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Abstract
This work introduces a technique for interactive walkthroughs of non-photorealistically rendered (NPR) scenes
using 3D line primitives to define architectural features of the model, as well as indicate textural qualities. Line
primitives are not typically used in this manner in favor of texture mapping techniques which can encapsulate
a great deal of information in a single texture map, and take advantage of GPU optimizations for accelerated
rendering. However, texture mapped images may not maintain the visual quality or aesthetic appeal that is possible
when using 3D lines to simulate NPR scenes such as hand-drawn illustrations or architectural renderings. In
addition, line textures can be modified interactively, for instance changing the sketchy quality of the lines, and can
be exported as vectors to allow the automatic generation of illustrations and further modification in vector-based
graphics programs. The technique introduced here extracts feature edges from a model, and using these edges,
generates a reduced set of line textures which indicate material properties while maintaining interactive frame
rates. A clipping algorithm is presented to enable 3D lines to reside only in the interior of the 3D model without
exposing the underlying triangulated mesh. The resulting system produces interactive illustrations with high visual
quality that are free from animation artifacts.

1. Introduction

Presentation graphics are communicative illustrations often
employed by architects and other design professionals to ex-
press not only the features of a design or model, but also
informative aspects such as material property, confidence or
completion levels, and other important characteristics. These
illustrations typically avoid the factual connotations associ-
ated with realistic imagery and instead use rendering styles
that align better with the conceptual ideas being expressed.
Images that resemble photographs are often interpreted as
complete and unchangeable, while loose, sketchy illustra-
tions can express malleable characteristics of a model or de-
sign. The degree of looseness of rendered lines is often as-
sociated with the variation of characteristics within a model.
This line “sketchiness” can vary within a single image, vi-
sually revealing the change of a model attribute, and quickly
expressing a great amount of information in a concise and
compact way. An example of such an illustration can be seen
in the archaeological reconstruction shown in Figure 1 which
uses our technique to automatically place feature and tex-

ture lines on the model, and allows a user to modify the line
characteristics while walking through the scene at interac-
tive frame rates. In this illustration, the sketchiness of the
feature edges and material property lines is modified based
on the confidence of the specific areas of the reconstruc-
tion. Thus, the base of the Mayan Temple is rendered with
straight, clean lines because this area of the model has the
highest confidence level, while the hut at the top has a very
low level of confidence and is rendered with loose, sketchy
lines, and does not have any textural detail. The methods pre-
sented in this paper use 3D line primitives rather than tradi-
tional texture mapping in order to maintain high visual line
quality, allow real-time modification of line characteristics
and automatically generate vector illustrations from within
an interactive walkthrough of the scene.

When creating an interactive line drawing system, the fol-
lowing important characteristics must be considered:

1. high visual quality of individual frames;
2. animation free of dynamic artifacts, such as popping;
3. high frame rate; and

submitted to COMPUTER GRAPHICS Forum (2/2007).



2 Potter et al. / 3D Line Textures and the Visualization ofConfidence in ArchitectureUUCS-07-005

4. ability to directly create manipulatable 2D illustrations.

The first two items suggest using 3D line primitives, as they
can be anti-aliased in screen space, thus producing high vi-
sual quality. In addition, line primitives do not need level-
of-detail management to maintain constant width or bright-
ness in screen space. However, it is natural to think that inte-
rior lines should be rendered using texture mapping for effi-
ciency. Indeed, texture mapping has been used effectively to
accomplish interior line rendering by others [FMS01], who
used careful generation of MIP mapped line textures to avoid
dynamic artifacts. Unfortunately, this technique makes the
line textures static, so line sketchiness cannot be varied at
runtime. Also, texture mapping does not allow for the direct
creation of 2D illustrations. Our method directly generates
postscript illustrations in which each texture and feature line
can be manipulated after creation.

The question remains whether 3D line primitives can be
used while maintaining an interactive frame rate. Although
lines are not used in most graphics programs, they are highly
optimized by hardware makers because of the CAD market.
Using lines directly has several advantages over texture map-
ping:

• line primitives can be anti-aliased without a multi-pass al-
gorithm

• line primitives can have their sketchiness varied at runtime
by perturbing vertices in a hardware vertex program

• line primitives preserve their width in screen space even
for extreme close-ups.

