
RAY TRACING IMPLICIT SURFACES FOR INTERACTIVE

VISUALIZATION

by

Aaron M. Knoll

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

May 2009

Copyright c© Aaron M. Knoll 2009

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Aaron M. Knoll

This dissertation has been read by each member of the following supervisory committee and by
majority vote has been found to be satisfactory.

Chair: Charles D. Hansen

Steven G. Parker

Ingo Wald

Claudio Silva

Hans Hagen

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Aaron M. Knoll in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript
is satisfactory to the Supervisory Committee and is ready for submission to The Graduate School.

Date Charles D. Hansen
Chair, Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Dean

Approved for the Graduate Council

David Chapman
Dean of The Graduate School

This dissertation is dedicated to Dr. Isaac Knoll, M.D., 1907-2003.

My grandfather belonged largely to the era before the microchip. He might not have under-

stood the merit of computer science as an academic field, nor of graphics and visualization as

topics of research. However, his steadfast commitment to education made my undergraduate

and master’s studies possible, and without question inspired me to pursue my doctorate. As

the first member of my family to earn a PhD, I dedicate this work to his memory, in honor of

the sacrifices he made in pursuit of my scholarship.

iv

ABSTRACT

Implicit surfaces are useful representations of geometry in visualization. Since geometric

data are nearly always discrete, it is typically desirable to pair them with a continuous recon-

struction filter. An isosurface is a manifestation of that filter in implicit form. Traditionally,

the preferred methods for rendering isosurfaces have been to extract and rasterize a triangle

mesh, or to resample the implicit as simpler proxy geometry such as splats. Ray casting

allows for direct and pixel-exact rendering of an implicit surface by root-solving for the

intersection. Full ray tracing methods pair this intersection process with a spatial acceleration

structure, such as a bounding volume hierarchy or octree. While traditionally slow compared

to rasterization, this approach has several advantages. It enables multiple-bounce effects

such as shadows and reflections, and allows for dynamic changes in the implicit without

offline processing. More significantly for visualization, acceleration structures are traversed

in logarithmic time, allowing for graceful scaling to large data. This dissertation presents

several advancements in ray tracing implicit surfaces and its applications, namely single-ray

and coherent multiresolution methods for isosurface ray tracing of octree-compressed large

structured data, a coherent method for isosurface rendering of tetrahedral meshes, and al-

gorithms for rendering arbitrary implicit forms robustly using interval and affine arithmetic.

While computationally costly, techniques such as these map well to modern multicore CPUs

and thread-parallel GPUs, and will continue to improve in efficiency and applicability as

parallel hardware trends evolve.

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . xi

LIST OF TABLES . xiii

ACKNOWLEDGMENTS . xiv

CHAPTERS

1. INTRODUCTION . 1

2. BACKGROUND AND RELEVANT WORK . 6
2.1 Implicit Surfaces . 6
2.2 Mesh Extraction . 9
2.3 Point-Based Methods . 10
2.4 Volume Rendering . 11
2.5 Ray Casting and Ray Tracing Implicits . 12

2.5.1 Ray Tracing General-Form Implicits . 13
2.5.2 Ray Tracing Isosurfaces . 14

3. ISOSURFACE RAY TRACING OF OCTREE VOLUME DATA 16
3.1 Motivation . 16

3.1.1 Octree Traversal . 17
3.1.2 Octree Hashing . 18

3.2 Algorithm Overview . 18
3.2.1 Constructing an Octree Volume . 18
3.2.2 Ray Traversal and Voxel-Cell Duality . 19
3.2.3 Computing the Min/Max Tree . 21

3.3 Implementation . 22
3.3.1 Data Format . 23
3.3.2 Octree Data Lookup . 24

3.3.2.1 Point location . 25
3.3.2.2 Neighbor finding . 25

3.3.3 Ray-Octree Traversal . 25
3.3.3.1 Interior nodes . 26
3.3.3.2 Cap nodes . 27
3.3.3.3 Scalar leaves . 27

3.3.4 Isosurface Intersection . 27
3.3.5 Shading and Filling the Frame Buffer . 28

3.4 Octree Construction Results . 28
3.4.1 Data Compression . 28

3.4.2 Further Compression . 29
3.4.3 Construction Performance . 30
3.4.4 Memory Footprint Comparison . 30

3.5 Rendering Results . 31
3.5.1 Comparison to Hierarchical Grid . 31
3.5.2 Richtmyer Meshkov Instability Results . 31
3.5.3 Scalability . 33
3.5.4 Time-Variant Volumes . 33

4. COHERENT MULTIRESOLUTION ISOSURFACE RAY TRACING OF
OCTREE VOLUMES . 35
4.1 Motivation . 35

4.1.1 Coherence via Level of Detail . 36
4.1.2 System Overview . 36

4.2 Multiresolution Octree Volume Construction . 37
4.2.1 Extension to Multiresolution . 38
4.2.2 Modifications to Min/Max Tree Computation 38

4.3 Coherent Octree Volume Ray Tracing . 39
4.3.1 SSE Packet Architecture . 40
4.3.2 Coherent Traversal Background . 40
4.3.3 Coherent Grid Traversal Algorithm . 40
4.3.4 Macrocell Hierarchical CGT . 41
4.3.5 Implicit Macrocell Grid Traversal of Octree Volumes 42
4.3.6 Mapping Macrocells to Octree Nodes . 42
4.3.7 Default Slice-Based Traversal . 43

4.3.7.1 Culling empty cap-level macrocells . 44
4.3.7.2 Clipping the cell-level slice to active rays 44

4.3.8 Cell Reconstruction from Cached Voxel Slices 45
4.3.9 U,V Voxel Slice Filling . 45
4.3.10 Copying the Previous-Step ~K-Slice . 47
4.3.11 Ray-Cell Intersection . 47

4.4 Multiresolution Level of Detail System . 47
4.4.1 Resolution Heuristic . 48

4.4.1.1 Stop depth . 48
4.4.1.2 Pixel-to-voxel width ratio . 48
4.4.1.3 Packet extents metric . 49
4.4.1.4 LOD mapping via ~K transition slices . 49

4.4.2 Multiresolution Traversal . 49
4.4.3 Smooth Transitions . 50

4.5 Shading . 51
4.5.1 Smooth Gradient Normals . 51
4.5.2 Shadows . 52

4.6 Results . 53
4.6.1 Coherent Traversal Analysis . 53
4.6.2 Packet Size . 54
4.6.3 Incoherent Behavior Without Multiresolution 54
4.6.4 Multiresolution Results . 54
4.6.5 Overall Performance . 56
4.6.6 Comparison to Existing Systems . 58

vii

4.6.7 Quality Comparison . 60

5. COHERENT ISOSURFACE RAY TRACING OF TETRAHEDRAL MESHES 62
5.1 Motivation . 62
5.2 System Overview . 64
5.3 Isosurface Intersection . 65

5.3.1 Extracting the Isopolygon . 65
5.3.2 Ray-Isopolygon Intersection . 66
5.3.3 SIMD Frustum Culling . 67
5.3.4 Isopolygon Precomputation . 67

5.4 The Implicit Bounding Volume Hierarchy . 68
5.4.1 Building the BVH . 68
5.4.2 Implicit BVH Traversal . 69

5.4.2.1 Implicit culling . 69
5.4.2.2 Speculative first-active descent . 70
5.4.2.3 Frustum test . 70
5.4.2.4 First-active ray tracking . 70
5.4.2.5 Leaf traversal . 72

5.5 Time-Varying Data . 72
5.5.1 Schema I: Unique BVH Per Step . 72
5.5.2 Schema II: Dynamic Refitting . 72

5.6 Shading and Interaction Modalities . 73
5.6.1 Shadows . 73
5.6.2 Multiple Isosurfaces . 73
5.6.3 Clipping Planes and Boxes . 74
5.6.4 Transparent Depth Peeling . 75

5.7 Results . 75
5.7.1 Build Time and Performance . 75
5.7.2 Rendering Performance . 78
5.7.3 Scalability in Model Size . 78
5.7.4 Traversal Efficiency . 78
5.7.5 Multiple Isosurfaces, Shadows, and Transparency 80
5.7.6 Time-Varying Data Sets . 80
5.7.7 Memory Overhead . 81
5.7.8 Comparison to Existing CPU Based Approaches 82
5.7.9 Comparison to Existing GPU Based Approaches 82

6. RAY TRACING ARBITRARY-FORM IMPLICIT SURFACES 84
6.1 Motivation . 84
6.2 Background . 86

6.2.1 Ray Tracing Implicit Surfaces . 86
6.2.2 Interval Arithmetic and Inclusion . 87
6.2.3 Affine Arithmetic . 89
6.2.4 Condensation and Reduced Affine Arithmetic 91
6.2.5 Inclusion-Preserving Reduced Affine Arithmetic 92
6.2.6 Ray Tracing Implicits with Inclusion Arithmetic 92

6.3 SIMD CPU Ray Tracing Algorithm . 93
6.4 SIMD CPU Implementation . 95

6.4.1 SSE Interval Arithmetic . 96
viii

6.4.2 Ray Packet Structure . 96
6.4.3 Traversal . 96
6.4.4 Division . 97
6.4.5 Precision Criterion . 97
6.4.6 Shadows . 99
6.4.7 Gradient Computation . 99

6.5 GPU Algorithm . 100
6.5.1 Application Pipeline . 101
6.5.2 Shader IA Library . 102
6.5.3 Shader RAA Library . 102
6.5.4 Numerical Considerations . 103
6.5.5 Traversal . 103

6.5.5.1 Initialization . 103
6.5.5.2 Rejection test . 104
6.5.5.3 Main loop . 104
6.5.5.4 Back-recursion loop . 104

6.5.6 Traversal Metaprogramming . 105
6.5.7 Shading . 105

6.6 Results . 105
6.6.1 Performance . 105
6.6.2 IA versus RAA . 105
6.6.3 Error and Quality . 106
6.6.4 Algorithm Coherence and Performance . 107
6.6.5 Feature Reproduction and Robustness . 109
6.6.6 Shading Modalities . 110

6.6.6.1 Shadows . 110
6.6.6.2 Transparency . 110
6.6.6.3 Multiple isosurfaces . 110
6.6.6.4 Reflections . 111

6.6.7 Applications . 112
6.6.7.1 Mathematical visualization . 112
6.6.7.2 Interpolation, morphing and blending . 112
6.6.7.3 Constructive solid geometry . 113
6.6.7.4 Procedural geometry . 113

7. CONCLUSION AND FUTURE WORK . 116
7.1 Isosurface Ray Tracing of Octree Volumes . 116
7.2 Coherent Multiresolution Isosurface Ray Tracing

of Octree Volumes . 117
7.3 Isosurface Ray Tracing of Tetrahedral Volume Data 119
7.4 Ray Tracing Arbitrary Implicit Surfaces . 120
7.5 Conclusion . 122

APPENDICES

A. OCTREE VOLUME HASHING AND TRAVERSAL 124

ix

B. ARBITRARY-FORM IMPLICITS . 130

REFERENCES . 136

x

LIST OF FIGURES

3.1 Voxel-cell duality and octree traversal . 20

3.2 Retrieving a cell from a neighborhood of voxels. 20

3.3 Min/max tree construction from forward neighbors . 21

3.4 Octree volume format illustrated . 24

3.5 Ray traversing an octree node . 26

3.6 Richtmyer Meshkov instability . 32

3.7 Scalability with octree and grid ray tracing . 33

3.8 Time-variant isosurface rendering. 34

4.1 Overview of coherent octree volume ray tracing . 37

4.2 Voxel-cell mapping . 38

4.3 Min/max tree construction for multiresolution . 39

4.4 Coherent grid traversal . 41

4.5 Coherent octree traversal via implicit macrocells . 43

4.6 Culling empty macrocells from cap-node slices . 44

4.7 Clipping cell slices to fit active rays . 45

4.8 Slice-based cell reconstruction algorithm . 46

4.9 Multiresolution transitions illustrated. 50

4.10 Shading with foward and central differences . 52

4.11 Ray tracing with shadows . 53

4.12 Qualitative impact of multiresolution . 56

4.13 The visible female femur . 57

4.14 Results for the coherent multiresolution system . 59

4.15 Comparing multiresolution and single-resolution results on the RM data. 61

5.1 Ray-isopolygon intersection in an isotetrahedron . 66

5.2 Implicit culling in the BVH . 69

5.3 First-active descent, frustum test, and active ray tracking 71

5.4 Additional shading effects . 74

5.5 Benchmark scenes for the BVH . 76

5.6 Two examples of time-varying tet data sets . 77

5.7 Large data and scalability . 79

5.8 Teaser scenes from the tet mesh isosurface ray tracer 83

6.1 The inclusion property . 88

6.2 Bounding forms resulting from the combination of two interval and affine
quantities . 90

6.3 Barth sextic surface on the CPU . 94

6.4 Spatial interval bisection methods . 95

6.5 Handling division with IA . 98

6.6 The Klein bottle rendered using SIMD IA bisection . 99

6.7 Gradient normal computation . 100

6.8 The Mitchell and Barth Decic surfaces at various ε . 108

6.9 Fine feature visualization in the Steiner surface . 109

6.10 Shading Effects . 111

6.11 The Barth sectic and decic surfaces . 112

6.12 4D morphing example . 113

6.13 CSG using inequalities on 3-manifold solids. 114

6.14 Sinusoid procedural geometry . 114

6.15 An animated sinsuoid-kernel surface. 115

xii

LIST OF TABLES

3.1 Compression achieved for various structured data . 29

3.2 Octree-grid comparison . 31

3.3 Frame rates of various time steps of the LLNL Richtmyer Meshkov data 32

3.4 Frame rates for the CSAFE heptane data . 34

4.1 Results from clipping optimizations . 55

4.2 Results with coherent packets . 55

4.3 Richtmyer-Meshkov reference images for the coherent multiresolution system 58

5.1 BIH-style build vs. SAH for building the implicit BVH 76

5.2 Performance in frames per second for various data sets and platforms 78

5.3 Bucky ball replication and scalability . 79

5.4 Traversal statistics of the frustum method. 80

5.5 Memory usage and BVH overhead . 81

5.6 GPU performance comparison . 83

6.1 Implicit surface performance on the CPU and GPU . 106

6.2 Performance of various algorithms . 107

B.1 Formulas of simple test surfaces used in Table 6.1. 134

B.2 Formulas of more complicated implicit surfaces used in Table 6.1. 135

ACKNOWLEDGMENTS

I first thank my wife Jeanmarie for the five years of our lives during which I pursued this

doctorate. Two of these years we spent physically apart, while she pursued her own graduate

studies at the University of Texas at Austin and Brown University. Not unexpectedly, our

time together was often subject to the associated stresses of academic families with a two-

body problem. Nonetheless, I wouldn’t trade that time for any other in my life.

