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Abstract

This work introduces a technique for interactive walk-throughs of non-photorealistically rendered (NPR) scenes
using three-dimensional (3D) line primitives to define architectural features of the model, as well as indicate
textural qualities. Line primitives are not typically used in this manner in favour of texture mapping techniques
which can encapsulate a great deal of information in a single texture map, and take advantage of GPU optimizations
Jfor accelerated rendering. However, texture mapped images may not maintain the visual quality or aesthetic appeal
that is possible when using 3D lines to simulate NPR scenes such as hand-drawn illustrations or architectural
renderings. In addition, line textures can be modified interactively, for instance changing the sketchy quality of
the lines. The technique introduced here extracts feature edges from a model, and using these edges, generates
a reduced set of line textures which indicate material properties while maintaining interactive frame rates. A
clipping algorithm is presented to enable 3D lines to reside only in the interior of the 3D model without exposing
the underlying triangulated mesh. The resulting system produces interactive illustrations with high visual quality

that are free from animation artifacts.

Keywords: non-photorealistically rendered images, textual quality, 3-D lines

ACM CCS: 1.3.3 [Computer Graphics]: Display Algorithms.

1. Introduction

Presentation graphics are communicative illustrations often
employed by architects and other design professionals to ex-
press not only the features of a design or model, but also infor-
mative aspects such as material property, confidence or com-
pletion levels, and other important characteristics. These il-
lustrations typically avoid the factual connotations associated
with realistic imagery and instead use rendering styles that
align better with the conceptual ideas being expressed. Im-
ages that resemble photographs are often interpreted as com-
plete and unchangeable, while loose, sketchy illustrations
can express malleable characteristics of a model or design
[MS98]. The degree of looseness of rendered lines is often as-
sociated with the variation of characteristics within a model.
This line ‘sketchiness’ can vary within a single image, visu-
ally revealing the change of a model attribute, and quickly
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expressing a great amount of information in a concise and
compact way. An example of such an illustration can be seen
in the archaeological reconstruction shown in Figure 1 which
uses our technique to automatically place feature and texture
lines on the model (Figure 2), and allows a user to modify the
line characteristics while walking through the scene at inter-
active frame rates. In this illustration, the sketchiness of the
feature edges and material property lines is modified based
on the confidence of the specific areas of the reconstruction.
Thus, the base of the Mayan Temple is rendered with straight,
clean lines because this area of the model has the highest con-
fidence level, while the hut at the top has a very low level
of confidence and is rendered with loose, sketchy lines, and
does not have any textural detail. The methods presented
in this paper use three-dimensional (3D) line primitives
rather than traditional texture mapping in order to maintain
high visual line quality, allow real-time modification of line
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Figure 1: An example illustration from an interactive ses-
sion of an archaeological reconstruction with the sketchiness
of the line primitives varied according to the level of confi-
dence in the data. The base of the structure is rendered using
clean lines, the midsection is rendered with a sketchy line
texture, and the ‘top hut’ is a matter of conjecture and is
rendered without texture and faint, sketchy feature lines.
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Figure 2: Examples of textures possible with the system.
From top left, clockwise: thatch, shingles, stucco, siding.

characteristics and automatically generate vector illustrations
from within an interactive walk-through of the scene.

When creating an interactive line drawing system, the fol-

lowing important characteristics must be considered:

1. high visual quality of individual frames;

2. animation free of dynamic artifacts, such as popping;

3. high frame rate; and

4. ability to directly create manipulatable two-
dimensional (2D) illustrations.

The first two items suggest using 3D line primitives, as
they can be anti-aliased in screen space, thus producing high
visual quality. In addition, line primitives do not need level-
of-detail management to maintain constant width or bright-
ness in screen space. However, it is natural to think that the
interior lines should be rendered using texture mapping for
efficiency. Indeed, texture mapping has been used effectively
to accomplish interior line rendering by others [FMSO1],
who used careful generation of MIP mapped line textures to
avoid dynamic artifacts. Unfortunately, this technique makes
the line textures static, so line sketchiness cannot be varied at
runtime. Also, texture mapping does not allow for the direct
creation of 2D illustrations. Our method directly generates
postscript illustrations in which each texture and feature line
can be manipulated after creation.