The last item could be viewed as an advantage or a disad-
vantage depending on one’s priorities; having constant width
lines in screen-space makes for a clean drawing reminiscent
of the type drawn by human draftsmen, but exchanges line-

Figure 1: An example illustration from an interactive ses-
sion of an archaeological reconstruction with the sketchi-
ness of the line primitives varied according to the level of
confidence in the data. The base of the structure is rendered
using clean lines, the midsection is rendered with a sketchy
line texture, and the “top hut” is a matter of conjecture and
is rendered without texture and very sketchy feature lines.

width depth cues for line-density depth cues, which can be
visually distracting.

This paper’s main contributions are creating a system
that allows for the automatic placement of texture across a
model, the interactive manipulation of viewpoint in a 3D
scene, and the creation of 2D vector illustrations. The suc-
cess of the system is demonstrating that high frame rates can
be achieved using line primitives in scenes of realistic com-
plexity. An algorithm is provided to automatically place line
textures on objects in order to perform material property “in-
dication,” i.e., a small number of texture elements indicates
the material properties of the entire surface. Finally, we show
that an interactive system using 3D lines is relatively simple
to design and build, making line primitives a practical alter-
native to texture mapping with respect to software engineer-
ing as well as efficiency issues.

2. Background

The style of illustration used to create an image has a pro-
found effect on the interpretation of that image [SPR∗94].
Photographic images, like the ones traditionally generated
by computers, give the sense that the scene is complete and
unchangeable, not inviting discussions about design, or indi-
cating the actual confidence level of the underlying model.
Conversely, hand-drawn illustrations have a transient qual-
ity, the viewer is more comfortable talking about modifica-
tions to the scene [SSRL96], and is often more actively en-
gaged with the image. Because of the difference in the effect
of rendering style, determining which style to use is very
important. It is also possible to use multiple styles within
a single image, allowing for differing interpretations across
the image [SMI99].

In addition to decisions on rendering style, specific fea-
tures of a scene must be identified in order to create a
communicative illustration. Feature lines such as silhou-
ettes, creases, boundary and contour edges aid in the un-
derstanding of geometric shape and should be accented
[ST90, SFWS03]. Likewise, how these lines are accented,
as well as how other lines in the illustration appear is criti-
cal. For instance, in line drawings, the type of line, such as
dashed, dotted, thick or thin, can express direction, distance
and location, and end conditions can convey the relation of
the line with respect to other lines and surfaces in the scene
[DC90]. Such conventions are standard in hand-drawn illus-
trations, and can be adopted for use in computer generated
imagery.

Translating artistic techniques from the human hand to
a computer process requires that inherent characteristics
of the traditional media be explicity defined. There has
been much work in simulating charcoal, ink, watercolor,
and other artistic mediums on the computer [GG01, SS02].
These methods simulate the variations in thickness, wavi-
ness, weight, and direction of the marks left by the media, as
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well as their interaction with paper or canvas. Typically, the
strokes left by artistic techniques are texture mapped onto
the model. Alternatively, actual geometry can be used in
the form of graftals, a method which randomly places parti-
cles across a surface, from which artistic details can “grow”
[KMN∗99, KGC00, MMK∗00]. While the physical simula-
tion of the physical properties of artistic media is challeng-
ing, a harder problem is simulating the artistic hand.

It is very difficult to completely automate where an artist
places strokes, and most systems rely on human interaction
to aid in the generation of illustrations. For example, in work
by Salisbury et al. [SABS94, SWHS97], the user controls
where collections of strokes are placed on a model by “paint-
ing” on areas of interest. The Piranesi system [Sch96, RS95]
allows users to paint artistic effects onto CAD models, creat-
ing images that are closer to the images handmade by archi-
tectural designers. The SKETCH system [ZHH96] uses ges-
tural input as a method for modeling, simulating the artist
sketching out a preliminary design on paper. Dollner and
Walther [DW03] create a system that uses not only NPR
techniques, but also cartographic and cognitive principles
to render 3D city models with enhanced feature edges, two
or three-tone shading, texture mapped details and simulated
shadows. These types of systems aid in creating images that
maintaining a human quality and allow for computer specific
additions such as walkthroughs and interactive revisions.