I cannot understate my thanks to my undergraduate colleagues Jamie Im and J Duncan,

who were PhD students well before I was, and who provided invaluable advice and above

all long-term friendship, which is so difficult to accomplish let alone maintain in our career-

obsessed, relocation-prone existence.

My parents Mark and Marlene and my sister Laura also provided continual encour-

agement, particularly when I doubted my own abilities. Academia can be an introverted

environment in which one places undue emphasis on the judgments of select peers. While

starry-eyed optimism alone cannot sustain an academic career, a strong dose of it from

supportive family members certainly doesn’t hurt.

At the University of Utah, I thank (in no particular order) Mathias Schott, Andrew

Kensler, Abe Stephens, Guo-Shi Li, Thiago Ize, Vincent Pegoraro, Roni Choudhoury, Kristi

Potter, Miriah Meyer, Won-ki Jeong, and Louis Bavoil, indeed all of CS and SCI. Peter Djeu

and Warren Hunt at the University of Texas, Austin; and Younis Hijazi and virtually everyone

in the IRTG of the University of Kaiserslautern, were instrumental in helping me complete

this dissertation. I would like to thank the professors on my committee, as well as Bill Mark,

Chris Wyman, Alex Reshetov, John C. Hart, David Laidlaw, and numerous faculty mentors

who helped me to develop my research interests.

My work has been supported primarily by the US Department of Energy, Los Alamos

National Laboratory, the DOE VIEWS and VACET and CSAFE projects, and the German

Science Foundation (Deutsche Forschungsgemeinschaft, or DFG). Specifically, funding has

come from the U.S. Department of Energy through CSAFE grant W-7405-ENG-48, the

National Science Foundation under CISE grants CRI-0513212, CCF-0541113, and SEII-

0513212, and NSF-CNS 0551724; and the US Deparment of Energy SciDAC VACET,

Contract No. DE-FC02-06ER25781 (SciDAC VACET); and the DFG through the University

of Kaiserslautern International Research Training Group (IRTG) 1131 for travel expenditures

and collaborative opportunities. Additional thanks go to the National Science Foundation

funding for the Center of Excellence for Interactive Ray Tracing and Photo Realistic Vision,

for development support of the Manta software architecture; and to Mark Duchaineau of

Lawrence Livermore National Laboratory for access to the Richtmyer-Meshkov Instability

simulation data.

Finally, I would like to give special thanks to Chuck for his patience with an often

headstrong student.

xv

CHAPTER 1

INTRODUCTION

Interactive rendering of large structured and unstructured volume data is a persistent

problem in visualization. Due to continual advancements in parallel computing, simulation

data can be generated with more numerous time steps and higher fidelity. These simulation

data model a wide range of real-world problems. Structured data computed on a regular

grid are typically generated by finite difference or finite volume simulations for applications

such as modeling climate, computational combustion for minimizing pollution, and reducing

turbulence inside turbines for power generation. Unstructured data, such as tetrahedral

or hexahedral meshes computed using finite elements methods, represent connectivity and

adapt to irregular geometry, and can be applied in earthquake prediction, automotive crash

worthiness, and aircraft design. In addition to simulation sources, volume data can be

scanned with numerous devices such as x-ray computed tomography or magnetic resonance

imaging machinery. These data are critical in a broad range of medical diagnoses, as well

as security screening and nondestructive testing. Like computational simulations, modern

scanning technologies increasingly employ higher resolution for greater fidelity.

To visualize large data sets, regardless of whether they are scanned or simulated, struc-

tured or unstructured, it is necessary to employ rendering methods that scale gracefully with

higher geometric complexity. Conventional rasterization methods for fixed-function graphics

hardware are of object-order time complexity, and encounter difficulty when the number of

objects in a data set is large, particularly in the case of structured data with cubic object

complexity. While unstructured data have better geometric adaptivity and compactness,

scalable and efficient reconstruction and interpolation of tetrahedral and irregular kernels

remain a challenge.

Implicit surfaces are useful geometric representations for volume visualization. In most

analysis of spatial data, discrete samples are paired with a filter to generate a continuous field

function. Isosurfacing consists of rendering an implicit surface defined by that filter and an

2

offset isovalue. While direct volume rendering is useful in visualizing global properties of

these fields, isosurfaces are powerful in understanding local features, and the smoothing or

interpolating behavior of the chosen filter. Moreover, in rendering large volume data, iso-

surfacing paired with efficient spatial culling [134] effectively reduces geometric complexity

from N3 to N2, which in turn reduces the time complexity of rendering.

Accurate rendering of local implicit surface geometry is an equally important problem.

Even in the absence of filtered discrete data, an implicit surface may be of arbitrary func-

tional form which can be nontrivial to render correctly. Generally, this surface must be

either ray-cast directly or rasterized via approximating geometry. The most popular method

for rendering implicits has been to extract and rasterize a triangle mesh using marching

cubes [139, 73] and more sophisticated variants. While many mesh extraction methods exist

with varying quality and efficiency, their time complexity is on the order of the number of

samples of the underlying implicit, which can become quite large particularly in the case of

structured data in three dimensions. Nonpolygonal proxy geometries, such as disc splats or

volumes, can encounter similar issues, when the sampling rate of the proxy is beneath the

Nyquist limit of the filtered implicit.

Ray tracing algorithms allow for rendering implicit surfaces directly without any proxy

representation, by sampling at each pixel in the output image. Ray casting isosurfaces

involves solving for the root where the ray intersects the implicit surface. With an appro-

priate numerical method for the implicit form in question, this guarantees correct rendering

of the surface, regardless of camera position, and enables on-the-fly changes in isovalue.

Although the root-solving process is not as fast as rasterization of simpler proxy geometry,

it can nonetheless be done efficiently and dynamically. Moreover, since the advent of

programmable graphics processing unit (GPU) hardware, it has also proven effective to

rasterize a bounding proxy, and employ a ray-casting intersection routine in a fragment

shader. True ray tracing methods involve construction and traversal of a spatial acceleration

structure, such as a grid, octree, kd-tree or bounding volume hierarchy. In the case of implicit

primitives, the acceleration structure can be specialized to accommodate the data and filter

in question. Ultimately, acceleration structures allow each pixel to be rendered at roughly

O(log N) cost with respect to the number of geometric primitives. For sufficiently complex

objects, and particularly volume data, this can make a parallel ray tracing approach more

efficient than rasterization approaches, which in principle cost O(N) for the entire frame.

3

The central premise of this dissertation is that ray tracing implicit surfaces is a powerful

and efficient method for certain problems in visualization, and will continue to be so as

graphics hardware evolves. In support of this statement, we specifically consider three

problems: isosurface visualization of large structured data, isosurface visualization of un-

structured data, and rendering of arbitrary implicit forms. The main technical components

of our work involve efficient acceleration structure construction and traversal for volume

visualization, and an efficient general-purpose intersection routine for general-form implicit

surfaces. Specifically, we make the following contributions:

• Isosurface ray tracing of large octree volume data.

In visualizing large volume data, we can employ the octree as both a data compression

mechanism and acceleration structure for more efficient rendering, in conjunction

with an implicit surface for voxel primitives as proposed by Parker et al. [90]. This

permits rendering of multiple-gigabyte volume data that could not trivially be handled

by a GPU direct volume renderer or dynamic isosurface extraction. Even with a

conventional single-ray traversal approach, this system performs interactively on a

multicore workstation, and outperforms ray tracing the same large data on a distributed

cluster [19]. These techniques are presented in Chapter 3.

• Multiresolution isosurface ray tracing using ray packets

In Chapter 4, we seek to optimize isosurface ray tracing of large volumes using coher-

ent ray packets. We adapt the coherent grid traversal method of Wald et al. [130] to

hierarchical grids and octrees, and find this technique can deliver greater performance,

but at the cost of scalability. To remedy this, we turn to the multiresolution voxel

representation inherent in the octree, and adapt our traversal algorithm to multiresolu-

tion isosurface reconstruction. While isosurfaces can indeed vary between resolutions,

smoothing can actually be desirable in visualization, and the resulting system can

achieve interactive performance on laptops and commodity desktops.

• Isosurface ray tracing of tetrahedral volume data.

While grids and octrees are well-suited for structured volumes, isosurfacing unstruc-

tured polygonal or simplicial volume data benefits from acceleration structures that

adapt to irregular geometry. We build and traverse an implicit bounding volume

4

hierarchy on top of a tetrahedral mesh. As the local implicit surfaces of first-order finite

elements are inherently piecewise-linear, we can employ a specialized intersection

algorithm inspired by the marching tetrahedra extraction method, in conjunction with

a packet-polygon intersection test. Coherent BVH traversal and SSE enhancements

allow for interactive ray tracing of large tetrahedral data sets on a desktop. This method

is covered in Chapter 5.

• Fast and robust ray intersection with arbitrary implicits.

Rendering general-form algebraic surfaces, first proposed by Hanrahan [39], is a clas-

sic problem in ray casting. Unlike point-sampling approaches, self-validated arith-

metic methods allow for robust rendering of arbitrary implicit forms. Interval arith-

metic is a well-known method of quantifying numerical error in computation [83].

Mitchell [82] first applied interval arithmetic to ray tracing implicit surfaces to guaran-

tee robust intersection Improved inclusion methods such as affine arithmetic have also

been employed in rendering [15, 17]. However, these methods have historically proven

slow. We note that the numerical precision delivered by the root refinement algorithm

of [82] is rarely required for visual accuracy. Moreover, by employing many of the

same coherent SIMD optimizations as acceleration structure traversal algorithms, we

can render closed-form algebraic and non-algebraic surfaces interactively on both the

CPU. On the GPU, a stackless traversal algorithm proves effective for instruction

parallel hardware. We illustrate these methods in detail in Chapter 6.

The practical efficiency of these systems is owed in no small measure to changes in CPU

and GPU architecture. Partly because geometric complexity is seldom higher than pixel

complexity, but also because due to the efficiency of the Z-buffer algorithm on fixed-function

graphics hardware, ray tracing has until recently proven prohibitively slow compared to

rasterization for most rendering tasks. However, over the course of the works in this dis-

sertation, CPU hardware has changed dramatically, facilitating ray tracing techniques that

were interactive only on small supercomputers in the late 1990s, such as the work of Parker

et al. [90]. Moore’s Law has ensured significant improvements in performance, but the

most dramatic advances have come from thread-parallelism and SIMD vector instructions,

coupled with efficient shared memory and cache. The proliferation of multicore CPUs in

particular has enabled interactive ray tracing on mainstream hardware, particularly for appli-

5

cations involving rendering of large datasets. The first four contributions of this dissertation

leverage the growing power of inexpensive shared-memory workstations, and more recently

commodity multicore CPUs with shared cache.

At the same time, GPU hardware has evolved in ways that benefit interactive ray trac-

ing. Over the past six years, programmable graphics hardware has progressed from sim-

ple processors for sequential vector instructions, to more general processors with support

for branching, and recently massively data-parallel scalar processors with a light threading

model. This has enabled vastly improved performance for programs employing branching,

without sacrificing arithmetic computational power. These features make the GPU an ideal

platform for solving ray tracing higher-degree implicits. The last component of this work

is a full ray-tracing technique that is well-suited for current GPU’s: it makes heavy use of

floating point arithmetic and conditionals in tight loops, and significantly outperforms its

counterpart on the CPU. Efficient acceleration structure traversal remains a challenge on the

GPU, due to the irregular memory access patterns and code complexity of efficient CPU

algorithms employing packets. Nonetheless, this obstacle is not insurmountable, and full

accelerated ray tracing on the GPU has great potential.

With both GPU and CPU employing massively parallel SIMD hardware, computationally

expensive ray tracing methods such as rendering implicits are increasingly practical. At the

moment, both platforms have advantages and limitations: the applications in this dissertation

are generally tailored to the strengths of their target hardware. However, common paradigms

apply to both evolving GPU and CPU architectures. In particular, arithmetic performance

will ultimately outpace memory access, suggesting that procedural methods for defining

and rendering geometry will become increasingly prominent in graphics. We see implicit

surfaces as part of this overall picture, and ray tracing as a viable method for interactive

rendering of these geometries. We do not claim that ray tracing is the best solution for

all rendering, nor indeed that it is ideal for all applications of implicit surface rendering.

However, we do see it as playing a continued and important role in visualization, at the very

least because implicit filters are ubiquitous in discrete data processing. Finally, isosurface

ray tracing is an interesting case study in which algorithms are suited for the CPU and the

GPU. It poses significant questions about appropriate tradeoffs between cache and arithmetic

logic in hardware, the relationship between ray tracing and other means of sampling implicit

surfaces, and the impact of compression and level-of-detail techniques.

