effects of
D diminish as the model approaches the boundaries of regions whose greyscale levels
lie within theT ± ε range. Even with this simple scheme a user would have to specify
three different parameters,T , ε, andα, as well as an initialization. This speed term is a
simple approximation to a one-dimensional statistical classifier, which assumes a single
density (with noise) for the regions of interest.
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Fig. 1. (a) A speed function based on image intensity causes the model to expandover regions
with greyscale values within the specified range and contract otherwise. (b) Efficient implemen-
tations of level sets entail computing the solution only near the moving wavefront.

If a user were to initialize a model in a volume and use the speed term in eq (2)
without the curvature term the results would be virtually the same as a simple flood fill
over the region bounded by the upper and lower thresholds. However, the inclusion of
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the curvature term alleviates the criticalleaking problem that arises when using flood
filling as a segmentation technique.

The purpose of this paper is not to advocate for any one level-set formulation or
speed function, but rather to address an issue that is relevant to virtually all level-set
segmentation strategies; that is, a good segmentation depends on a proper specification
of free parameters and the initialization.

Solving level-set PDEs on a volume requires proper numerical schemes [6] and en-
tails a significant computational burden. Stability requires that the surface can progress
at most a distance of one voxel at each iteration, and thus a large number of iterations
are required to compute significant deformations. Efficientalgorithms for solving the
general level-set equations rely on the observation that atany one time step the only
parts of the solution that are important are those adjacent to the moving surface (near
points whereφ = 0). In light of this several authors [7, 8] have proposed numerical
schemes that compute solutions for only those voxels that lie in a small number of lay-
ers adjacent to the surface as shown in Figure 1b. However, even with a narrow band
of computation, updates rates with these algorithms using conventional processors on
typical medical data sets (e.g.2563 voxels) are not interactive.
2.2 Graphics Processing Units
GPUs have been developed primarily for the computer gaming industry, but over the
last several years researchers have come to recognize them as low cost, high perfor-
mance computing platforms. Two important trends in GPU development, increased
programmability and higher precision arithmetic processing, have helped to foster new
non-gaming applications.

Graphics processors outperform central processing units (CPUs)—often by more
than an order of magnitude—because of theirstreaming architecture and dedicated
high-speed memory. In the streaming model of computation, arrays of input data are
processed identically by the same computationkernel to produce output data streams.
The GPU takes advantage of the data-level parallelism inherent in this model by having
many identical processors execute the computation in parallel.

This paper presents a GPU computational model that supportsdynamic, sparse grid
problems. These problems are difficult to solve efficiently with GPUs for two reasons.
The first is that in order to take advantage of the GPU’s parallelism, the streams being
processed must be large, contiguous blocks of data, and thusgrid points near the level-
set surface model must bepacked into a small number of textures. The second difficulty
is that the level set moves with each time step, and thus the packed representation must
readily adapt to the changing position of the model. Section3 describes how our design
addresses these challenges.

Fig. 2. (a) The modern graphics processor computation pipeline. (b) The proposed method relies
on packing active tiles into 2D texture—a compressed format.
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3 System Design and Implementation

3.1 Interface and Usage

Our system consists of a graphical user interface (GUI) thatpresents the user with two
volume slices and a control panel. The first slice window displays the current segmenta-
tion as a yellow line overlaid on top of the MRI data. The second slice viewing window
displays a visualization of the speed function that clearlydelineates the positive and
negative regions. The GUI has controls for setting the threefree speed parameters, a
start/stop button to control the solver, and controls to save the 3D segmentation to file.
The user can query greyscale values in the MRI slice viewer and create spherical surface
models. A screen shot of our interface is shown in Fig. 3.

Fig. 3. The user interface of our segmentation application. The center window shows a slice of
the MRI volume overlaid with the current segmentation. The right window displays the sign of
the speed function.

3.2 GPU Level Set Solver Implementation

This section gives a high-level description of our GPU level-set solver. A comprehen-
sive description is available in Lefohn et al. [9].

The efficient solution of the level-set PDEs relies on updating only voxels that are
on or near the isosurface. The narrow band and sparse field methods achieve this by
operating on sequences of heterogeneous operations. Like the narrow band and sparse
field CPU-based solvers, our sparse GPU level-set solver computes only those voxels
near the isosurface. To run efficiently on GPUs, however, oursolution must also have the
following characteristics: efficiently updated texture-based data structures, noscatter
write operations, and be highly data-parallel. We achieve these goals by decomposing
the volume into a set of small 2D tiles (e.g.16 × 16 pixels each). Only those tiles with
non-zero derivatives are stored on the GPU (Fig. 2b). Theseactive tiles are packed, in an
arbitrary order, into a large 2D texture on the GPU. The 3D level-set PDE is computed
directly on this compressed format.