The question remains whether 3D line primitives can be
used while maintaining an interactive frame rate. Although
lines are not used in most graphics programs, they are highly
optimized by hardware makers because of the CAD mar-
ket. Using lines directly has several advantages over texture

mapping:

1. Line primitives can be anti-aliased without a multi-pass
algorithm.

2. Line primitives can have their sketchiness varied at run-
time by perturbing vertices in a vertex program.

3. Line primitives preserve their width in screen space
even for extreme close-ups.

The last item could be viewed as an advantage or a disad-
vantage depending on one’s priorities; having constant width
lines in screen-space makes for a clean drawing reminiscent
of the type drawn by human draftsmen, but exchanges line-
width depth cues for line-density depth cues, which can be
visually distracting.

This paper’s main contributions are creating a system that
allows for the automatic placement of texture across a model,
the interactive manipulation of viewpoint in a 3D scene, and
the creation of 2D vector illustrations. The success of the
system demonstrates that high frame rates can be achieved
using line primitives in scenes of realistic complexity. An
algorithm is provided to automatically place line textures on
objects in order to perform material property ‘indication’,
i.e. a small number of texture elements indicates the material
properties of the entire surface. Finally, we show that an in-
teractive system using 3D lines is relatively simple to design
and build, making line primitives a practical alternative to
texture mapping with respect to software engineering as well
as efficiency issues.
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2. Background

The style of illustration used to create an image has a pro-
found effect on the interpretation of that image [SPR*94].
Photographic images, like the ones traditionally generated
by computers, give the sense that the scene is complete and
unchangeable, not inviting discussions about design, or indi-
cating the actual confidence level of the underlying model.
Conversely, hand-drawn illustrations have a transient qual-
ity, so the viewer is more comfortable talking about modi-
fications to the scene [SSRL96], and is often more actively
engaged with the image. Because of the difference in the ef-
fect of rendering style, determining which style to use is very
important. It is also possible to use multiple styles within a
single image, allowing for differing interpretations across the
image [SMI99].

In addition to decisions on rendering style, specific fea-
tures of a scene must be identified in order to create a
communicative illustration. Feature lines such as silhouettes,
creases, boundary and contour edges aid in the understanding
of geometric shape and should be accented [SFWS03, ST90].
Likewise, how these lines are accented, as well as how other
lines in the illustration appear is critical. For instance, in line
drawings, the type of line, such as dashed, dotted, thick or
thin, can express direction, distance and location, and end
conditions can convey the relation of the line with respect
to other lines and surfaces in the scene [DC90]. Such con-
ventions are standard in hand-drawn illustrations, and can be
adopted for use in computer generated imagery.

Translating artistic techniques from the human hand to a
computer process requires that inherent characteristics of the
traditional media be explicitly defined. There has been much
work in simulating charcoal, ink, watercolour, and other artis-
tic media on the computer [GGO1, SS02]. These methods
simulate the variations in thickness, waviness, weight and
direction of the marks left by the media, as well as their
interaction with paper or canvas. Typically, the strokes left
by artistic techniques are texture mapped onto the model.
Alternatively, actual geometry can be used in the form of
graftals, a method which randomly places particles across
a surface, from which artistic details can ‘grow’ [KGCO00,
KMN*99, MMK*00]. While the physical simulation of the
physical properties of artistic media is challenging, an even
harder problem is simulating the artistic hand.

It is very difficult to completely automate where an artist
places strokes, and most systems rely on human interac-
tion to aid in the generation of illustrations. For example,
[KMM*02] uses an almost completely manual approach
for placing lines. In contrast, in work by Salisbury et al.
[SABS94, SWHS97], the user controls where collections of
strokes are placed on a model by ‘painting’ on areas of in-
terest. The Piranesi system [RS95, Sch96] allows users to
paint artistic effects onto CAD models, creating images that
are closer to the images handmade by architectural design-

ers. The SKETCH system [ZHH96] uses gestural input as a
method for modelling, simulating the artist sketching out a
preliminary design on paper. Dollner and Walther [DWO03]
create a system that uses not only non-photorealistically ren-
dered (NPR) techniques, but also cartographic and cognitive
principles to render 3D city models with enhanced feature
edges, two- or three-tone shading, texture mapped details and
simulated shadows. These types of systems aid in creating
images that maintain a human quality and allow for computer
specific additions such as walk-throughs and interactive re-
visions.