CHAPTER 2

BACKGROUND AND RELEVANT WORK

Surfaces are ubiquitous in 3D computer graphics. Due to modeling simplicity and the

efficiency of the z-buffer algorithm, the most common geometric surface representation is

a piecewise-planar triangle mesh. However, in many cases it is useful to model the surface

via a higher-order procedural form. The motivations for this approach include compactness

of representation and control over local or global smoothness. Methods for modeling pro-

cedural geometry can be discrete, as in subdivision surfaces, or continuous, as in parametric

and implicit surfaces. While parametrics are commonly used in modeling, implicits define

surfaces based on a wide family of spatial filters.

An implicit form can be used to define a surface whenever discrete geometry is paired

with a continuous reconstruction filter. The resulting isosurface is continuous with respect

to the chosen support, and inherits the behavior of its parent filter. This functional definition

of the surface enables a wide range of techniques built into the filter, including interpolation,

morphing, and blending between levels of detail. In the case of visualization, a given data set

often implies a specific filter. Even when the user employs an arbitrary filter, it is important

to correctly render the filtered data.

This chapter provides a working definition of an implicit surface, and motivation for

its use in graphics and visualization. It then covers relevant work in rendering implicits,

employing ray tracing and other techniques.

2.1 Implicit Surfaces
In mathematics an explicit function g : X →Y is said to be implicit if for some f : (X ,Y) → R

it satisfies f (x,g(x)) = 0. The implicit function has come to signify the function f = 0 itself;

and more generally an implicit equation is understood to be anything of the form:

f : Ω→ R, f = 0 (2.1)

7

For our purposes, given a function f ∈Rn which we refer to simply as the form, or filter,

we are interested in the zero set:

{x ∈ Rn | f (x) = 0} (2.2)

which more specifically in Rn is a level set. In 3-space, this set is a level surface. Thus, an

implicit surface refers to a surface defined implicitly by function of three variables,

{~x ∈ R3 | f : R3 → R, f (~x) = 0} (2.3)

Typically, given an isovalue v, the form

f (~x)− v = 0 (2.4)

denotes the isosurface, at v, of the implicit form f .

Thus, when we refer to implicit surfaces, or implicits, we are specifically referring to

level surfaces of a chosen filter f . The choice of filter function is theoretically unlimited: it

can be an algebraic or transcendental function; it can be defined globally over its domain or

as piecewise kernels.

Since f is itself a function, confusion often arises from differences between the formal

mathematical definition of an implicit function (as an explicit representable in implicit form)

and the implicit form itself. This is further complicated by the implicit function theorem,

which shows that any explicit function can be expressed as an implicit function, locally

where continuously differentiable [102]. To this end the term functional representation, or

“F-Rep” [92], has been proposed to describe objects defined by closed-form expressions

f = 0, and inequalities such as f ≤ 0 that model solids. However, implicits are at this point

accepted terminology in mathematics as well as graphics. Nonetheless in our work, we will

avoid using the ambiguous term implicit function, and instead refer to the implicit equation,

as the implicit form of a filter f .

Ultimately in graphics, implicit surfaces are ways of functionally defining geometry on

R3, as opposed to defining geometry explicitly via a set of discrete points. In this sense,

8

a triangle mesh is simply a set of trimmed piecewise linear (planar) implicits; nonetheless

meshes are often referred to as “explicit” geometry. Here, implicits are simply abstract

reconstructions of some given geometry in typically simpler explicit form; the terms implicit

and explicit have intuitive sense but have nothing to do with their formal definition.

Implicit surfaces were first introduced to computer graphics by Blinn [5] in visualizing

molecular structures Blinn employed a quadratic polynomial to approximate a Gaussian

distribution, and performed ray-casting combined with a hybrid iterative solver to find the

intersection point. The resulting “blobby” shapes were popular in graphics and modeling

from 1982 until the 1990s; however they proved difficult to render and model with, and

ultimately unpopular outside of niche applications in molecular dynamics and biology.

Beginning with marching cubes [139, 73], generating an implicit surface from filtered

volume data became a popular method of indirect volume visualization. Soon afterwards, im-

plicit surface techniques were developed for extraction and rendering finite elements meshes,

range scans, point clouds and other irregular data. At the same time, direct volume rendering

methods evolved as a feasible and expressive method of rendering filtered data, without

having to specify a discrete surface. Common sources of scientific data that benefit from

isosurface rendering are:

• a regular (structured) volume, for example from a finite differences simulation, MRI

or CT scan.

• a tetrahedral or hexahedral volume from a finite elements or similar method

• a raw point set generated from range scanning apparatus

• a scalar, vector or tensor field point set generated from simulation or measurement

The remainder of this chapter provides an overview of this work in implicit surface

rendering and geometric data visualization. This field encompasses most of scientific vi-

sualization, and is too broad to adequately describe here. Interested readers are encouraged

to consult [48], which provides an excellent overview of a wide variety of visualization

techniques. In particular we focus on state-of-the-art ray casting and ray tracing methods

for implicit surfaces, and proxy methods that are competitive in the arena of large-data

visualization and rendering of implicit surfaces of arbitrary form or with general filters.

9

2.2 Mesh Extraction
Perhaps the simplest, and by far the most popular method for extracting a mesh from an

implicit surface is via the marching cubes algorithm, developed for isosurfacing of volume

data by Lorensen and Cline [73]. The procedure is to subdivide the lattice into cell primitives,

and solve where the local implicit intersects the cell edges. In conventional marching cubes,

cells are voxels of the volume, and the isosurface is approximated by solving where linear

interpolation yields the desired isovalue along a voxel edge. By considering the values at

vertices of the cell, the algorithm knows which edges will contain a surface. For a trilinear

interpolant, 15 different mesh configurations exist for piecewise-planar iso-polygons within

a given voxel. As these implicits are C0 at cell edges, the resulting mesh is guaranteed to

be continuous, although several cases yield ambiguous connectivity which must be resolved

to prevent holes [85]. More generally, marching cubes allows a mesh to approximate any

implicit, as solving for arbitrary f (x,y,z) reduces to a 1D problem when any two coordi-

nate axes are constant [6]. Ironically, a similar approach was first published by Wyvill et

al. [139] for polygonizing blobby surfaces similar to those of Blinn. Nonetheless, isosurface

extraction for volume rendering has proven a popular application of implicit surfaces.

For small volume data, marching cubes is well suited for dynamic extraction alongside

rasterization. However for larger data, it becomes necessary to manage overall scene com-

plexity, measured in the number of cells or tetrahedra visited by the extraction algorithm.

As long as this is controlled, it is generally trivial to render the resulting mesh interactively

on graphics hardware. To reduce the visited set of cells, Wilhelms and Van Gelder [134]

proposed a min-max hierarchy embedded in a branch-on-need octree for trivially ignoring

empty regions of a volume. Livnat et al. refined the interval tree concept in creating a

span space tree [70]. Livnat and Hansen [69] extended the min-max octree technique with

view-dependent frustum culling using a shearing transformation visibility test. Westermann

et al. [132] implemented adaptive marching cubes on multiresolution octree data. Pesco

et al. [94] proposed an occlusion test for the implicit itself, further reducing the cost of

isosurface extraction at render-time. With few exceptions these techniques enable interactive

rendering of data up to 5123 resolution. For larger data, interactive visualization is difficult,

and more recent extraction techniques have turned to topologically-guided generation of

simplified meshes [64].

Other mesh extraction algorithms are appropriate for different applications. For unstruc-

10

tured volume data, marching tetrahedra (MT) was developed by Doi and Koide [23] to

operate natively on tet meshes, though it can equally be applied to structured data due to the

dual relationship between tetrahedra and voxels. MT and related algorithms have been em-

ployed in dynamic isosurface rendering of unstructured data [91, 53]. Though MT addresses

some sampling issues of marching cubes with unstructured data, both algorithms generate

poor-quality, irregular meshes, and fail to capture topological features such as singularities.

Dual contouring [49] and dual marching cubes [86, 108] alleviate these problems, reducing

overall triangle counts, and effectively capturing singularities. For generating high-quality

triangle meshes, Scheidegger et al. [109] proposed an advancing front meshing algorithm

using a curvature-based guidance field. Schreiner et al. [110] extended this method to

structured and unstructured scalar volume fields, and modified the guidance field to minimize

both geometric error and number of required samples.

Extraction methods have proven popular for rendering general-form implicits. Bloo-

menthal [6] presented a fast polygonizer for algebraic surfaces based on a generalization

of marching cubes. Yu et al. [142] employed a coarse Bloomenthal polygonization in con-

junction with a progressive subdivision-based refinement algorithm, achieving more regular

tessellations in faster runtime. Stander and Hart [116] used critical points from Morse theory

in feature-driven rendering of implicits. Paiva et al. [88] extended dual marching cubes

with an interval arithmetic method for robust rendering. Varadhan et al. [123] employ dual

contouring and IA to decompose the implicit into patches, and compute a homeomorphic

triangulation for each patch.

2.3 Point-Based Methods
When the discrete geometry underlying the implicit surface is sufficiently dense, it be-

comes more efficient to approximate the surface with nonpolygonal proxy geometry. This

geometry can then be rasterized using raw points, billboarded primitives, or a coarser volu-

metric representation.

Point-based rendering was conceived by Levoy and Whitted [68] and proven for large

point-set data by Rusinkiewicz and Levoy [104] with their QSplat software. The process

involves sampling a surface into points as an offline process and then rasterizing and shading

these points as disc splats or similar proxies on a GPU. Semantically, point-based rendering is

similar to ray casting without an explicit root-finding component; rather than picking samples

11

along a ray and incrementally solving for the root, it generates appropriate splats. Often,

point-based methods employ ray casting techniques to blend between splats or to shade.

Co et al. [14] extended the isosurface ray tracing technique of Parker et al. to point-based

rendering on the GPU. Livnat and Tricoche [71] implemented a hybrid isosurface render that

combined view-dependent marching cube extraction and point-based rendering, and handled

reasonably large data interactively. Zhou et al. [143] develop a system for rendering higher-

order finite element volumes efficiently. While rendering of point sets is efficient on the

GPU, generating appropriate point set proxies can be expensive, and generally runs as an

offline process. Adaptive particle-based sampling of implicits was proposed by Witkin and

Heckbert [135]. Recent contributions have extended this approach with a curvature-guided

energy redistribution method [79]. It is equally possible to use particle sampling of implicit

surfaces for mesh generation [80].

2.4 Volume Rendering
Volume rendering is another approach to rendering implicit surfaces using the GPU

rasterization pipeline. When the implicit is a structured scalar field, direct volume rendering

(DVR), can approximate an isosurface by employing a sharp peak in the transfer function

near to that isovalue [66, 67]. Clearly, this approach will produce artifacts when the convo-

lution of the transfer function and underlying data set is undersampled. Nonetheless, DVR

is an excellent approach to a wide variety of implicit surface rendering applications, and

holds many advantages over discrete surface rendering, including the ability to trivially ren-

der multiple transparent surface approximations and provide better data classification [54].

Moreover, many of the space-skipping techniques employed in efficient ray casting and

mesh extraction can also be utilized in DVR and volume ray-casting algorithms. Out-of-core

methods [55] and distributed shared memory mechanisms paired with streaming [13] have

proven capable of handling large volume data on the GPU, though these methods are not

always scalable.

While structured volume rendering is ubiquitous and efficient due to fast GPU texture

access and interpolation, GPU DVR algorithms for unstructured data are nontrivial. The

best known methods rely on tet-by-tet ray casting [9], sorted rasterization of projected tetra-

hedra [11, 10], polygonal view-inedependent spherical shell proxies [31], and point-based

rendering [143].

12

In rendering general-form implicit surfaces, one approach is to sample an analytical

implicit into a regular grid by voxelization [119], followed by direct volume rendering.

Rendering of recursively voxelized object space with interval arithmetic was first proposed

by [136]. Discrete ray tracing [140, 118] and GPU-based volume ray casting are also valid

approaches to rendering voxellized datasets.

Isosurface rendering and direct volume rendering have different strengths. The former

is useful when subvoxel surface detail is critical, and the latter when a broader picture of

the underlying data is desired. Transfer functions, particularly multidimensional transfer

functions [54] can be highly expressive and flexible, and allow intuitive visualization of

3-manifold data segments as opposed to surfaces. However, the difference between object-

order and logarithmic order rendering is significant when dealing with large datasets. Fre-

quently, discrete isosurface rendering is appropriate in cases when conventional object-order

volume rendering would be prohibitive, as in the case of large volume datasets; or where

simplyfing LOD schemes for volume rendering are not desirable. In many cases, however,

in visualizing boundaries such as the interface between two fluids, it remains desirable to

render an isosurface.

2.5 Ray Casting and Ray Tracing Implicits
In ray casting, as first presented by Appel [2], viewing rays are generated from a camera

and a frame buffer and intersected against objects in their trajectory, then finally shaded. Ray

tracing, first proposed by Whitted [133], entails ray casting but with the additional tracing of

secondary rays for shadows and refractions.

Over time, ray casting has come to signify any process of intersecting primary (viewing)

rays with geometric primitives, including hybrid rasterization/ray-casting methods. In con-

trast, an algorithm is frequently termed a “ray tracing” algorithm if it can natively support

casting of secondary rays, regardless of whether or not shadows or a full Whitted refraction

model is actually used. While there is some disagreement over whether ray cast images

without refractions can be termed ray tracing, in this dissertation we claim that a technique

is ray tracing if it can support secondary rays, regardless of whether or not secondary rays are

employed in a given image. Moreover, we prefer the term “ray tracing” to differentiate our

algorithms, which involve ray traversal of an acceleration structure, from GPU ray casting

algorithms which may rely on view-dependent rasterization at one or more stages of the

13

rendering pipeline. Similarly, while the terms “ray casting” and “ray intersection” are often

used interchangably, we draw a distinction between the ray-primitive intersection test and

the ray casting method of generating primary rays.