Many interactive NPR algorithms suffer from a lack of
frame-to-frame coherence in which the texture or geometry
used to express the artistic detail pops in or out of the scene,
or the strokes do not match up from one frame to another.
This problem arises from the fact that the artistic techniques
being simulated are meant to be seen as a single instance,
rather than in repetition. Solutions to this problem involve
fading detail into the background [MMK∗00], or variations
on texture and MIP mapping techniques. Texture mapping
hardware can be used to maintain tone and detail via hatch
and ink maps [FMS01], as well as to add fine tone control
and reduce aliasing artifacts [WPFH02]. Maintaining coher-
ence in an image based approach can be done by using art
maps which maintain the width of NPR strokes in the scene,
and rip maps eliminate artifacts that occur at oblique viewing
angles [KLK∗00].

The approach presented in this paper is novel in its use
of three dimensional line primitives as an alternative to tex-
ture mapping. Line primitives have an advantage in that
they maintain constant screen space throughout an interac-
tive session, and require no special algorithms to preserve
frame-to-frame coherence. Feature edges and texture are ex-
pressed through the placement of the 3D lines which is done
automatically. Similarly to the approach by [WS94], texture
is placed densely so as to accent feature edges, and sparsely
across the rest of the model to “indicate” the texture. To cre-
ate a hand-drawn quality and describe confidence levels in
the underlying model, the endpoints of the lines can be in-

Figure 2: Texture is increased around crease and boundary
edges to enhance the features of the model.

teractively perturbed using graphics hardware, a feature that
is difficult to achieve using texture mapping. Another bene-
fit of using 3D line primitives to express model boundaries,
features and texture is the ability to output 2D vector illustra-
tions, allowing for scale, resolution, and display independent
reproduction [SALS96].

3. Algorithm

The algorithm presented here to create renderings with tex-
ture indicated by 3D lines consists of preprocessing the
model to find important edges, determining the placement
of and laying the texture, and finally clipping the texture
to the model. New techniques include using 3D lines as
an alternative to texture mapping, automating the indica-
tion of texture such that texture is minimized and placed
sparsely across the model as well as along important edges,
and creating sketchy lines through vertex programs. The sys-
tem uses simple algorithms and currently supports a vari-
ety of textures such as bricks, stone work, shingles, thatch,
stucco, and siding, while other materials could easily be sup-
ported [Yes79, Miy90].

3.1. Feature Edge Detection

An important cue to understanding the shape of an archi-
tectural model is emphasizing feature edges [ST90]. These
edges include outlines separating the model from space,
creases distinguishing interior features, and boundaries be-
tween materials. To find feature edges in the triangulated
mesh used to represent the model, the model is first divided
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Figure 3: A model with silhouette feature edges. Since the
texturing algorithm is a pre-process, texture is neither popu-
lated nor clipped against silhouette edges (left). Adding sil-
houette edges aides in the understanding of the model, with-
out needing to modify the texture algorithm.

into material groups such as bricks or grass. The test for
outlines and material boundaries is then simplified into a
brute force search for edges contained in only a single poly-
gon. The search for crease edges identifies edges that adjoin
two polygons whose surface normals have a dihedral angle
greater than θ, for some threshold value of θ. The feature
edges are then explicitly drawn with a 3D line and texture is
placed at a higher density close to these important areas as
illustrated in Figure 2.

Because the feature edge and texture generation algo-
rithms are designed as pre-processes, view-dependent sil-
houette edges (i.e., edges between front facing and back fac-
ing polygons) are not accented with texture. This raises prob-
lems for models, such as the one shown in Figure 3 that have
border edges that can only be defined as silhouettes. In such
models, texture is not populated or clipped about silhouette
feature edges, which does not emphasize the feature edge
and texture can possibly lie outside of the model. Moving
the texture generation process to runtime would allow sil-
houette lines to be treated as stationary feature edges, how-
ever, the texture lines would need to be recalculated each
time the viewpoint changed, leading to disturbing artifacts
between frames. While there is no obvious solution to the
texturing problem, 3D silhouette edges can be added as a
hardware process at runtime, as shown in Figure 3, right, al-
lowing such models to be displayed in our system.