Many interactive NPR algorithms suffer from a lack of
frame-to-frame coherence in which the texture or geometry
used to express the artistic detail pops in or out of the scene,
or the strokes do not match up from one frame to another.
This problem arises from the fact that the artistic techniques
being simulated are meant to be seen as a single instance,
rather than in repetition. Solutions to this problem involve
fading detail into the background [MMK*00], or variations
on texture and MIP mapping techniques [PHWFO1]. Texture
mapping hardware can be used to maintain tone and detail
via hatch and ink maps [FMS01], as well as to add fine tone
control and reduce aliasing artifacts [WPFH02]. Maintaining
coherence in an image based approach can be done by using
art maps which maintain the width of NPR strokes in the
scene, and rip maps eliminate artifacts that occur at oblique
viewing angles [KLK*00].

The approach presented in this paper is novel in its use of
3D line primitives as an alternative to texture mapping. Line
primitives have an advantage in that they maintain constant
screen space throughout an interactive session, and require
no special algorithms to preserve frame-to-frame coherence.
Feature edges and texture are expressed through the place-
ment of the 3D lines which is done automatically. Similar to
the approach by [WS94], texture lines are placed densely so
as to accent feature edges, and sparsely across the rest of the
model to ‘indicate’ the texture. To create a hand-drawn qual-
ity and describe confidence levels in the underlying model,
the endpoints of the lines can be interactively perturbed using
graphics hardware, a feature that is difficult to achieve using
texture mapping. Another benefit of using 3D line primi-
tives to express model boundaries, features and texture is the
ability to output 2D vector illustrations, allowing for scale,
resolution and display independent reproduction [SALS96].

3. Algorithm

The algorithm presented here to create renderings with tex-
ture indicated by 3D lines consists of pre-processing the
model to find important edges, determining the placement of
and laying the texture, and finally, clipping the texture to the
model. New techniques include using 3D lines as an alterna-
tive to texture mapping, automating the indication of texture
such that texture is minimized and placed sparsely across the
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model as well as along important edges, and creating sketchy
lines through vertex programs. The system uses simple algo-
rithms and currently supports a variety of textures typically
found in an architectural setting such as bricks, stone work,
shingles, thatch, stucco and siding. These types of textures
are fairly regular due to the application; however, more ran-
dom materials can easily be supported [Miy90, Yes79].

3.1. Feature edge detection

An important cue to understanding the shape of an archi-
tectural model is emphasizing feature edges [ST90]. These
edges include outlines separating the model from space,
creases distinguishing interior features, and boundaries be-
tween materials (Figure 3). To find feature edges in the tri-
angulated mesh used to represent the model, the model is
first divided into material groups such as bricks or grass. The
test for outlines and material boundaries is then simplified
into a brute force search for edges contained in only a single
polygon. Because the texture generation algorithm is a pre-
process, a brute force search for features lines is acceptable
in that it is simple and robust. However, there are numerous
feature edge detection algorithms which could be employed
to speed the identification of edges, as well as allow edge
detection on the fly, and this is left to future work.

The search for crease edges identifies edges that adjoin
two polygons whose surface normals have a dihedral angle
greater than 6, for some threshold value of 6. The feature
edges are then explicitly drawn with a 3D line and texture is
placed at a higher density close to these important areas as
illustrated in Figure 3.

Because the feature edge and texture generation algo-
rithms are designed as pre-processes, view-dependent silhou-
ette edges (i.e. edges between front facing and back facing
polygons) are not accented with texture. This raises prob-
lems for models, such as the one shown in Figure 4 that have
border edges that can only be defined as silhouettes. In such
models, texture is not populated or clipped about silhouette
feature edges, which does not emphasize the feature edge
and texture can possibly lie outside of the model. Moving
the texture generation process to runtime would allow silhou-
ette lines to be treated as stationary feature edges; however,
the texture lines would need to be recalculated each time the
viewpoint changed, leading to disturbing artifacts between
frames. While there is no obvious solution to the texturing
problem, 3D silhouette edges can be added as a hardware
process at runtime, as shown in Figure 4, right, aiding in the
comprehension of such models.