Much focus of ray tracing literature in graphics has been on using secondary rays for

realistic lighting and shading models, such as global illumination [51]. More recently,

the interactive ray tracing community has focused on making ray tracing faster through

parallelization and optimization. Our work is primarily interested in ray tracing algorithms

for their ability to intersect nonpolygonal geometry, specifically implicits.

In ray tracing an implicit surface f : R3 →R, f (x,y,z) = 0, we seek the intersection of a

ray

~p(t) =~o+ t~d (2.5)

with the implicit surface. By simple substitution of this parametric line equation into Equa-

tion 2.3, we have a unidimensional function

ft(t) = f (ox + tdx,oy + tdy,oz + tdz) (2.6)

and we can then solve ft(t) = 0 for the smallest t > 0.

Ray tracing implicits is a root-finding problem. Moreover, in ray tracing all surfaces are

at some level formulated implicitly, in order to solve for the distance parameter t. In simple

cases, finding the roots entails computing a closed-form solution or performing several

iterations of Newton-Raphson or similar numerical methods. More complicated f with mul-

tiple roots and nonmonotonic behavior require robust techniques such as Lipschitz methods,

bracketing or self-validated arithmetic.

2.5.1 Ray Tracing General-Form Implicits

Although it employed projection to solve ray-implicit intersection as a function of one

variable, the blobby renderer of Blinn [5] was fundamentally a ray casting approach. Ray

tracing of general algebraic surfaces was first explored by Hanrahan [39], using Descartes’

rule of signs to determine if a given ray interval contained roots. While efficient, this

“point sampling” approach is not robust when the implicit ray equation ft contains multiple

roots along an interval. Van Wijk [122] implemented a recursive root bracketing algorithm

14

using Sturm sequences, suitable for differentiable algebraics, and now employed in the

popular POV-Ray software [96]. Kalra and Barr [52] devised a robust method for ray

tracing algebraic and some non-algebraic surfaces given Lipschitz bounds of the first and

second order. Hart [40] formulated the implicit as a signed distance function, and minimized

this function along the ray. To robustly ray-trace arbitrary implicits directly from their

expression, Mitchell [82] suggested the use of interval arithmetic for root isolation, followed

by a separate root refinement algorithm such as regula falsi, bounded Newton-Raphson, or

another globally convergent numerical method. De Cusatis Junior et al. [16] extended this

technique to employ affine arithmetic.

More recent implementations have demonstrated ray-casting of implicit surfaces on the

GPU. Loop and Blinn [72] implemented an extremely fast GPU ray caster approximating im-

plicit forms with piecewise Bernstein polynomials over local tetrahedral domains. Romeiro

et al. [100] proposed a hybrid GPU/CPU technique for casting rays through constructive

solid geometry (CSG) trees of implicits. De Toledo et al. [18] demonstrated interactive

ray casting of cubics and quartics using standard iterative numerical methods on the GPU.

Fryazinov and Pasko [27] employ rule-of-signs interval methods in ray tracing generalized

implicit (FRep) surfaces on the GPU.

2.5.2 Ray Tracing Isosurfaces

Direct ray tracing of implicits interpolating volume data was first demonstrated by [115],

with rendering times on the order of seconds per frame. Parker et al. [90, 89] implemented a

tile-based parallel ray tracer on a 128-CPU SGI workstation, achieving interactive rendering

of isosurfaces from large (1 GB) structured volumes. They employed a hierarchical grid as

a min-max acceleration structure on top of the raw raster data, and an analytical ray-voxel

intersection technique based on the numerical solver of Schwarze [111] for cubic equations.

DeMarle et al. [19] extended this system to a 32-node cluster, rendering an uncompressed 8

GB volume dataset at multiple frames per second on 64 CPUs. Wald et al. [129] employed

progressive out-of-core rendering and SIMD ray tracing of a kd-tree to achieve significantly

faster rendering speeds on a multicore workstation. Wyman et al. [138] extended the system

of [90] with a global illumination approximation using a precomputed radiance cache and

spherical harmonics.

Isosurface ray casting has not been restricted to the CPU. Hadwiger et al. [38] modified

15

volume ray casting techniques for the GPU to render discrete isosurfaces, by using the

raster pipeline for high-level spatial culling and employing a hybrid point-sampling [39]

and secant method for solving the intersection. Though not entirely robust, this method

allows for rendering surfaces interpolated via a tricubic spline interpolant, at real-time rates.

Stoll et al. [117] employed a hybrid rasterization/ray-casting approach to rendering piecewise

quadric implicits, employing the SLIM surface model of Ohtake [87].

Ray casting algorithms have also been employed in rendering unstructured data. Gar-

rity [30] proposed computing ray intersections with entry and exit faces of tetrahedra; this

approach could trivially support isosurfacing albeit in linear time with respect to the number

of objects traversed. Marmitt and Slusallek [76] present a Plücker-coordinate intersection

approach for efficient volume ray casting of tetrahedral and hexahedral meshes, although

this method is subinteractive on current CPUs.

We conclude this chapter by noting a common goal in all isosurface rendering applica-

tions. Regardless of whether the surface is extracted via a proxy or rendered directly via ray

casting, adequate sampling is critical for accurate rendering of features. The main limitation

of volume rendering, when employed in discrete isosurface rendering, is ensuring sufficiently

high sampling frequency, whether samples are stored in planar proxy or computed via direct

volume ray casting. Similarly, in point-based rendering and mesh extraction from large

datasets, dynamically generating appropriate samples is more difficult than evaluating the

implicit or rendering the proxy. With ray casting and ray tracing methods, sampling is

automatically tailored to the camera. In this sense, ray tracing implicits is blind to sampling

requirements; it is a “ground truth” method for visualization even when it is not the most

efficient. A goal of the work in this dissertation is to show that ray tracing can be efficient, as

well as correct, in rendering several classes of implicit surfaces with a variety of techniques.

CHAPTER 3

ISOSURFACE RAY TRACING OF OCTREE

VOLUME DATA

In this chapter, we present a straightforward technique for ray tracing isosurfaces of large

compressed structured volumes. The data set is first converted into a lossless-compression

octree representation that occupies a fraction of the original memory footprint. An isosurface

is then dynamically rendered by tracing rays through a min/max hierarchy inside interior

octree nodes, using an efficient ray intersection routine for piecewise trilinear interpolants in

nonempty cells. By embedding the acceleration tree and scalar data in a single structure and

employing optimized octree hash schemes, we achieve competitive frame rates on common

multicore architectures, and are able to handle large and time-variant data in a completely in-

core CPU algorithm. The contents of this chapter were published as “Interactive Isosurface

Ray Tracing of Large Octree Volumes” [61].

3.1 Motivation
This work was inspired by previous applications of isosurface ray tracing of large volume

data [90, 89, 19, 129], and later by coherent grid traversal for polygonal scenes [130]. At the

same time, we build on top of previous work involving min-max octree structures for online

mesh extraction and rasterization [124, 132, 134]. The main motivation is that structured

volumes, stored as scalars in a regular grid, are large but often inefficient. Particularly in the

case of simulation data, or presegmented medical or biological scanned data, these volumes

contain large amounts of empty space. Worse still, acceleration structures for isosurface

ray tracing can occupy up to 3× the memory footprint of the original data, in the case of a

kd-tree of [129]. Although CPU cache architectures and the logarithmic complexity of ray

tracing are ideal for handling large data, the overhead of uncompressed data and acceleration

structures is high, and restricts the size of data that can be rendered while resident in memory.

As seen in [19, 20], a cluster-based ray tracer with a distributed shared memory scheme can

17

perform interactively, but nonetheless incurs a high performance penalty relative to fully

in-core rendering.

Data compression can be an effective alternative to out-of-core methods. From the

standpoint of information theory, it is possible to represent a datum with fewer bits when

the local gradient, or another measure of entropy, is zero or small [113]. This premise is

the basis for all compression schemes. However, for the purposes of ray tracing we desire

a compression mechanism that correlates to spatial location, so that information can be

decoded at the same time an acceleration structure is traversed. Specifically, we desire that:

• compressed data can reside completely in local memory.

• decompression can be performed progressively at traversal time, with high spatial and

cache coherence.

While achieving a maximal compression ratio is desirable, we are mostly concerned with

representing the original data losslessly, and embedding that into an acceleration structure

that can be traversed quickly. For this, we turn to the octree, a classic data structure often

credited to Dijkstra [106] and first employed in volumetric image processing by Jackins and

Tanimoto [47]. Functionally, the octree is the zero-order member of the wavelet family (first

order being the Haar wavelet) [74]. While employing wavelets in volumetric compression is

possible for this application, in our case the relative overhead of the acceleration structure is

sufficiently high that the representation of each datum as a full byte is acceptable. This con-

trasts with wavelet compression methods designed to compress larger blocks, for example

paired with out-of-core direct volume rendering [37]. Moreover, we are primarily interested

in lossless compression of our voxel data, for which the octree is arguably better suited as

opposed to higher-order wavelets.

3.1.1 Octree Traversal

Octrees are, in fact, theoretically optimal in terms of fewest traversal steps, assuming

objects are contained uniformly within cells of the acceleration structure, with no over-

lap [8]. The combination of regular, hierarchical nature of the structure affords many dif-

ferent styles of traversal algorithm. The original Glassner implementation [32] proposed

top-down point location testing along successive octree nodes hit by the ray. Samet [105]

modified this marching procedure to incorporate a neighbor-finding algorithm, delivering

18

dramatic speedups. Sung [120] proposed a DDA traversal similar to a hierarchical grid.

Finally, Gargantini and Atkinson [29] implemented a traversal similar to a kd-tree where the

ray intersection with each octant midplane is ordered.

For regularly spaced geometry, octrees require fairly low memory access; however for

meshes and unstructured volumes they conform poorly to irregular geometry. Because of

this, and relatively expensive traversal strategies [41], octrees were overtaken by hierarchical

grids as general-purpose ray tracing structures [45]. Nonetheless, in our application we are

specifically concerned with regular voxel geometry. Moreover the ability to use a single

structure for both ray traversal and scalar storage is tempting, and encourages our choice of

the octree as an acceleration structure in this application.

3.1.2 Octree Hashing

It is worth noting previous work in efficient octree hashing. The general goal is point

location: given (x,y,z) coordinates and the root node of the octree, retrieve a leaf node of

the octree at that location. A related problem is neighbor-finding, in which we are given

a leaf node and asked to find an adjacent neighboring leaf. While these two algorithms

were pioneered by Glassner [32] and Samet [105] in ray tracing, their application extends to

general use of any regular binary tree (quadtree, octree, etc.). Frisken and Perry [26] propose

an efficient and concise hashing scheme using binary arithmetic on integer coordinates. We

build upon their work to create our own fast, general-purpose hashing scheme.

3.2 Algorithm Overview
We compress an input volume from a 3D grid into an octree, similarly to the approach

of Velasco and Torres [124] but encapsulating actual voxels as opposed to eight-voxel cells.

Rather than extracting a mesh and sending geometry to the GPU, we ray trace the octree-

encapsulated volume directly, using the octree as an acceleration structure to find a cell

primitive. The implicit surface inside each cell is a trilinear interpolant patch; globally this

defines a piecewise C0 isosurface.

3.2.1 Constructing an Octree Volume

An octree volume is an adaptive-resolution, hierarchically compressed scalar field. Scalar

values are stored at leaf nodes. At maximum octree depth, these correspond to the finest

available data resolution. Scalars at less than maximum depth store coarser resolutions, by

19

factors of 8 per depth level. Interior nodes maintain pointers from parents to children. In

our multiresolution LOD application, they also contain coarser-resolution representations of

each of their children. We embed min/max pairs inside interior nodes, and compute these

bottom-up during construction. The resulting octree is an acceleration structure for traversal.

Volume data could be natively computed and stored in this format; however for our

purposes it is desirable to build an octree volume from a scalar field in a 3D array. The

process of creating an octree volume is conceptually simple: given input data in the form of a

3D array, we group regions with low variance and output a hierarchically compressed octree

volume. Specifically, we consider groups of 8 voxels nested within a parent node of the

octree. If these voxels are identical (in lossless compression), or have a combined variance

below a desired threshold (lossy compression), we compute their average and consolidate

them into a single node at the previous depth level of the octree. By recursively consolidating

nodes with low intervoxel variance, we can build an octree volume in bottom-up fashion.

3.2.2 Ray Traversal and Voxel-Cell Duality

Our choice to use the same structure for data and acceleration comes with a caveat:

though our volume data consists of voxels, we ray trace an isosurface that is defined within

cells of 8 voxels. Fortunately, there exists a dual relationship between voxels and cells. By

logically shifting the position of all scalars backward by half a unit of voxel width, we remap

our scalar field to cells (Figure 3.1).

Two options exist to accomplish this mapping in memory. One could expand each voxel

to contain its forward neighbors, thus storing each cell completely. While this would require

no additional searching through a structure to retrieve cell corner values, it requires 8 times

the storage of the original volume. A far more sensible approach is to retrieve the forward-

neighboring voxels and construct a cell from them. In effect, when a ray traverses an octree

leaf node at (i, j,k) with a datum v, we instead intersect it with a box (cell) where i, j,k

is mapped to the minimum vertex, and neighboring voxels in the octree are mapped to the

remaining vertices. (Figure 3.2).

For a volume stored in a 3D array, querying the values of these neighbors is trivial: simply

an array index into memory that is typically already in cache. For the octree, the process is

more intensive. Here, we must employ point location to retrieve the voxel values of the

forward neighbors. Full top-down point location from the root would result in an O(log(N))

20

Figure 3.1: Voxel-cell duality and octree traversal. While the octree volume (a) is given
with voxels at the center of each node, we actually seek to ray trace a field of cells with
voxel values at the corners (b). To accomplish this, we observe a duality between voxels
and cells, by mapping each voxel to the lower-left corner of a cell. Values outside the
octree data (in gray) are defined to be zero. Thus, the ray traverses interior nodes of
the octree, and intersects with a well-defined cell primitive composed of 8 voxels.