For each PDE time step update, the 3D neighborhoods of all pixels in the active
tiles must be sampled from the compressed 2D compressed format. For each active tile,
the CPU sends texture coordinates, i.e. memory addresses, to the GPU for each of the
tiles that share a side or an edge in the 3D volume. Using thesetexture coordinates, the
GPU performs neighborhood lookups to produce the complete set of partial derivatives
(finite differences) used for the gradient and curvature calculations, which are in turn
used to update values ofφ.
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After the level-set embedding is updated, the GPU’s automatic mipmapping capa-
bilities to create a bit vector image that summarizes the status of each tile. Each pixel
in this coarse texture contains a bit code that identifies if that tile, as well as any of its
six cardinal neighbors, need to be active for the next time step. This small image (< 64
kB) is read back by the CPU and used to update the data structures that track the active
volume regions. The CPU then sends the texture coordinates and vertices for the new
set of active tiles to the GPU, and the next PDE iteration is computed.

This GPU-based level-set solver achieves a speedup of ten tofifteen times over a
highly-optimized, sparse-field, CPU-based solver. All benchmarks were run on an Intel
Xeon 1.7 GHz processor with 1 GB of RAM and an ATI Radeon 9700 Pro GPU. For the
tumor segmentations performed in the user study, the GPU-based solver ran at 60-70
time steps per second while the CPU version ran at 7-8 steps per second. The final steps
of the cerebral cortex segmentation shown in figure 5 ran at 4 steps per second on the
GPU and 0.25 steps per second on the CPU.

4 User Study

The purpose of this study was to determine if our algorithm can produce volumetric
delineations of brain tumor boundaries comparable to thosedone by experts (e.g. radi-
ologists or neurosurgeons) using traditional hand-contouring. We applied our method to
the problem of brain tumor segmentation using data from theBrain Tumor Segmenta-
tion Database, which is made available by the Harvard Medical School at theBrigham
and Women’s Hospital (HBW) [1, 2]. The HBW database consists of ten 3D 1.5T MRI
brain tumor patient datasets selected by a neurosurgeon as arepresentative sampling
of a larger clinical database. For each of the ten cases, there are also four independent
expert hand segmentations of one randomly selected 2Dslice in the region of the tumor.

We chose nine cases for our study: three meningioma (cases 1-3) and 6 low grade
glioma (4-6, 8-10). One case, number 7, was omitted because aquick inspection showed
it that its intensity structure was too complicated to be segmented by the proposed
tool—such a problem remains as future work, as we will discussin Section 5. We
performedno preprocessing on the data, and there are no hidden parameters in this
study—all parameters in our system were set by the users in real time, as they interacted
with the data and the models.

Five users were selected from among the staff and students inour group and trained
briefly to use our software. We asked each user to delineate the full, 3D boundaries
of the tumor in each of the nine selected cases. We set no time limit on the users and
recorded their time to complete each tumor. None of our userswere experts in reading
radiological data. It was not our intention to test for tumorrecognition (tissue classi-
fication), but rather to test whether parameters could be selected for our algorithm to
produce a segmentation which mimics those done by the experts. To control for tumor
recognition, we allowed each user to refer to a single slice from an expert segmentation.
Users were told to treat this hand segmentation slice as a guide for understanding the
difference between tumor and non-tumor tissue. Our assumption is that an expert would
not need such an example.
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4.1 Metrics

We consider three factors in evaluating our segmentation method [10]: validity of the re-
sults (accuracy), reproducibility of the results (precision), and efficiency of the method
(time). To quantify accuracy we established a ground truth from the expert segmented
slices using the STAPLE method [11]. This method is essentially a sophisticated aver-
aging scheme that accounts for systematic biases in the behavior of experts in order to
generate a fuzzy ground truth (W ) as well as sensitivity and specificity paramaters (p
andq respectively) for each expert and each case. The ground truth segmentation values
for each case are represented as an image of values between zero and one that indicates
the probability of each pixel being in the tumor. Each subject generates a binary seg-
mentation which, compared against the ground truth, gives values to obtainp andq for
that subject. For our analysis we also considered a third metric, total correct fraction
which is the total number of correctly classified pixels (weighted byW ) as a percentage
of the total size of the image.