3.2. Texture Generation

Line texture synthesis across interior surfaces is carried out
according to a heuristic that thresholds Perlin solid noise
[Per85] to place clusters of texture. An atomic texture ele-
ment (e.g., a single brick or blade of grass) is placed on the
triangle if the function:

1+3× N(kx,ky,kz)
2

,

is above a threshold, (where N is the Perlin function).
This function gives a uniformly random distribution of tex-

Figure 4: The texture generation process. Top left: texture
is placed along feature edges. Top right: atomic texture el-
ements are placed based on Perlin noise. Bottom left: tex-
ture is clustered about the atomic elements. Bottom right: a
complete textured cube with clipping (note: due to random
selection of texture library elements, actual texture element
placement varies.)

ture without excessive accumulations or concentrations. The
threshold can be changed to allow more or less texture on
any portion of a model.

The algorithm for texture placement iterates through the
texture space of the model, calculating the noise function at
each location where texture would be placed for full cov-
erage of texture on the model. If the noise function returns
a value indicating that the location should be textured, the
texture lines corresponding to an atomic texture element are
transformed into model space. Feature edges are embedded
into the noise function such that the return value always in-
dicates that these areas should be textured. The top two im-
ages in Figure 4 demonstrate this initial texture placement.
On the left, texture is placed along the feature edges; on the
right atomic texture elements (in red) are placed throughout
the interior of the model.

Once an atomic texture element is placed, a texture cluster
is populated around it. A texture cluster is a pleasing group
of texture elements. The aesthetic quality of these group-
ings is critical to creating a good image. While automatic
generation is possible, we have found that the criteria for
what makes a good texture cluster are not obvious. Thus,
we created a library of human generated clusters that are
reused. The bottom images in Figure 4 show the final stages
of texture placement. On the left, texture is clustered around
atomic elements, and on the right is the final, clipped result,
with enough texture added to pleasingly cover the surface.
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A side-effect of the texture library is the repetition of texture
elements, especially in very regular textures such as brick.
This occurs when the texture clusters generated by the li-
brary place texture elements on top of already placed tex-
ture. The drawback is that this increases the line count, and
may effect performance, however this does not occur on ran-
dom textures such as the grass, which make up the bulk of
texture lines. While these repetitive lines can easily be re-
moved through a pre-process sort, we have chosen to keep
the duplicate lines, since they are perturbed independently
when the sketchiness is increased. This results in a quality
that more closely resembles hand-drawn, since an artist will
often draw repetitive lines when sketching.

4. Texture Clipping

Following the placement of the texture lines on the model,
all lines are clipped against the crease and boundary edges
of the model. Clipping against the feature edges maintains
the unity of the model, while clipping against single trian-
gles would reveal the underlying triangulation. Thus, clip-
ping is performed after all texture has been generated. How-
ever, clipping 3D lines against the 3D feature edges is not a
trivial task.

The algorithm to clip texture along feature edges can be
broken into two steps. First, all texture lines that are com-
pletely outside of the model are removed. Second, the re-
maining texture lines are clipped against the feature edges.

4.1. Outside Line Removal

The main goal of the texturing algorithm is to maintain visu-
ally appealing texture across the model. To hide the triangu-
lation of the underlying representation, texture lines extend
across the boundaries of the generating triangle and are of-
ten drawn completely outside of the model. These exterior
lines will not be removed by the clipping algorithm since
they do not intersect any feature edges. Instead, every tex-
ture line must be tested against every triangle in the model
to determine if either endpoint is contained by the model.

The first step in removing outside edges is to find the dis-
tance, d, from the texture line, l, to the current triangle with
a vertex tx, and normal N:

d = min(
(lx − tx) ·N

||N||
,

(ly − tx) ·N
||N||

). (1)

If the distance is close to zero, the endpoints of the texture
line are projected onto the plane of the triangle, by first cre-
ating two directed lines from the endpoints of the texture
line pointing in the direction of the triangle normal. Each of
these directed lines, w, are intersected with the plane of the
triangle described by the triangle normal, N, and a point in
the triangle, p:

u =
(p−wx) ·N
(wy −wx) ·N

.