Figure 3.2: Retrieving a cell from a neighborhood of voxels. Given an octree interior
node composed of eight voxels, we seek to intersect a leaf node consisting of a single
scalar value. We perform neighbor-finding on the octree structure to retrieve the
forward-neighboring voxels. This yields a cell of 8 voxels, which we then use as the
intersection primitive from which we reconstruct the isosurface.

21

algorithm. However, with neighbor-finding techniques we can significantly reduce this

lookup cost. The worst-case complexity of neighbor-finding is O(log(N)), but in practice

the algorithm skews heavily toward the best-case of O(1), when neighboring voxels lie

within the same parent [106]. Even then, neighbor-finding on octree data must perform

competitively with the O(1) complexity of lookup on uncompressed 3D arrays. It is readily

apparent that octree hashing, specifically neighbor-finding, is a fundamental algorithmic

component of our work.

3.2.3 Computing the Min/Max Tree

Ray tracing cells defined by forward-neighbors (Figure 3.2) directly impacts the con-

struction of our min/max tree. Specifically, a parent node in the octree must compute the

minimum and maximum based not only its own children, but on voxels forward-adjacent to

its children as well (Figure 3.3). Knowing this, one can compute a min/max pair for that

leaf node based on the cell corner values. The min/max tree is then computed recursively,

by finding for each parent node the minimum and maximum of all children min/max pairs.

As we are only concerned with cells at the finest depth of the octree, it suffices to account

for forward-neighbors once at the deepest leaf level, and thereafter compute each parent’s

Figure 3.3: Min/max tree construction from forward neighbors. In the quadtree case,
each leaf node must compute the minimum and maximum of its cell, hence account for
the values of neighbors in the positive X and Y dimensions (a). This yields a min/max
pair for the leaf node (b). Neighbors can potentially exist at different depths of the
octree, as is the case for at the blue leaf node.

22

min/max pair based on the pairs of the 8 children.

Clearly, storing the min/max tree within the octree data structure entails some overhead.

As compression is a major goal of our work, it would be unwise to store the min/max pairs

of each scalar voxel, which would demand over three times the storage of the raw octree

data. Instead, one could compute the extrema temporarily at leaf nodes, and begin storing

the min/max tree at depth dmax−1. Omitting the min/max pair at leaf nodes would seem to

generate a looser tree and hurt performance, but in practice, it simply forces us to compute

the minimum and maximum of forward voxels while we are looking them up via neighbor-

finding. Logically, this approach entails an overhead of one min/max pair for 8 voxels, plus

pairs for other interior nodes of the tree. This suggests approximately a 22% additional

footprint on top of raw scalar octree-compressed data. While not insubstantial, that seems

acceptable given the acceleration capabilities of the min/max structure.

While the octree volume does not yield great overall compression ratios (3:1 or 4:1), it

is respectable as a lossless compression mechanism, and includes the min-max acceleration

structure as well. For additional compression we can choose a set range of isovalues, and

omit data outside that range. For rendering isovalues within that region of interest, this pre-

serves lossless quality and allows less compressible data to reside in main memory. Overall,

the octree can occupy an order of magnitude less memory footprint than a comparable kd-tree

or hierarchical grid method.

3.3 Implementation
Our implementation builds on the theoretical foundation laid in the previous section,

with details provided for the octree data format, point location and neighbor-finding, and

the octree traversal itself. Pseudocode of these algorithms is provided in the appendices;

however it is not necessary to understand our approach.

We chose not to employ SIMD or packets. Given our focus on large data, we would

expect highly-variant scenes and at best modest speedups from coherent techniques. Wald

et al. [129] reported little performance gain from coherent techniques on large data. Specif-

ically, with comprehensive scenes of large volumes, a pixel can frequently cover multiple

voxels. With agressively coherent techniques such as frustum-based traversals, this entails

much unnecessary work and potentially a performance decrease over single-ray techniques.

Moreover, we are first interested in how an optimized single-ray octree algorithm behaves

23

compared to known techniques, and the relative performance of octree volumes versus un-

compressed structured data. Coherent octree traversal will likely be explored in future work,

however.

3.3.1 Data Format

To avoid explicitly storing a full node for each leaf of the octree volume, we store nodes

corresponding to the parent. In this scheme, at the maximum depth of the octree, all children

are guaranteed to be leaves. Thus, at depth dmax − 1 of the octree, we employ a separate

structure called a cap, consisting simply of 8 scalar values at dmax. All other interior nodes

contain the scalars, min/max pairs, and pointers for 8 children. We denote any scalar value at

noncap depth a scalar leaf, although admittedly scalars inside cap nodes are logically leaves

of the tree as well. Scalar leaves are stored as a single value within within a parent interior

node, and are indicated by a null child pointer. These three types of logical octree node are

illustrated in Figure 3.4.

Rather than store full pointers, we store a 32-bit child start and a single-byte offset per

child. In early implementations, we used binary arithmetic masks and bit-counting to deter-

mine which nodes were leaves; in practice however this requires computation (specifically

left-shifting by a nonconstant) that hampered performance. Ultimately, we use an array

to indicate the offset of each child, or −1 if that child is a leaf. We use a second array,

child scalars, to contain the value of each child. In this application we only care about this

value when the octant is a scalar leaf at submaximum depth; however future implementations

could take advantage of this inherently multiresolution approach to provide a level-of-detail

scheme. Details of the structure are provided in Appendix A.1.

To build our structure, we use a 3D array of rectilinear grid data as input. We determine

N, the smallest power of 2 that encompasses the largest dimension of that volume, and choose

the maximum depth dmax = log2(N). We then proceed from the bottom-up, assigning groups

of 8 voxels from the original structured grid to the caps. Groups of 8 identical voxels are

consolidated into a single scalar leaf of the parent. Pointers from interior nodes to children

are subsequently filled in, until the root node completes the tree.

The min/max tree is computed simultaneously alongside bottom-up consolidation. As

explained in the previous section and in Figure 3.3, we must consider not only the 8 child

voxels of each parent, but their forward-neighbors as well. As a result, we compute the

24

Figure 3.4: Octree volume format illustrated, showing examples of an interior node, a
cap node, and scalar leaves. A scalar leaf is not a separate structure, but rather a single
value embedded inside its parent interior node. Similarly, cap nodes are not leaves
themselves but contain eight scalars at the maximal depth of the octree. Thus, nodes in
this structure are the parents of nodes in the logical octree.

minimum and maximum of 27 voxel values, and store these in our min/max tree. Similarly

to how we store a scalar leaf in child scalars within the parent node, we store the minimum

and maximum values of the eight children within their parent nodes. This allows us to reject

children without actually traversing them, sparing us cache misses.

Scalar values are retrieved from the original data only for cap nodes, and used to compute

the min/max tree. Afterwards, parent nodes are computed solely based on the values of their

children. When child voxels consolidate into a parent, the corresponding child nodes are

removed. This process continues recursively until the root node of the octree is completed.

3.3.2 Octree Data Lookup

Voxel-cell mapping manifests the need for a fast neighbor-finding routine, which brings

us to octree hashing. As mentioned before, we adopt a scheme like that of Frisken and

Perry [26], in which octree cells are defined on the interval [0,2dmax]. Then, given a vector in

this coordinate space, we simply cast its components to integers and perform point-location

from the root node of the octree.

25

3.3.2.1 Point location

Point location is simply top-down search through the octree; given an initial node, that

node’s current coordinates, and the coordinates of the desired destination. With full point

location, the initial node would be the root, with all-zero coordinates. With neighbor-finding,

one can begin point-location deep in the tree. Frisken and Perry [26] propose creating a

single-bit mask corresponding to the current depth, with an offset shift to interleave the X,Y

and Z components. Though theirs is an elegant algorithm, repeatedly left-shifting bits by

arbitrary integers is expensive. Thus, we precompute child bit depth[d] = 1 << (max depth

- depth - 1) and left-shift by 1 or 2 for X and Y components as necessary. We then proceed to

compute the target child octant with binary & and integer inequality operations. We &-mask

this value with the destination coordinates and bit-shift by constants corresponding to the

X,Y and Z components. This yields the 0-7 octant offset of the child, and hence its index.

We return the scalar value when we encounter a leaf; either a scalar leaf in an interior node,

or a voxel within a cap node. Details can be found in Appendix A.2.1.

3.3.2.2 Neighbor finding

Given an origin node and a coordinate direction to a desired destination node, neighbor-

finding entails recursion up the octree until we find a parent containing both nodes. Frisken

and Perry [26] require foreknowledge of whether the neighbor is “left” or “right” on each

X,Y,Z midplane. As our traversal only neighbor-finds when necessary, we omit this distinc-

tion, and begin at the depth of the origin node’s parent. Our iteration consists of &-masking

the origin and destination coordinates with the corresponding depth bit, and performing

integer equality. When a common parent is found, the neighbor-finding function then relies

on point location to find the leaf at the given destination. To minimize the memory footprint

of the octree, we chose to omit parent pointers from the nodes of our octree. Effectively,

recursing up the octree requires knowledge of parent indices. We provide this in the ray

traversal algorithm itself, which fills a parent trace[] array containing the indices of all

parents nodes for a given cap. Pseudocode for neighbor-finding is given in Appendix A.2.2.

3.3.3 Ray-Octree Traversal

Finally, we approach the problem of adapting a ray traversal scheme to our octree struc-

ture and its given hashing scheme. After experimenting with the methods of Sung [120] and

Samet [105], the fastest traversal that emerged most resembled the technique of Gargantini

26

Figure 3.5: Ray traversing an octree node. The traversal algorithm sorts the intersec-
tion with the X, Y, and Z midplanes. As we are given the entry and exit intersections,
we have the exact order of traversal of child octants.

and Atkinson [29]. The traversal is similar to that of a kd-tree, with splits along the X,Y

and Z midplanes of each node. Gargantini and Atkinson proposed fully sorting child octants

by the order of their traversal; this is the approach we take (Figure 3.5). We optimize it to

exploit binary arithmetic on integer octree-space coordinates, similar to our neighbor-finding

and point-location implementations.

Rays are generated in canonical octree space on [0,2dmax], so no additional transform

is required. We first perform a standard ray-bounding box test to discard rays that never

intersect the volume. This test yields the entry and exit parameters (tenter, texit) for the root

node of the octree, which we pass to our recursive traversal algorithm (Appendix A.3).

3.3.3.1 Interior nodes

The single-ray traversal first retrieves the octree node given by depth and node index.

Then, it computes the octree-space coordinates of the midplanes (Figure 3.5) that divide the

child octants of this node. The computation-heavy section of the traversal involves evaluating

penter and sorting the tcenter intersection distances in a separate array axis isects[]. We

use that array to sequentially march across the child octants in the correct order of their

traversal. The algorithm has moderate initial cost associated with computing and sorting the

midplane intersections; afterwards traversing the child octants is trivial. The first child octant

is computed using the same constant shifting and binary-or as point location; afterwards

27

moving from one octant to the next merely requires inversion of the bitmask (axisbit) along

the corresponding midplane axes traversed. Pseudocode is provided in Appendix A.3.

Our structure requires special traversal routines for scalar leaves and cap nodes. Exact

details are left as an exercise for the reader; however, both are similar to interior node

traversal in Appendix A.3.

3.3.3.2 Cap nodes

Cap intersection is identical to that of interior nodes, except for the block of code check-

ing the isovalue against the min/max range and recursively calling the child traversal routine

(Appendix A.3). In its place, we determine the values of the 8 voxels composing the cell

(Figure 3.2). Before resorting to neighbor finding, we observe that given a voxel of interest

intersected by a ray octree structure, anywhere from 1 to 8 voxels in this neighborhood

will lie within the same cap node. Specifically, given the 0-7 child octant child, and a 0-7

direction “dir” to a desired neighbor, we simply check if (child & dir). If this evaluates false,

the neighbor is simply cap.scalars[dir]. If it is true, we proceed with neighbor-finding to

retrieve the value.

3.3.3.3 Scalar leaves

A scalar leaf is traversed recursively to the same depth as caps, even though it has

no children and homogeneous value. When the traversal reaches cap depth, if the traver-

sal encounters a neighborhood of identical voxels within the scalar leaf, we know that no

isosurface is encountered. Otherwise, at the borders of the scalar leaf node, we perform

neighbor-finding as we do for cap nodes.

Once we have the eight voxel values, we check that our isovalue lies within their mini-

mum and maximum. If it does, we perform the isosurface intersection with the 8 voxels as

corners of the cell.

3.3.4 Isosurface Intersection

The implicit in question is the trilinear Lagrangian interpolant:

f (x,y,z) = (∑
i, j,k={0,1}

xiy jzk vi jk)− v = 0 (3.1)

28

where (i, j,k) is the minimum coordinate of the cell, v is the isovalue, vi jk is the value of that

cell vertex, and x0 = i− x and x1 = x− i (similarly for y and z with respect to j,k).

To compute the ray-isosurface intersection, we seek a surface inside a three-dimensional

cell with given corner values (Figure 3.2), such that trilinear interpolation of the corners

yields our desired isovalue. We can find where a ray instersects this surface by simplifying

Equation 3.1 a cubic polynomial equation in terms of t, and solving for the hit position by

evaluating the ray at the first positive root of that polynomial. While the same recipe is

generally used to generate the four coefficients of the polynomial, various techniques exist

for finding the root.

Our implementation uses the same approach as the Neubauer iterative root finder em-

ployed by Marmitt et al. [75]. Here, a ray is iteratively reparameterized into subintervals

within the cell in question, until a sign change is detected within the subinterval and a root

is found. Compared to the analytical root finder based on Schwarze’s cubic solver [111]

used by Parker et al. [90], it is slightly faster and yields single-precision, numerically stable

results.

3.3.5 Shading and Filling the Frame Buffer

While ray tracing delivers great flexibility in per-pixel shading methods, we are mostly

interested in fast ray casting of the isosurface. Thus, our results show Lambertian shading

with no shadows.