To assess interoperator precision in segmentations, we used the metric proposed
by [10], which consists of pairwise comparisons of the cardinality of the intersection
of the positive classifications divided by the cardinality of the union of positive clas-
sifications. To analyze efficiency, we calculated the average total time (user time plus
processing time) taken for a segmentation.

4.2 Results

For a typical segmentation of a tumor using our tool a user scrolls through slices until
they find the location of the tumor. With a mouse, the user queries intensity values in
the tumor and sets initial values for the parametersT andε based on those intensity
values. They initialize a sphere near or within the tumor andinitiate deformation of
that spherical model. As the model deforms the user scrolls through slices, observing
its behavior and modifying parameters. Using the immediatefeedback they get on the
behavior of the model, they continue modifying parameters until the model boundaries
appear to align with those of the tumor. In a typical 5 minute session, a user will modify
the model parameters between 10 and 30 times.

Figure 4 shows graphs of averagep, q, andc values for the experts and the users in
our study. Error bars represent the standard deviations of the associated values for the
experts and the users in our study.
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Fig. 4. Results from the user study in compare with expert hand contouring reveal an overall
comparable performance with a tendency to underestimate the region of tumor.

The performance of the experts and our users varies case by case, but in almost
all cases the performance of our users was within the range ofperformances of the



Interactive, GPU-Based Level Sets for 3D Segmentation

experts. The average correct fraction of our users was better than the experts in 4 out of
9 cases. A general trend is that our users tended to underestimate the tumor relative to
the experts, as indicated by lower values ofp. This is consistent with our experiences
with hand segmentations and level set models— with hand contouring users tend to
overestimate structures, and with level sets the curvatureterm tends to reduce the size
of convex structures.

The segmentations in our study show a substantially higher degree of precision
than the expert hand segmentations. Mean precision [10] across all users and cases was
94.04% ± 0.04% while the mean precision across all experts and cases was82.65% ±
0.07%. Regarding efficiency, the average time to complete a segmentation (all users, all
cases) was6 ± 3minutes. Only5% − 10% of this time is spent processing the level-set
surface. This compares favorably with the 3-5 hours required for a typical 3D segmen-
tation done by hand.

(a) (b) (c)

Fig. 5. (a) An expert hand segmentation of a tumor from the HBW database shows significant
inter-slice artifacts. (b) A 3D segmentation of the same tumor from one of the subjects in our
study. (c) A segmentation of the cerebral cortex from a 256 x 256 x 175MRI volume using the
same tool took 6 minutes.

The accuracy and precision of subjects using our tool compares well with the au-
tomated brain tumor segmentation results of Kaus, et al. [1], who use a superset of
the same data used in our study. They report an average correct volume fraction of
99.68%±0.29%, while the average correct volume fraction of our users was99.78%±
0.13%. Their method required similar average operator times (5-10 minutes), but unlike
the proposed method their classification approach requiredsubsequent processing times
of approximately 75 minutes. That method, like many other segmentation methods dis-
cussed in the literature, includes a number of hidden parameters, which were not part
of their analysis of timing or performance.

The metrics requiring ground truth were computed on only a single 2D slice, which
was extracted from the 3D segmentations, because of the scarcity of expert data. Our
experience is that computer-aided segmentation tools perform relatively better for 3D
segmentations because the hand contours typically show signs of inter-slice inconsisten-
cies and fatigue. Figures 5a–b show a segmentation by an expert with hand contouring
compared with a segmentation done by one of our subjects. Screen-captured movies of
a user interacting with our system are available online at [12].

5 Summary and Conclusions

A careful implementation of a sparse level-set solver on a GPU provides a new tool for
interactive 3D segmentation. Users can manipulate severalparamaters simultaneously
in order to find a set of values that are appropriate for a particular segmentation task.
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The quantitative results of using this tool for brain tumor segmentation suggest that it is
compares well with hand contouring and state-of-the-art automated methods. However,
the tool as built and tested is quite general, and it has no hidden parameters. Thus, the
same tool can be used to segment other anatomy (e.g. Figure 5c).

The current limitations are mostly in the speed function andthe interface. The speed
function used in this paper is quite simple and easily extended, within the current frame-
work, to include image edges, more complicated greyscale profiles, and vector-valued
data.
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