Figure 5: The Clipping Algorithm. The texture lines A, B,
and C are clipped against the current triangle (outlined in
black) with normal N. C is not clipped because it does not
project onto the triangle. B projects onto the triangle within ε
distance, but is not clipped because it does not intersect with
the feature edge plane (FP). A projects onto the triangle,
and intersects FP; the line is split by the intersection point
into two segments. The line segment that has a positive dot
product with the feature plane normal (FPN) is kept as the
new texture line.

The u value is the parametric location of the intersection
point on the line, wi. The actual intersection point can be
found by solving the line equation using the u value:

wi = wx +u(wy −wx).

If either of the intersection points are found to lie within the
triangle, the texture line is considered to be contained within
the model and the test stops. Otherwise, the test continues
with the rest of the triangles of the model, and if the texture
line does not lie within any triangle, it is discarded.

4.2. 3D Clipping

Once all of the exterior texture lines are removed, the algo-
rithm tests each texture line against each triangle that con-
tains a crease edge. As shown by Figure 5, the texture line
(a,b) is clipped against the crease line (y,z) that is contained
by the triangle (x,y,z). The main steps of the algorithm are
as follows: 1) find the distance from the texture line to the
triangle (similar to the test above), 2) for texture reasonably
close to the current triangle, intersect the texture line with
the “feature edge plane”, 3) test that this intersection point
lies between the endpoints of the feature edge, and finally,
4) keep the segment of the texture line that lies inside the
triangle.
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4.2.1. Distance Test

The first step in 3D clipping is to determine the distance from
the texture line to the current triangle using Equation 1. Tex-
ture lines will only be clipped by feature edges that are spa-
tially close (i.e. the distance function is within some thresh-
old). This eliminates “ghosting” effects that occur when tex-
ture lines are clipped by distant feature edges.

4.2.2. Find Feature Edge Plane

The next step in the clipping algorithm is to find the “feature
edge plane” (FP). This is the plane that contains the feature
edge, and is perpendicular to the triangle. It is defined by tak-
ing the cross product of the feature edge, f , and the triangle
normal, N, (i.e. FP = f ×N). The normal to the feature edge
plane should point into the triangle, making the dot product
of the feature plane normal with an edge of the triangle pos-
itive. In the case in which it is not, the feature edge plane
normal is flipped.

4.2.3. Intersect Feature Edge Plane

The next step is to intersect the texture line with the feature
edge plane. This intersection point will be the new endpoint
of the texture line, however we must test that this intersection
line actually lies between the endpoints of the feature edge.
To do this, we project the intersection point onto the triangle
plane by intersecting the line formed using this intersection
point and the triangle normal, with the triangle plane. This
gives a new intersection point that lies along the intersection
line of the crease plane and triangle plane. To determine if
the intersection point lies inside the crease edge, two vectors
are formed using each crease line endpoint, and the intersec-
tion point that lies on the triangle plane. The dot product of
these two vectors is taken, and if the dot product is zero, then
we know the intersection point is within the crease line.

Once it has been found that the texture line should be
clipped by the crease plane, which segment of the texture
line to discard must be determined. This is done by forming
two new vectors, using the endpoints of the texture line and
the new crease plane intersection point. These vectors will
point in opposite directions. The dot product of the crease
plane normal and the two new vectors is computed, with the
vector resulting in a positive dot product kept as the new tex-
ture line, and the rest of the line thrown out.

4.3. Vertex Perturbation

Once all of the lines of a texture have been placed and
clipped, it is possible to adjust the sketchiness of the lines.
To achieve “sketchiness” the endpoints of the texture and
feature edge lines are randomly perturbed. A sketchy qual-
ity of the lines adds to the hand-drawn look of the imagery,
and can be modified independently in different areas of the
model, allowing each area to have a unique sketchy quality
and maintain the unity of the scene. It is hard to determine

Figure 6: Four levels of sketchiness.

the amount of sketchiness desired for the model, so allowing
the user to modify the sketch quality parameter is desirable.
Examples of varying levels of sketchiness are shown in Fig-
ure 6.