The traversal itself does not employ packets; however we use a packet architecture for

ray generation and shading [4]. We do not defer normal computation due to the prohibitive

cost of storing each cell per ray, or repeating the neighbor-finding process. However, the

packet architecture allows diffuse shading to be performed in batch, which likely delivers

some speedup over a more conventional single-ray tracer.

3.4 Octree Construction Results
3.4.1 Data Compression

Lossless octree compression by consolidating voxels with zero variance commonly yields

a compression factor of 3 to 5, depending on the spread of isovalues within the data. In

general, sparser data yield higher compression benefit (Table 3.1). Additional compression

can be achieved by segmenting the data into iso-ranges of interest. For example, if we are

29

Table 3.1: Compression achieved for various structured data when converted to oc-
tree volumes, from Knoll et al. [60]. The second column shows clamped iso-ranges.
Clamping all values outside a given range delivers additional octree compression, and
preserves lossless compression for values within that range. “Full” indicates the full
0-255 range for 8-bit quantized scalars. Data sizes are in bytes, and include all features
of the octree, including overhead of the embedded min/max tree.

DATA ISO- TIME SIZE %
RANGE STEP original octree

heptane full 70 27.5M 3.96M 14
full 152 27.5M 9.5M 33
full 0-152 4.11G 678M 16

RM full 50 8.0G 687M 8.5
full 150 8.0G 1.89G 25
full 270 8.0G 2.48G 30

64-127 270 8.0G 1.81G 22
CThead full 14.8M 12.4M 84
femur full 162M 163M 101

100-163 162M 9.0M 5.5

mostly interested in isovalues from 64 to 127 in the Richtmyer Meshkov data, we can clamp

scalars outside that range to those limiting values. As we see in Table 3.1, this allows us to

compress a complex timestep of the LLNL data into under 2 GB, with full original quality

within a sizeable isovalue range. Furthermore, if lossy compression is acceptable, one can

more aggressively consolidate intervoxel variance. This could be desirable for large data that

vary gradually in space. The effect would be to further quantize isovalues, and deliver extra

compression.

3.4.2 Further Compression

Generally, our goal is simply to compress a single data timestep into a manageable

footprint for limited main memory. Sometimes losslessly compressed data will be slightly

too large to meet this constraint. One option is lossy compression via a nonzero variance

threshold, which behaves similarly to quantization. A more attractive method, for our pur-

poses, is segmenting data into interesting ranges of isovalues, and clamping scalars outside

those values to the minimum and maximum of the range. This allows for lossless-quality

rendering of isovalues within that range. For example, compressing only the 64-127 value

range of timestep 270 of the Richtmyer-Meshkov data allows us to render that range on a

30

machine with 2 GB RAM (Table 3.1). This method is even better suited for medical data such

as the visible female femur, when the user is specifically interested in bone or skin ranges.

The full original CT scan has highly-variant, homogeneous data for soft tissue isovalues

from 0-100, causing the octree volume to actually exceed the original data in footprint.

However, considering only the bone isovalues 100-163, we achieve nearly 20:1 compression

(Table 3.1). Not coincidentally, such “solid” data segments are best suited for visualization

via isosurfacing.

3.4.3 Construction Performance

The bottom-up octree build algorithm is O(N) with regard to the total number of voxels;

nonetheless N can be quite large. On a single core of a 16-core 2.4 GHz Opteron worksta-

tion, building a single timestep of the 3023 heptane volume requires a mere 8 seconds and

negligible memory footprint, whereas a timestep of the Richtmyer-Meshkov data requires

45 minutes and a footprint of nearly 40 GB. The build itself creates an expanded full oc-

tree structure that occupies a footprint of four times the raw volume size. Thus, building

octree volumes from large data requires a 64-bit workstation. Although an offline process,

parallelizing and optimizing the build would be both desirable and feasible as future work.

In addition, the current construction algorithm effectively samples coarser resolutions via

recursive clustered averaging. Superior LOD quality could be achieved with bilinear or

higher-order filtering.

3.4.4 Memory Footprint Comparison

Octrees generally occupy 20%-30% the memory footprint of the uncompressed grid data,

including both the multiresolution LOD structure and min/max acceleration tree. Over-

all, our method has significantly smaller memory requirement than competing techniques.

Employing a dense octree as opposed to a sparse (branch-on-need) octree would require

twice the total footprint of the original volume. In systems rendering uncompressed vol-

umes [90, 129], 3D array data are often padded to fit cache lines and bricked to preserve

spatial locality, with a footprint penalty of around 15%. Our recursive octree construction

inherently guarantees that nearby data will be relatively close in memory. In addition,

overhead is required for the separate acceleration structure. The Parker et al. [90] macrocells

entail a modest 4.5% for a macrocell depth of 5: around 400 MB for the LLNL data.

The Wald et al. [129] kd-tree is more demanding, requiring up to 3 times the original data

31

footprint. Moreover, our octree volume may occupy less space than simply the acceleration

structure of another method.

3.5 Rendering Results
3.5.1 Comparison to Hierarchical Grid

To gauge the performance of our octree traversal algorithm, we compare it to the per-

formance of the Parker et al. [90] hierarchical grid on the same data (Table 3.2). We

first consider the performance of each as an acceleration structure only, with both methods

retrieving their data directly from the uncompressed original 3D array. The octree performs

fairly well, albeit not as fast as the grid. Next, we compare grid and octree performance when

looking up octree data via neighbor-finding. The octree surprisingly performs better than it

did on array data, likely due to improved cache behavior. The grid performs top-down point

location for the first lookup, and subsequently uses neighbor-finding; its results on octree

data are noticeably slower. Thus, traversing a unified min/max structure encapsulating octree

data yields a distinct advantage.

3.5.2 Richtmyer Meshkov Instability Results

In Figure 3.6 and Table 3.3, we consider the frame-rate performance across several

timesteps of the LLNL Richtmyer-Meshkov instability field, a 2048x2048x1920 fluid dy-

namics dataset. Using octree compression we are able to render this volume at multiple

frames per second on a 32-bit laptop; however for an indicator of performance on future

multicore CPUs we benchmark fully interactive rates on a 16-node non-uniform memory

access (NUMA) workstation of 8 dual-core 2.4 GHz AMD Opterons. For volumes as

complex as the LLNL data, it is perhaps preferable to render a 10242 frame.

Table 3.2: Octree-grid comparison. Frame-rates for the same scene, traversed by our
octree or a 5-deep hierarchical macrocell grid; using either uncompressed 3D array
data or compressed octree data. Tests performed on the LLNL data at timestep 270,
on a 16-core NUMA 2.4 GHz Opteron workstation. Octree traversal of octree data
performs nearly as fast as hierarchical grid with uncompressed array data.

DATA FPS
macrocell grid octree

3D array 18.9 15.7
octree volume 8.0 17.5

32

Figure 3.6: Richtmyer Meshkov instability. Top row, from left to right: timesteps 50,
150, and 270. Bottom: same timesteps, with a closer camera.

Performance with the LLNL data is competitive: on the Core Duo laptop, frame rates

remain above 2 fps for most camera positions. Results on the Core Duo at timestep 270

actually exceed those achieved by DeMarle et al. [19] on a cluster of 32 PC’s, albeit with

a distributed shared memory system. They also perform on par with the Wald et al. [129]

coherent kd-tree system, which reported around 1 fps on a dual 1.8 GHz Opteron at 640x480

for scenes similar to our far camera image.

Table 3.3: Frame rates of various time steps of the LLNL Richtmyer Meshkov data,
on an Intel Core Duo 2.16 GHz laptop (2 GB RAM) and a 16-core NUMA 2.4 GHz
Opteron workstation (64 GB RAM). Refer to Figure 3.6 for images.

SCENE CORE DUO-5122 NUMA-5122 NUMA-10242

50, far 3.6 25.8 7.4
150, far 2.8 20.0 5.7
270, far 2.4 17.5 4.7
50, close 2.1 15.4 4.3
150, close 1.8 14.2 3.6
270, close 1.7 13.6 3.5

33

3.5.3 Scalability

While ray tracing is inherently parallel, complicated memory access could potentially

compromise scalability on a shared memory or NUMA architecture. Thus, it is worth demon-

strating that our technique scales well to multiple processors. We use the parallelization

mechanism of the underlying Manta ray tracing architecture [4], which employs a dynam-

ically load-balanced, tile-based thread parallelization scheme. Figure 3.7 demonstrates an

efficiency of 91% with 16 processors, which behaves similarly to uncompressed 3D array

volumes using the macrocell grid. Once again, the macrocell grid performs slightly faster,

but without the benefit of compressed data.

3.5.4 Time-Variant Volumes

One limitation of GPU volume rendering is that, for time-variant volumes, GPU memory

restricts the number of timesteps that can be stored and rendered in-core. Bus bandwidth pre-

vents a GPU from streaming textures as effectively as geometry from the CPU. With octree

volumes, we can compress full sequences of medium-sized time variant data to fit within

main memory of a commodity laptop. The dataset in Figure 3.8 contains 153 timesteps,

each of which would occupy 27.5 MB for a total of 4.11 GB. With octree compression, we

compress the entire dataset in 678 MB, and render at multiple frames per second on a Core

Figure 3.7: Scalability with octree and grid ray tracing. Scalability of our technique on
1,2,4,8,12 and 16 threads, on a 2.4 GHz Opteron NUMA workstation with the LLNL
270 far scene at 5122. The slight change in slope at 8 threads corresponds to the use of
local NUMA memory by two cores instead of one. This demonstrates that our octree
technique scales as well as the hierarchical grid with uncompressed data.

34

Duo 2.16 GHz (Table 3.4).

Octree volumes are useful in that they allow data such as the LLNL to be visualized on

machines with limited main memory. However, even in a workstation with 64 GB RAM,

memory is a precious commodity. Compression would permit multiple timesteps of the

LLNL data to be stored and rendered interactively in sequence.

Figure 3.8: Time-variant isosurface rendering. Utah CSAFE heptane simulation, a
3023 volume. The full sequence of 153 timesteps is stored in 678 MB as opposed to 4.1
GB uncompressed, permitting residency in main memory.

Table 3.4: Frame rates for the CSAFE heptane data, on an Intel Core Duo 2.16 GHz
laptop (2 GB RAM) and a 16-core NUMA 2.4 GHz Opteron workstation (64 GB RAM).
Refer to Figure 3.8 for images.

TIME STEP CORE DUO-5122 NUMA-5122 NUMA-10242

25 17.0 87.1 29.2
50 11.1 60.3 18.0
75 5.7 36.7 9.6
100 4.1 26.6 6.6
125 3.5 28.0 7.1
150 3.2 23.1 6.3

CHAPTER 4

COHERENT MULTIRESOLUTION ISOSURFACE

RAY TRACING OF OCTREE VOLUMES

This chapter describes a separate, optimized implementation of the system in Chapter 3.

As in the previous chapter, a large data set is losslessly compressed into an octree, enabling

residency in CPU main memory. We cast packets of coherent rays through a min/max

acceleration structure within the octree, employing a slice-based technique to amortize the

higher cost of compressed data access. By employing a multiresolution level of detail (LOD)

scheme in conjunction with packets, coherent ray tracing can efficiently render inherently

incoherent scenes of complex data. We achieve higher performance with lower footprint than

previous isosurface ray tracers, and deliver large frame buffers, smooth gradient normals

and shadows at relatively lower cost. In this context, we weigh the strengths of coherent

ray tracing against those of the conventional single-ray approach, and present a system that

visualizes large volumes at full data resolution on commodity computers. The contributions

in this chapter appeared in “Coherent Multiresolution Isosurface Ray Tracing” [60].

4.1 Motivation
The primary goal of this work is to optimize ray tracing of octree volumes, and ideally

to deliver interactivity on commodity CPUs. Our main vehicle for such performance gains

is coherence. The general premise is to assemble neighboring rays into groups, or packets,

with common characteristics. Then, rather than computing traversal and intersection per ray,

we perform these computations per packet. High coherence occurs when rays in a packet

behave similarly, intersecting common nodes in the efficiency structure or common cells in

the volume. Thus, coherence depends on scene complexity as defined by the dataset and

camera position.

In addition to the works that inspired the original single-ray octree volume ray tracing ap-

plication (Section 3.1), we note existing literature that has employed multiresolution methods

36

for faster isosurface extraction [132] and volume rendering [63]. The point-based method of

Livnat and Tricoche [71] is also worth mentioning for its adaptive generation of splats for

isosurface rendering. Level of detail methods have already been employed in ray tracing;

Igehy et al. [46] proposed ray differentials as a LOD metric for improved mipmap texture

filtering. Yoon et al. [141] explored hierarchical splatting as a method of rendering massive

mesh models. Djeu et al. [21] employed ray differentials in conjunction with subdivision

surfaces for ray tracing LOD geometry. Certainly, the closest ray tracing approach to ours is

the coherent kd-tree isosurface ray tracer of Wald et al. [129], which was recently extended

by Friedrich et al. [25] with a multiresolution hierarchy for out-of-core progressive rendering.

4.1.1 Coherence via Level of Detail

Successful coherent systems have been optimized for relatively small dynamic polygonal

data [130, 127] in which many rays intersect common primitives. In contrast, large volume

data exhibit low spatial coherence, particularly from far-away camera positions. Isosurface

ray tracing of large data using conservative 2x2 ray packets [129] has suggested perfor-

mance generally on par with a single-ray system [61]. Coherent traversal may induce more

intersection tests than a single-ray traversal, and without optimizations, actually perform

worse than a single-ray tracer. To remedy this, we employ a multiresolution level of detail

scheme: when the data set is sufficiently complex to hamper coherence, we render a coarser-

resolution representation with higher coherence. The octree volume is inherently suited as a

multiresolution LOD structure; coarser-resolution voxel data can be stored in interior nodes,

allowing the original data, acceleration structure and all LODs to be stored for a fraction of

the original uncompressed data footprint. To render a coarser LOD, one simply specifies a

cut of the octree at a specified depth. The ray tracer then omits traversal and intersection of

subtrees below that depth, and instead intersects coarser, larger cells at termination depth.