3.2. Texture generation

Line texture synthesis across interior surfaces is carried out
according to a heuristic that thresholds Perlin solid noise
[Per85] to place clusters of texture based on the texture coor-

J
10

Figure 3: Texture is increased around crease and boundary
edges to enhance the features of the model.

Figure 4: A model with silhouette feature edges. Since the
texturing algorithm is a pre-process, texture is neither pop-
ulated nor clipped against silhouette edges (left). Adding
silhouette edges aides in the understanding of the model,
without needing to modify the texture algorithm.

dinates of the input model. An atomic texture element (e.g. a
single brick or blade of grass) is placed on the triangle if the
function

1+3x N(kx, ky, kz)
2

is above a threshold, (where N is the Perlin function).
This function gives a uniformly random distribution of tex-
ture without excessive accumulations or concentrations. The
threshold can be changed to allow more or less texture on
any portion of a model.

The algorithm for texture placement iterates through the
texture space of the model, calculating the noise function at
each location where texture would be placed for full coverage
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Figure 5: The texture generation process. Top left: texture
is placed along feature edges. Top right: atomic texture el-
ements are placed based on Perlin noise. Bottom left: tex-
ture is clustered about the atomic elements. Bottom right: a
complete textured cube with clipping (note: due to random
selection of texture library elements, actual texture element
placement varies).

of texture on the model. If the noise function returns a value
indicating that the location should be textured, the texture
lines corresponding to an atomic texture element are trans-
formed into model space. Feature edges are embedded into
the noise function such that the return value always indicates
that these areas should be textured. The top two images in
Figure 5 demonstrate this initial texture placement. On the
left, texture is placed along the feature edges; on the right
atomic texture elements (in red) are placed throughout the
interior of the model.

Once an atomic texture element is placed, a texture cluster
is populated around it. A texture cluster is a pleasing group
of texture elements. The aesthetic quality of these group-
ings is critical to creating a good image. While automatic
generation is possible, we have found that the criteria for
what makes a good texture cluster are not obvious. Thus,
we have created a library of human generated clusters that
are reused. The bottom images in Figure 5 show the final
stages of texture placement. On the left, texture is clustered
around atomic elements, and on the right is the final, clipped
result, with enough texture added to pleasingly cover the
surface. A side effect of the texture library is the repetition
of texture elements, especially in very regular textures such
as brick. This occurs when the texture clusters generated by
the library place texture elements on top of already placed
texture. The drawback is that this increases the line count,

and may affect performance; however, this does not occur on
random textures such as the grass, which make up the bulk
of texture lines. While these repetitive lines can easily be
removed through a pre-process sort, we have chosen to keep
the duplicate lines, because they are perturbed independently
when the sketchiness is increased. This results in a quality
that more closely resembles hand-drawn, because an artist
will often draw repetitive lines when sketching.

4. Texture Clipping

Following the placement of the texture lines on the model,
all lines are clipped against the crease and boundary edges of
the model. Clipping against the feature edges maintains the
unity of the model, while clipping against single triangles
would reveal the underlying triangulation. Thus, clipping
is performed after all texture has been generated. However,
clipping 3D lines against the 3D feature edges is not a trivial
task.

The algorithm to clip texture along feature edges can be
broken into two steps. First, all texture lines that are com-
pletely outside of the model are removed. Second, the re-
maining texture lines are clipped against the feature edges.

4.1. Outside line removal

The main goal of the texturing algorithm is to maintain visu-
ally appealing texture across the model. To hide the triangu-
lation of the underlying representation, texture lines extend
across the boundaries of the generating triangle and are of-
ten drawn completely outside of the model. These exterior
lines will not be removed by the clipping algorithm because
they do not intersect any feature edges. Instead, every texture
line must be tested against every triangle in the model to
determine if either endpoint is contained by the model.