Using a hardware vertex program coded with the OpenGL
Shading Language, the modification of the original line tex-
ture to sketchy lines can be done interactively. The goal of
our vertex program is to maintain the basic line texture struc-
ture while adding a slight random offset to the original ver-
tices. For each line vertex, the vertex program generates a
perturbed line vertex coordinate by adding a perturbation
vector to the original vertex. This 3D vector is randomly
generated and stored in the multi-texture coordinate vertex
attribute during the creation of the line texture vertex buffers.
We also set the normal vector for each vertex to be the nor-
mal of the face on which the line texture is being rendered.
These are the only vertex attributes that need to be set for the
vertex program to execute.

Once running, the vertex program projects the random
perturbation vector onto the plane determined by the nor-
mal, and then uses this projected vector to slightly change
the location of the original vertex. The projection computa-
tion forces the modified vertices to remain in the plane of
the polygon in which the line texture resides. To remove z-
fighting, we also add a small offset in the direction of the face
normal to lift the vertex off the surface slightly. We do not
perform additional clipping at this stage to stop sketchy lines
from extruding outside of the polygon face. The OpenGL
Shading Language code to modify the vertices of our line
textures can be found in the appendix. The fragment pro-
gram used in our implementation simply sets the input color
as the output fragment color.
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4.4. Creating Two Dimensional Illustrations

Representing feature edges and texture as 3D line primitives
allows the direct creation of 2D vector illustrations. This is
especially useful for fine manipulation of the illustration af-
ter creation. The creation of a two dimensional illustration is
straightforward. Once the user chooses a suitable viewpoint
in the 3D scene, GL2PS [Geu] is used to convert the line
primitives to vectors.

5. Discussion

Using only the indication of texture in which the material
properties are hinted at rather than fully illustrated is in-
triguing for the viewer. Large amounts of line textures are
distracting, and the imagination of the viewer is engaged to
fill in the texture where it is omitted. In addition, the num-
ber of lines used to suggest texture is reduced, which helps
maintain performance. Implementing indication automati-
cally is a difficult problem because it is hard for artists to
describe the process of deciding where to place texture. In
previous implementations, systems have relied on the artist
to input areas of the model that should be enhanced by tex-
ture [WS94]. Looking at the images created by these sys-
tems, it seems that the feature edges are common areas to
receive more texture. Although feature edges may not be the
only such areas to receive texture indication, this method en-
hances feature edges because they are so often enhanced by
artists. It has also been shown that the enhancement of these
edges aids in the understanding of the model. Additionally,
material boundaries are typically enhanced by more texture
indication, another phenomenon captured by this implemen-
tation. The remaining areas of the model receive sparse tex-
ture to reduce clutter, increase efficiency and maintain a
clean look [Lin97].

An interesting feature of our texture placement algorithm
is maintaining the density of the texture with distance. This
approach allows the tone of the image to vary with depth so
objects farther away will have a higher texture density and
thus a darker tone, which can be seen in Figure 7, left. The
tone of the image can be thought of as the ratio of black
ink to white paper. Allowing the tone to vary is a method
often adopted by artists to create the illusion of depth in the
image. Traditionally computer graphics techniques decimate
texture density with distance to maintain tone across an im-
age. Thus, the density of texture on an object in the fore-
ground would be at a level equal to the density of texture
on a distant object. This is done to preserve the visual ap-
peal of the image because the texture in the background can
quickly become too dense, creating a very dark tone that is
distracting and unappealing. However, removing texture can
be perceptually confusing and lead to misperceived distance,
results that conflict with the goals of this system. Thus, the
implementation presented herein does not eliminate texture
in the distance. A benefit of using indication is that in the dis-
tance, the texture density is still lower than if the entire sur-

Figure 7: An example of a fully textured wall whose tone
gets too dark in the distance. While this implementation uses
indication to lessen the amount of texture, and thus reduce
the problem of dark tone in the distance, we also use colored
lines which eases the problem of tone in the distance.

face was textured. This keeps the tone at an appealing level
throughout the scene while preserving the property that the
tone is darker in the distance. A possible drawback to this
approach is that the size of the environments is limited. The
assumption that partial textures will maintain appeal at far
distances may not hold when the model becomes very large
and extend a long way into the distance. The lines used to
convey the texture are colored lines which are not as distract-
ing as black lines when grouped tightly, and may not be as
unappealing in the background, as shown in Figure 7, right.
Artists, instead of removing texture in the distance, will use
a lighter line when drawing texture in the background. Thus,
a possible solution for a texture density that is too high in the
distance is to fade with distance the lines that make up the
texture.