As more rays intersect a common cell, coherence, and thus speedup, is achieved.

4.1.2 System Overview

As shown in Fig. 4.1, our system consists of offline construction of the multiresolution

octree structure from the original data (A); followed by rendering of this octree using a

thread-parallel SSE-optimized packet ray tracer (B) as in [129]. The latter distributes ray

packets to worker threads (C), which then perform per-packet coherent traversal, SSE iso-

surface intersection, and shading in that order. Our main contributions involve extending the

37

Figure 4.1: Overview of coherent octree volume ray tracing.

static-resolution octree volume to multiresolution (Section 4.2), devising a coherent traversal

technique for the octree (Section 4.3) and leveraging the traversal technique to reduce the

cost of compressed data access (Section 4.4). Ultimately, our system delivers interactive ray

tracing on a desktop CPU while preserving image quality, and enables shading techniques

that would be expensive in a conventional noncoherent octree volume ray tracer. Moreover,

it allows for scalable rendering of large data that would be difficult for object-order volume

rendering on single-GPU systems.

4.2 Multiresolution Octree Volume Construction
Constructing a multiresolution octree volume is fundamentally identical to building a

single-resolution octree volume detailed in section 3.2.1 and 3.3.1 of Chapter 3. Our build

still proceeds bottom-up, merging voxels with a variance beneath a given threshold (zero, for

lossless compression). The only differences are that coarser-resolution voxels are actually

38

stored, and we require a slightly looser min-max tree.

4.2.1 Extension to Multiresolution

In multiresolution octree volume construction, coarser-resolution consolidated voxels are

always computed and stored in interior nodes, regardless of whether or not they are leaves.

Theoretically, a static-resolution octree volume could use a single array to contain either a

pointer to a child subtree or a coarser-resolution scalar leaf. In practice, however, the memory

savings of this approach were too small to justify the added computation. Multiresolution

octree volumes are thus constructed exactly as in the static-resolution implementation [61]:

nodes store eight-value arrays for child pointers and scalar leaves. The only difference is that

multiresolution rendering actually uses nonleaf scalar data. Interested readers may refer to

the pseudocode in Section A.1 of Appendix A for details.

4.2.2 Modifications to Min/Max Tree Computation

The only significant difference between multiresolution and static-resolution construc-

tion lies in computing the min/max tree. Static-resolution data, as discussed in Chapter 3,

requires the min/max pair of a given voxel to reflect the minimum and maximum of 8 scalar

vertices constituting the cell that maps to this voxel (Fig. 4.2). We do not store a min/max

pair for each finest-level voxel due to the prohibitive 3x footprint. Instead, we compute them

for the immediate parents of the finest voxels (cap nodes in Fig. 3.4 in Chapter 3). As shown

in Fig. 4.3 (top), each leaf node must compute the minimum and maximum of its cell, hence

accounting for the values of neighbors in the positive X and Y dimensions (left). This yields

a min/max pair for the leaf node (right). Neighbors can potentially exist at different depths

Figure 4.2: Voxel-cell mapping. Given a scalar-centered voxel, we construct its dual cell
by mapping the scalar to the lower-most vertex, and assigning forward-neighboring
scalars to the remaining vertices.

39

Figure 4.3: Min/max tree construction for multiresolution. Top: Each leaf node
must compute the minimum and maximum of its cell, hence account for the values
of neighbors in the positive X and Y dimensions (left). This yields a min/max pair for
the leaf node (right). Neighbors can potentially exist at different depths of the octree, as
is the case for at the blue leaf node. Bottom: For multiresolution data, we must include
wider neighbors at coarser resolutions into the min/max computation.

of the octree, as is the case for at the blue leaf node.. For multiresolution data, cells may have

any power-of-two width, and we accordingly consider forward-neighbors at each depth of

the min/max tree (Fig. 4.3, bottom). As a result, the min/max tree for a multiresolution octree

volume is looser than that of static-resolution data. In practice, the impact on performance is

negligible for the data we test.

4.3 Coherent Octree Volume Ray Tracing
Having constructed a compact octree volume with an embedded min/max acceleration

structure, we now turn to the task of building a coherent ray tracing system. In general,

we seek to optimize for coherence as aggressively as possible, namely by implementing a

40

vertical SSE packet architecture and a frustum-based octree traversal similar to the coherent

grid traversal of Wald et al. [130].

4.3.1 SSE Packet Architecture

A coherent ray tracer achieves its performance by operating on groups of neighboring

or similar rays in packets. To exploit coherence during primitive intersection, we perform

computations on SIMD groups of four rays (frequently referred to as packlets) and mask

differing hit results as necessary. Performing these SIMD computations requires that we

store ray information vertically within a packet. For example, ray directions are stored as

separate arrays of X,Y,Z components, as opposed to a single horizontal array of 3-vectors.

These vertical arrays are 16-byte-aligned, permitting us to access a packlet of four rays at a

time in a single SSE register. Similarly, the packet structure stores aligned SSE arrays of hit

results, such as hit position and normals.

4.3.2 Coherent Traversal Background

As an efficiency structure for ray tracing, the octree affords several different styles of

traversal. With coherent ray tracing, we are given the choice between depth-first traversal

similar to a kd-tree [131] or BVH [127], or a breadth-first coherent grid traversal (CGT)

approach [130]. We choose the latter for several reasons. Our primitives are regular, non-

overlapping cells, similar to large spherical particle data sets for which CGT has proven

effective by Gribble et al. [35]. More significantly, the breadth-first nature of the CGT

algorithm allows for a clever slice-based technique that amortizes voxel look-up from the

octree when reconstructing the vertices of multiple cells.

4.3.3 Coherent Grid Traversal Algorithm

The original CGT algorithm departs from single-ray grid traversal in that it considers full

slices of cells contained within a ray packet’s bounding frustum, as opposed to marching

across individual cells. The algorithm first determines the dominant X,Y,Z axis component

of the first ray in each packet. This is denoted ~K, and the remaining axes are denoted ~U and

~V . Then, we consider the minimum and maximum u and v coordinates at the k = 0 slice,

and note that the increment du,dv for a single unit along the march axis ~K is constant. We

store this increment in a single SSE floating point vector, duv = [dumin,dvmin,dumax,dvmax].

Next, we determine the first and last k slice where the packet frustum intersects the volume.

41

We begin at the u,v extents, euv = [umin,vmin,umax,vmax], the minimum and maximum of

enter and exit points on that slice of cells. To intersect primitives, we truncate these values

to integers and iterate over all cells in that given ~U ,~V range. To march to the next slice,

we add the constant increment. Thus, a nonhierarchical grid march is accomplished with

a single SIMD addition and a SIMD float-to-integer truncation. Unlike a single-ray DDA

grid algorithm [1], cells may be traversed in arbitrary ~U ,~V order; however the ~K order is

invariably front to back, permitting early termination. The 2D analog of this algorithm is

illustrated in Fig. 4.4.

4.3.4 Macrocell Hierarchical CGT

The original CGT paper [130] implemented a two-level hierarchy, with a single layer of

macrocells each corresponding to 6 grid cells. For small polygonal data, this was generally

sufficient. As the smallest volume we test is 3023, a more robust hierarchy could be desirable

for our application. We extended the CGT algorithm to arbitrary number of macrocell layers

similarly to Parker et al. [89], and found that a recursive 23 macrocell hierarchy – equivalent

Figure 4.4: Coherent grid traversal. The CGT algorithm [130] traverses a packet of
rays through a grid slice by slice along a major march axis ~K, iteratively incrementing
slice extents by the differential of the bounding frustum along the nonmajor axis ~U
(and a third axis ~V in 3D).

42

to a full octree – consistently yielded the best performance for volumes larger than 2563. The

macrocell traversal employs an array stack structure to avoid recursive function calls: this

stores the u,v slice and increment for all macrocell levels, the current slice within the current

macrocell level, and the next slice at which to return to parent macrocell traversal. When

all rays in a packet have intersected or the packet exits the root macrocell level, traversal

terminates. The approach is that of a recursive grid sharing common coordinate space on

the given volume dimensions, in which each macrocell block is a multiple M of its children.

Thus, child coordinates are always an M-multiple of parent macrocell coordinates. Child

macrocells, or the volume cells themselves, are traversed when any macrocell in a given

slice is nonempty – specifically, when our desired isovalue is within that macrocell’s min,

max range. Then, the packet frustum traverses full slices of that macrocell level’s children.

As shown in Fig. 4.5, our hierarchical grid employs recursively superimposed macrocell

blocks, with each parent containing 23 children, for alignment with the octree volume. We

depict a 3-deep hierarchy, with blue, yellow and green extents corresponding to macrocell

layers from coarsest to finest. Macrocells are only traversed when they contain our desired

isovalue, as illustrated by the “surface” at the dotted line. With an octree, macrocells are

implicit; min/max pairs are retrieved from the octree nodes via hashing.

4.3.5 Implicit Macrocell Grid Traversal of Octree Volumes

Our octree volume traversal is effectively coherent grid traversal of an implicit macrocell

hierarchy, in which min/max pairs are retrieved from octree interior nodes instead of macro-

cells. Rather than repeatedly multiplying grid coordinates by the macrocell width M, octree

nodes at all depths share a common coordinate space [0,2dmax], where dmax is the maximum

depth of the tree. Some macrocell traversal computation can be optimized for the binary

subdivision of the octree. When recursing from a parent to traversing children, the macrocell

grid multiplies the k-slice by the macrocell width M; in the octree M = 2, a bitwise left-shift.

Computing the next macrocell slice requires a simple +2 addition.

4.3.6 Mapping Macrocells to Octree Nodes

Traversing implicit macrocells over an octree requires particular attention, as a single

coarse scalar leaf node in the octree may cover multiple finer-level implicit macrocells. Given

an implicit macrocell coordinate, we seek the deepest octree child that maps to it. We then

use the min/max pair in the parent node, corresponding to that child, to perform the isovalue

43

culling test. As lookup is costly, we store the path from the octree root to the current node

along the u,v-minimal ray of the frustum. We then use neighbor-finding as detailed in [61]

to inexpensively traverse from one node to the next. Hierarchically recursing from a parent

node to a child requires a single lookup step in the octree.

4.3.7 Default Slice-Based Traversal

At shallow levels of the octree, the packet frustum typically traverses a single common

macrocell. At deeper levels, the u,v extents encompass multiple macrocells, so we must

neighbor-find numerous octree nodes. By default, macrocell CGT stops iterating over a slice

when any node is nonempty, and proceeds to traverse slices of children nodes. This ensures

that traversal is performed purely based on the packet frustum as opposed to individual rays,

and preserves the breadth-first coherent nature of the algorithm. Unchecked, it also causes

numerous unnecessary octree lookups and ray-cell intersection tests. To mitigate this, we

implement the two following optimizations.

Figure 4.5: Coherent octree traversal via implicit macrocells.

44

4.3.7.1 Culling empty cap-level macrocells

To avoid unnecessary intersections and octree hashing, we clip the u,v slice correspond-

ing to the deepest-level macrocells, one level above actual cell primitives. To do this, we

iterate over the min/max pairs corresponding to the finest available octree depth. When

traversing at maximum resolution, the deepest macrocells correspond to cap nodes (Fig. 3.4).

Within this iteration, if a macrocell contains our isovalue, we compute new slice extents

based on the minimum and maximum u,v coordinates. If the macrocell is empty, we omit it

from extent computation. The effect is to clamp the u,v slice so that it more tightly encloses

nodes with the desired isovalue. Fig. 4.6 illustrates this where we first clip slices of deepest

macrocells, corresponding to cap nodes of the octree at depth dmax− 1. We narrow the u,v

slice extents by omitting macrocells with ranges outside our value; only the shaded cells

containing our isovalue are considered.

4.3.7.2 Clipping the cell-level slice to active rays

To further reduce the number of cell primitives in a slice, we intersect individual rays

with the world-space bounding box formed by the current u,v slice. When rays have already

successfully hit a cell, they are “inactive” and can be safely ignored even if they intersect

Figure 4.6: Culling empty macrocells from cap-node slices.

45

Figure 4.7: Clipping cell slices to fit active rays.

the slice bounding box. As shown in Fig. 4.7, this enables us to considerably shrink the

u,v extents before intersecting a ~K-slice of cells by simply computing the minimum and

maximum of the enter and exit hit coordinates of active rays.

4.3.8 Cell Reconstruction from Cached Voxel Slices

Having clipped the primitive-level slice to as small a u,v extent as possible, we are ready

to perform ray-cell intersection. Our ray-tracing primitive is a cell with 8 scalar values; one

at each vertex. However, the data primitives in our octree volume are voxels. Using the same

duality employed by min/max tree construction, we map octree voxels to the lower-most

vertex of each cell (Fig. 4.2). Our task now is to reconstruct cells efficiently from the octree,

exploiting coherence whenever possible.

4.3.9 U,V Voxel Slice Filling

In single-ray and depth-first traversals, cells are constructed independently, given a lower-

most voxel from traversal, and using neighbor-finding to look up the remaining 7 voxels.

However, adjacent cells share vertices – much neighbor-finding effort is duplicated. With

our octree CGT, we can iterate over an entire slice of adjacent u,v cells, access each voxel

46

once, and store the results in a 2D array buffer. We add 1 to the maximal u,v slice extent

to account for forward cell vertices in those directions. Then, we iterate over the u and v

components of the slice, performing neighbor-finding from one coordinate to the next. By

iterating in a scanline, the neighbor-finding algorithm need only find a common ancestor

along one axis, and is slightly cheaper. We store the voxel results for this slice in a 2D array

buffer, and look up values from this buffer to reconstruct four vertices of each cell in the slice.