The first step in removing outside edges is to find the
distance d, from the texture line segment [ = /,/;, to the
current triangle with vertices (¢,, ¢, ), and normal N:

d:min<(la_ta)'N’(lb_ta)'N)' (1)
[N [N

If the distance is close to zero, the endpoints of the texture
line are projected onto the plane of the triangle, by first
creating two directed lines from the endpoints of the texture
line pointing in the direction of the triangle normal. Each of
these directed lines, w;, and wj,, are intersected with the plane
of the triangle described by the triangle normal, N, and some
point in the triangle, p:

_ (p—wy) N
T (wp—w,) N’

The u value is the parametric location of the intersection point
on the line, w. The actual intersection point can be found by
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Figure 6: The 3D clipping algorithm. The texture lines A,
B and C are clipped against the current triangle (outlined
in black) with normal N. C is completely outside the model
and is removed prior to clipping. B projects onto the triangle
within € distance, but is not clipped because it does not
intersect with the feature edge plane (F p). A projects onto the
triangle, and intersects F p; the line is split by the intersection
point into two segments. The line segment that has a positive
dot product with the feature plane normal (FpN) is kept as
the new texture line.

solving the line equation using the u value:
W; = Wy + u(wb - wa)-

If either of the intersection points are found to lie within the
triangle, the texture line is considered to be contained within
the model and the test stops. Otherwise, the test continues
with the rest of the triangles of the model, and if the texture
line does not lie within any triangle, it is discarded.

4.2. 3D clipping

Once all of the exterior texture lines are removed, the algo-
rithm tests each texture line against each triangle that contains
a feature edge. Figure 6 demonstrates the clipping algorithm.
The main steps of the algorithm are as follows: (1) find the
distance from the texture line to the triangle (similar to the
test above), (2) for texture reasonably close to the current tri-
angle, intersect the texture line with the ‘feature edge plane’,
(3) test that this intersection point lies between the endpoints
of the feature edge, and finally, (4) keep the segment of the
texture line that lies inside the triangle.

4.2.1. Distance test

The first step in 3D clipping is to determine the distance
from the texture line to the current triangle using Equation
(1)]. Texture lines will only be clipped by feature edges that
are spatially close (i.e. the distance function is within some

threshold). This eliminates ‘ghosting’ effects that occur when
texture lines are clipped by distant feature edges.

4.2.2. Find feature edge plane

The next step in the clipping algorithm is to find the ‘feature
edge plane’ (F p). This is the plane that contains the fea-
ture edge (i.e. creases and boundaries), and is perpendicular
to the triangle. It is defined by taking the cross product of
the feature edge, f, and the triangle normal, N, (i.e. Fp =
f x N). The normal to the feature edge plane should point
into the triangle, making the dot product of the feature plane
normal with an edge of the triangle positive. In the case in
which it is not, the feature edge plane normal is flipped.

4.2.3. Intersect feature edge plane

The next step is to intersect the texture line with the feature
edge plane. This intersection point will be the new endpoint
of the texture line; however, we must test that this intersec-
tion line actually lies between the endpoints of the feature
edge. To do this, we project the intersection point onto the
triangle plane by intersecting the line formed using this in-
tersection point and the triangle normal, with the triangle
plane. This gives a new intersection point that lies along the
intersection line of the feature edge plane and triangle plane.
To determine if the intersection point lies along the feature
line, two vectors are formed using each feature line endpoint,
and the intersection point that lies on the triangle plane. If
the dot product of these two vectors is zero, then we know
the intersection point lies on the feature line.

Once it has been found that the texture line should be
clipped by the feature edge plane, which segment of the
texture line to discard must be determined. This is done by
forming two new vectors, using the endpoints of the texture
line and the new feature edge plane intersection point. These
vectors will point in opposite directions. The dot product of
the feature edge plane normal and the two new vectors is
computed, with the vector resulting in a positive dot product
kept as the new texture line, and the rest of the line thrown
out.

4.3. Vertex perturbation

Once all of the lines of a texture have been placed and clipped,
it is possible to adjust the sketchiness of the lines. To achieve
‘sketchiness’ the endpoints of the texture and feature edge
lines are randomly perturbed. A sketchy quality of the lines
adds to the hand-drawn look of the imagery, and can be mod-
ified independently in different areas of the model, allowing
each area to have a unique sketchy quality and maintain the
unity of the scene. It is hard to determine the amount of
sketchiness desired for the model, so allowing the user to
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Figure 7: Four levels of sketchiness.

modify the sketch quality parameter is desirable. Examples
of varying levels of sketchiness are shown in Figure 7.