Another addition to the system to aid in aesthetic appeal
is entourage. Entourage refers to the use of familiar objects
of known size in the scene and is used to create the effect of
scale [Bur95]. The system uses hand-generated people and
trees, which are placed in non-distracting areas of the scene
such as near a corner of a building or in the background. To
maintain the overall look, the trees resemble the pen and ink
trees of Deussen [DS00].

6. Implementation

Scene Polygons Line Count frames/sec
Mayan Temple 1,259 58,276 149.1
Castle 9,734 27,910 102.4
Olympic Village 20,467 1,054,559 11.0

Table 1: Polygon count, line count, and frame display times
averaged across 125 frames for interactive walkthroughs us-
ing our system at an image resolution of 1000x1000.

Our system runs on a dual-core, 3.0GHz Intel Pentium
D machine with 2GB RAM and an NVIDIA GeForce 7800
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GTX graphics co-processor. The implementation is fairly
straightforward, requiring approximately 3000 lines of code.
The code is written in C++ using OpenGL libraries. The sys-
tem’s only drawing primitives are 3D constant-colored lines
and 3D constant-colored polygons. Table 1 gives the poly-
gon and line count as well as frame rates for a 1000x1000
pixel image. Figure 8 shows screen shots of an interactive
session of our system using a model of the Salt Lake City
Olympic Village.

7. Future Research

We have shown that interactive frame rates can be achieved
using line primitives on scenes of realistic complexity. The
approach presented is a nice alternative to texture mapping
in that it is easy to implement, automates the indication of
texture, allows for the runtime manipulation of the sketchy
quality of the lines, and can be used as vector graphics to
automatically produce 2D illustrations.

There are several further directions of research stemming
from our system. First, it may be possible to use fewer line
elements to indicate the material properties of a surface.
Such an investigation is likely to involve perceptual psychol-
ogists. Alternative methods for texture placement could be
investigated; perceptually or artistically based noise func-
tions could be used instead of Perlin noise. The entourage
elements are static 2D billboards. Depending on the appli-
cation, 3D models or animated billboards could be used,
or moved about in the scene. Finally, we have avoided the
LOD management issue by limiting ourselves to medium-
scale environments. For very large sized environments, some
LOD management system may be needed.

8. Conclusion

When creating renderings that simulate hand-drawn illustra-
tions, line quality and aesthetic appeal are important. These
characteristics are difficult to achieve using texture mapping
techniques. 3D line primitives, however, maintain high vi-
sual quality independent of viewpoint, suggest the aesthetic
nature of hand-drawn illustration, are free of dynamic arti-
facts and can be manipulated in an interactive setting.
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Appendix: OpenGL Shading Language Vertex Program

uniform float k;
void main(void)
{

vec3 face_normal = vec3(gl_Normal);
normalize(face_normal);

vec3 perturb = vec3(gl_MultiTexCoord1.x,
gl_MultiTexCoord1.y, gl_MultiTexCoord1.z);

normalize(perturb);

vec3 v = cross(face_normal, perturb);
vec3 u = cross(face_normal, v);
mat3 plane = mat3(u, v, face_normal);
mat3 plane_inv = mat3(u.x, v.x, face_normal.x,

u.y, v.y, face_normal.y,
u.z, v.z, face_normal.z);

mat3 ortho_proj = mat3(1.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 0.0, 0.0);

perturb = plane_ori * ortho_proj * plane * perturb;
normalize(perturb);

vec3 mod_v = vec3(gl_Vertex) + k * (perturb * 0.1) +
(face_normal * 0.01);

gl_Position = gl_ModelViewProjectionMatrix *
vec4(mod_v, 1.0);

gl_FrontColor = gl_Color;
}
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