Using a hardware vertex program coded with the OpenGL
Shading Language, the modification of the original line tex-
ture to sketchy lines can be done interactively. The goal of the
vertex program is to maintain the basic line texture structure
while adding a slight random offset to the original vertices.
For each line vertex, the vertex program generates a perturbed
line vertex coordinate by adding a perturbation vector to the
original vertex. This 3D vector is randomly generated and
stored in the multi-texture coordinate vertex attribute during
the creation of the line texture vertex buffers. We also set the
normal vector for each vertex to be the normal of the face on
which the line texture is being rendered. These are the only
vertex attributes that need to be set for the vertex program to
execute.

Once running, the vertex program projects the random
perturbation vector onto the plane determined by the normal,
and uses this projected vector to slightly change the location
of the original vertex. The projection computation forces the
modified vertices to remain in the plane of the polygon in
which the line texture resides. To remove z-fighting, we also
add a small offset in the direction of the face normal to lift the
vertex off the surface slightly. We do not perform additional
clipping at this stage to stop sketchy lines from extruding out-
side of the polygon face, because this overshoot helps create
the hand-drawn look. The OpenGL Shading Language code
to modify the vertices of our line textures can be found in
the Appendix. The fragment program used in our implemen-
tation simply sets the input colour as the output fragment
colour.

K. Potter et al. /3D Line Textures

4.4. Creating two-dimensional illustrations

Representing feature edges and texture as 3D line primitives
allows the direct creation of 2D vector illustrations. This is
especially useful for fine manipulation of the illustration after
creation. The creation of a 2D illustration is straightforward.
Once the user chooses a suitable viewpoint in the 3D scene,
GL2PS [Geu] is used to convert the line primitives to vectors.

5. Discussion

Using only the indication of texture in which the material
properties are hinted at rather than fully illustrated is in-
triguing for the viewer. Large amounts of line textures are
distracting, and the imagination of the viewer is engaged to
fill in the texture where it is omitted. In addition, the number
of lines used to suggest texture is reduced, which helps main-
tain performance. Implementing indication automatically is
a difficult problem because it is hard for artists to describe
the process of deciding where to place texture. In previous
implementations, systems have relied on the artist to input ar-
eas of the model that should be enhanced by texture [WS94].
Looking at the images created by these systems, it seems that
the feature edges are common areas to receive more texture.
Although feature edges may not be the only such areas to re-
ceive texture indication, this method enhances feature edges
because they are so often enhanced by artists. It has also
been shown that the enhancement of these edges aids in the
understanding of the model [Lin97]. Additionally, material
boundaries are typically enhanced by more texture indica-
tion, another phenomenon captured by this implementation.
The remaining areas of the model receive sparse texture to
reduce clutter, increase efficiency and maintain a clean look
[Lin97].

An interesting feature of our texture placement algorithm
is maintaining the density of the texture with distance. This
approach allows the tone of the image to vary with depth, so
objects farther away will have a higher texture density and
thus a darker tone, which can be seen in Figure 8, left. The
tone of the image can be thought of as the ratio of black ink
to white paper. Allowing the tone to vary is a method often
adopted by artists to create the illusion of depth in the image.
Traditionally computer graphics techniques decimate texture
density with distance to maintain tone across an image. Thus,
the density of texture on an object in the foreground would
be at a level equal to the density of texture on a distant ob-
ject. This is done to preserve the visual appeal of the image
because the texture in the background can quickly become
too dense, creating a very dark tone that is distracting and
unappealing. However, removing texture can be perceptu-
ally confusing and lead to misperceived distance, a result
that conflicts with the goals of this system. Thus, the imple-
mentation presented herein does not eliminate texture in the
distance. A benefit of using indication is that in the distance,
the texture density is still lower than if the entire surface

© 2009 The Authors

Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.



K. Potter et al./3D Line Textures 63

Figure 8: Left, an example of a fully textured wall whose
tone gets too dark in the distance. While this implementation
uses indication to lessen the amount of texture, and thus to
reduce the problem of dark tone in the distance, we also use
colored lines which eases the problem of tone in the distance,
as shown right.

was textured. This keeps the tone at an appealing level
throughout the scene while preserving the property that the
tone is darker in the distance. A possible drawback to this
approach is that the size of the environments is limited. The
assumption that partial textures will maintain appeal at far
distances may not hold when the model becomes very large
and extends a long way into the distance. The lines used to
convey the texture are coloured lines which are not as dis-
tracting as black lines when grouped tightly, and may not
be as unappealing in the background, as shown in Figure 8,

right. Artists, instead of removing texture in the distance, will
use a lighter line when drawing texture in the background.
Thus, a possible solution for a texture density that is too high
in the distance is to fade with distance the lines that make up
the texture.

Another addition to the system to aid in aesthetic appeal is
entourage. Entourage refers to the use of familiar objects of
known size in the scene and is used to create the effect of scale
[Bur95]. The system uses hand-generated people and trees,
which are placed in non-distracting areas of the scene such as
near a corner of a building or in the background. To maintain
the overall look, the trees resemble the pen and ink trees of
Deussen [DS00]. Figure 10, left, shows how entourage acts
as a fiducial marker for the model.

6. Implementation

Our system runs on a dual-core, 3.0 GHz Intel Pentium D
machine with 2GB RAM and an NVIDIA GeForce 7800
GTX graphics co-processor. The implementation is fairly
straightforward, requiring approximately 3000 lines of code.
The code is written in C++ using OpenGL libraries. The
system’s only drawing primitives are 3D constant-coloured
lines and 3D constant-coloured polygons. Table 1 gives the
polygon and line count as well as frame rates for a 1000 x
1000 pixel image. Figure 10, right, and Figure 9, right, shows
screen shots of multiple interactive session of our system
using the Mayan temple and a model of the Salt Lake City
Olympic Village.

Figure 9: Left, the size of the Outhouse model is more understandable through the use of entourage. Right, an alternative
rendering of the Mayan Temple model.
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Figure 10: Screen shots of an interactive session using the Olympic Villiage model.

Table 1: Polygon count, line count, and frame display times av-
eraged across 125 frames for interactive walk-throughs using our
system at an image resolution of 1000x1000.

Scene Polygons Line count Frames/sec
Mayan Temple 1259 58276 149.1
Castle 9734 27910 102.4
Olympic Village 20467 1054 559 11.0

7. Future Research

We have shown that the interactive frame rates can be
achieved using line primitives on scenes of realistic com-
plexity. The approach presented is a nice alternative to tex-
ture mapping in that it is easy to implement, automates the
indication of texture, allows for the run-time manipulation
of the sketchy quality of the lines, and can be used as vector
graphics to automatically produce 2D illustrations.

There are several further directions of research stemming
from our system. First, it may be possible to generate the
texture on the fly, allowing for texture to be populated along
silhouette edges, as well as dynamically change texture for
animations, etc. The use of fewer line elements to indicate the
material properties of a surface may also be possible. Such
an investigation is likely to involve perceptual psychologists.
Alternative methods for texture placement could be investi-
gated; perceptually or artistically based noise functions could
be used instead of Perlin noise. The entourage elements are

static 2D billboards. Depending on the application, 3D mod-
els or animated billboards could be used, or moved about in
the scene. Finally, we have avoided the LOD management
issue by limiting ourselves to medium-scale environments.
For very large sized environments, some LOD management
system may be needed.

8. Conclusion

When creating renderings that simulate hand-drawn illustra-
tions, line quality and aesthetic appeal are important. These
characteristics are difficult to achieve using texture mapping
techniques. 3D line primitives, however, maintain high visual
quality independent of viewpoint, suggest the aesthetic na-
ture of hand-drawn illustration, are free of dynamic artifacts
and can be manipulated in an interactive setting.
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Appendix: OpenGL Shading Language Vertex Program

uniform float k;
void main(void)

vec3 face_normal = vec3(gl_Normal);
normalize(face_normal);
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vec3 perturb = vec3(gl_MultiTexCoord1.x,
gl_MultiTexCoordl.y, gl_MultiTexCoord1.z);
normalize(perturb);

vec3 v = cross(face_normal, perturb);

vec3 u = cross(face_normal, v);

mat3 plane = mat3(u, v, face_normal);

mat3 plane_inv = mat3(u.x, v.x, face_normal.x,
u.y, v.y, face_normal.y,
u.z, v.z, face_normal.z);

mat3 ortho_proj = mat3(1.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0);

perturb = plane_ori * ortho_proj * plane * perturb;
normalize(perturb);

vec3 mod_v = vec3(gl_Vertex) + k * (perturb * 0.1) +
(face_normal *x 0.01);

gl_Position = gl_Model ViewProjectionMatrix *
vecd(mod_v, 1.0);

gl_FrontColor = gl_Color;
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