The remaining four vertices can be reconstructed in the same fashion by filling in a second

buffer for the k+1 slice. Thus, to find the eight vertices of each cell, rather than neighbor-find

seven forward-neighbors per voxel, we exploit our slice-based traversal to look up and cache

~K-slices of voxels, amortizing and reducing the cost of data access. Fig. 4.8 illustrates filling

of five successive slices, with like shades representing where cached voxels are used to avoid

repeat neighbor-finding.

Figure 4.8: Slice-based cell reconstruction algorithm.

47

4.3.10 Copying the Previous-Step ~K-Slice

In cell reconstruction, we also exploit voxel coherence along the ~K axis. For this, we

note that vertices on either the front (k) or back (k+1) slice of each cell are shared from one

traversal step to the next, depending on whether the ~K march direction is positive or negative.

In either case, we can copy an advancing slice buffer from the previous traversal step into

a posterior buffer of the current traversal step (Fig. 4.8). We must account for the traversal

offset in the minimum u,v coordinates between the two buffers, and perform neighbor-finding

for voxels not buffered from the previous step, due either to that offset or different maximal

u,v extents.

Pseudocode for the full traversal algorithm is outlined in Algorithm 1 in Appendix A.

Here, duv and euv are SSE vector variables, and k is an integer. Cap depth is dcap = dmax−1.

For multiresolution, the algorithm is similar except we may intersect slices at lesser stop

depth than dmax.

4.3.11 Ray-Cell Intersection

With our cached slice buffers, we can iterate over cell primitives and reconstruct cell

vertices. To compute the ray-isosurface intersection, we iterate over all SIMD packlets,

discarding packlets that are inactive (have already intersected) according to the per-packlet

hit mask. For each packlet, we first check that each at least one actually intersects the

bounding box of the cell in question, and then proceed to compute the ray intersection with

the implicit isosurface.

For ray-cell intersection, we seek a surface inside a three-dimensional cell with given

corner values (Fig. 4.2), such that trilinear interpolation of the corners yields our desired

isovalue. This entails solving a cubic polynomial for each ray; the hit position is given at the

first positive root. Our implementation uses the Neubauer iterative root finder proposed by

Marmitt et al. [75]. Computation is performed per-packlet. If any ray in the packet intersects

successfully, we compute the gradient normals for that packlet. We do not defer normal

computation due to the prohibitive cost of reconstructing cell vertices twice.

4.4 Multiresolution Level of Detail System
Our optimized coherent traversal algorithm significantly outperforms single-ray traversal

on simple scenes; and due to the lower data lookup cost even exhibits a factor-of-two speedup

moderately incoherent scenes in which more than one ray per packlet seldom intersects the

48

same cell. However, coherence breaks down on highly complex scenes, where rays are

separated by multiple cells that are never intersected. This pathological case is common

with far views of large data sets. This behavior is detailed more fully in Section 6.6. The

purpose of the multiresolution system is to manage pathological cases posed by large data,

and preserve coherence with only minor sacrifice in quality.

4.4.1 Resolution Heuristic

4.4.1.1 Stop depth

The general vehicle for the multiresolution scheme is determining an effective depth

at which to stop traversing children, and instead reconstructing cells to intersect. Coarser-

resolution voxels are explicitly stored in the scalar leaf fields of interior nodes, regardless of

whether a finer-resolution subtree exists. When the traversal algorithm stops, cell reconstruc-

tion proceeds exactly as it would at the finest resolution, except given a stop depth dstop it

increments the u,v coordinates by 2dstop instead of simply 1 at the finest resolution. Thus, the

octree hash scheme operates on canonical octree space [0,2dmax], regardless of LOD depth.

4.4.1.2 Pixel-to-voxel width ratio

A more difficult problem in formulating the multiresolution scheme is determining which

parts of the scene should be rendered at which resolution. Generally, we note that when

multiple voxels project to the same pixel, a coarser level of resolution is desirable. LOD

techniques for volume rendering often use a view-dependent heuristic to perform some

projection of voxels to screen-space pixels, and identify distinct regions of differing reso-

lutions [63]. In the case of ray-casting with a pinhole camera, the number of voxels that

project to one pixel varies quadratically with the distance from the camera. As aspect

ratio is constant, we may simply consider the linear relation along one axis ~U , namely

the increment between each primary ray along ~U , du. Then, we can render the coarser

resolution at dstop when du = Qstop ∗ dV , where dV is the ~U-width of a voxel, and Qstop is

some constant threshold. As the ~U-width of a single pixel, dP, is simply a multiple of du, we

can simply reformulate our constant as a ratio of pixel width to voxel width dP/dV , where

Qstop = (du/dP)∗ (dP/dV).

49

4.4.1.3 Packet extents metric

Ideally, our LOD metric should be evaluated per packet. An obvious choice would be the

du width of the packet, given by the aforementioned u,v slice extents. One could render a

coarser resolution whenever the number of cells in a slice at the current resolution surpassed

some threshold. Unfortunately, at the same k-slice, the dupacket could vary between packets,

causing neighboring rays to intersect different-resolution cells, hence resulting in seams. We

desire a similar scheme that allows us to perform transitions consistently between packets.

4.4.1.4 LOD mapping via ~K transition slices

To ensure consistent transitions from one resolution to the next, we compute a view-

dependent map from resolution levels to world-space regions along the major traversal axis

~K. We note that the width of a pixel corresponds to the distance between primary rays along

the ~U and~V axes, which increases with greater t, as we move farther from the camera origin.

If we consider a major march direction ~K, we can find the exact k slice coordinate where

any given number of voxels corresponds to exactly one pixel. This is similar to the per-ray

metric approach, except it solves where du = Qstop ∗dV at a discrete ~K-slice, k. As packets

traverse the octree one ~K-slice at a time, we have a constant world-space LOD function that

can be computed on a per-packet basis.

We multiply the ratio of pixel width to voxel width, dP/dV , by the power-of-two unit

width corresponding to each depth d of the octree. Then, we solve for the t parameter where

this voxel width is equal to the distance between viewing rays, ducamera. Finally, we evaluate

~K-component of the direction ray to compute the ~K-slice where our fixed dP/dV ratio occurs,

ktransition[d]. These mark the transition slices from each resolution to its coarser parent. The

array is computed once per frame, using Algorithm 2 in Appendix A. The dP/dV constant

is thus our base quality metric.

4.4.2 Multiresolution Traversal

Rather than determining the major march axis ~K per packet, we decide it once per frame

based on the direction vector of the camera. While this causes some packets to perform CGT

on a nondominant axis, in practice there is no appreciable loss in performance with a typical

60-degree field of view.

The traversal algorithm determines the initial transition slice when it computes the first

k-slice of a packet, by finding the first ktransition[d] < k. Then, before recursively traversing a

50

Figure 4.9: Multiresolution transitions illustrated. Left: multiresolution transition
slices along the ~K axis. Right: transitions are smoothed by substituting coarse-LOD
values at fine-level cell vertices at the transition slice.

child slice at the current resolution depth, we check if kchild >= kd−1, the slice corresponding

to transition to the next coarser resolution. When that occurs, we omit traversal of the child

and perform cell reconstruction. The current resolution depth is then decremented, so the

traverser seeks the subsequent coarser-resolution transition slice. This process is illustrated

in Fig. 4.9 (left).

4.4.3 Smooth Transitions

Isosurfaces are piecewise patches over their respective cells, and can vary both topo-

logically and locally from one resolution to the next. As such, discontinuities arise at

transition slices between finer and coarser isosurfaces. While these discontinuous surfaces

are technically “correct” with respect to each resolution, it is frequently desirable to mask

the multiresolution transition and render a single smooth surface. To accomplish this, our

slice-based reconstruction algorithm checks if each ~K-slice is equal to the next kd transition

slice. If it is, we look up voxel data from the octree at coarser depth d−1 as opposed to the

current default depth d. This guarantees identical voxel values on either side of the transition,

and thus continuous surfaces (Fig. 4.9, right). Exceptions may occur in cases of gross

disparity between each resolution of the scalar field, where topological differences cause a

surface to exist at one resolution but not the other This is common in highly entropic regions

51

of the Richtmyer-Meshkov data. In these cases, it is desirable to omit smooth transitions and

expose levels of detail via color-coding.

4.5 Shading
Our technique affords better flexibility in shading the isosurface. One limitation of the

octree volume is that data access for cell reconstruction is expensive, discouraging techniques

such as central-differences gradients that require additional neighbor-finding. With slice-

based coherent traversal, we are able to amortize the cost of cell reconstruction as shown

previously. Multiresolution allows us to simplify the casting of shadow rays and illustrate

depth cues with less performance sacrifice.

4.5.1 Smooth Gradient Normals

By default, normals are computed using the forward-differences gradient at the intersec-

tion point within the given cell. The disadvantage of this method is that such gradients are

continuous only within each cell. The isosurface itself is formed from piecewise trilinear

patches with C0 continuity at cell edges. For a more continuous normal vector field, and

better visual quality, we can compute gradients on a central differences stencil to ensure C1

continuity along cell edges.

To compute the central differences gradient, we use a stencil of three cells along each

axis; thus 64 cell vertices (voxels) must be found during reconstruction. Reconstructing

a 43 voxel neighborhood per-ray is costly in noncoherent octree volume isosurface ray

tracing [61]. Coherent reconstruction with cached slices allows for smooth normals with

far lesser penalty. In a noncoherent ray tracer this entails eight times the lookup cost of

forward differences, causing worse than half the forward-differences performance. In our

coherent system, we return to the slice-based cell reconstruction technique to amortize that

cost of neighbor-finding. We simply retrieve two additional rows and columns of voxels, cor-

responding to umin−1,vmin−1 and umin +2,vmin +2 coordinates. In addition to our existing

2D array buffers for the k and k + 1 slices, we store two additional buffers corresponding

to the k− 1 and k + 2 slices. We then use this four-wide kernel with a central-differences

stencil to compute the gradient: 1
2(VX−1,Y,Z)−V(X+1,Y,Z)) along the X axis, and similarly for

the Y and Z axes. Performance with central differences is typically 15%-30% slower than

with forward differences. The visual improvement is arguably worth this cost (Fig. 4.10).

52

Figure 4.10: Shading with forward and central differences. Gradient normals com-
puted on a forward differences stencil yielding 5.5 FPS (left), and a central differences
stencil at 4.7 FPS (right) on an Intel Core Duo 2.16 GHz with a 5122 frame buffer.

4.5.2 Shadows

An oft-cited advantage of ray tracing is that shadows can be computed trivially without

adding geometric complexity or implementing sophisticated multipass texturing techniques.

In practice, tracing shadows doubles the cost of casting each ray that successfully hits an

object. Computing shadow rays in a coherent packet system is more complicated than for

a single-ray tracer, as individual rays must be masked and shadow packets generated based

on the hit results of the primary rays. Fortunately, point-light shadows may be cast from the

light to the primary hit point; thus they share a common origin and benefit from coherent

optimizations. Our primary goal being interactivity, we are interested in hard shadows that

may not appear photorealistic, but adequately provide depth cues to the viewer. As such, we

can exploit the LOD system to cast faster coherent shadow rays through a coarser-resolution

representation of our volume – for example, using a shadow ray dP/dV of twice the viewing

ray dP/dV. By coherently casting shadow rays through a coarser resolution, we can achieve

higher performance and provide similar depth cues. This yields framerates only 20%-30%

slower with shadows than without (Fig. 4.11).

53

Figure 4.11: Ray tracing with shadows. With centrally-differenced gradient normals,
the above shadowed scene renders at 3.9 FPS on an Intel Core Duo 2.16 GHz with a
5122 framebuffer, as opposed to 5.1 FPS without shadows.

4.6 Results
For results of the octree construction and compression, refer to Section 3.4 in Chapter 3.

In this section, we evaluate performance of our system by first considering coherent octree

traversal alone, and then analyzing the performance of the multiresolution system.

4.6.1 Coherent Traversal Analysis

The main purpose of our slice-based algorithmic enhancements, and indeed of traversal

itself, is to minimize the number of cells that must be intersected. By employing packets

and the breadth-first CGT frustum algorithm, we are able to dramatically reduce both the

computational and memory access costs of traversal. Finally, when multiple rays in a SSE

packlet intersect the same object, we may effectively perform up to four intersections for the

price of one. For these reasons, we are able to achieve significant speedups on highly co-

herent simple scenes. Even with moderately complex scenes where a pixel seldom contains

more than one voxel, and SIMD intersection yields little speedup, slice-based reconstruction

effectively doubles performance (Table 4.1). Moreover, rendering time is strongly correlated

with the number of ray-cell intersections. Performance profiling reveals that only 5%-15%

54

of CPU time is spent in traversal, compared to over 70% in reconstruction and intersection.

4.6.2 Packet Size

Table 4.2 shows the impact of packet size on performance. Our implementation employs

fixed packet size for traversal. This is appropriate for our application, as we seek to render

isosurfaces with constant complexity. Later, we enforce this via the pixel to voxel width ratio

in the LOD scheme. Empirically, we find that packets of 8x8 work best for scenes where one

to 4 rays intersect a common cell. Packets of 16x16 rays yield little benefit even for simple

data, and perform poorly on complex scenes of large data.

4.6.3 Incoherent Behavior Without Multiresolution

Complex scenes reveal the shortcoming of coherent traversal. Because traversal is not

computed on a per-ray basis, but solely from the packet frustum corners, it frequently looks

up cells that would have been correctly ignored by a more expensive single-ray traverser. Our

clipping optimizations (Figs. 4.6, 4.7) noticeably alleviate this, as we can see in Table 4.1.

However, for complex scenes such as far views of large data, rendering cost is totally bound

by intersection (Table 4.2). Ultimately, frustum-based traversal causes large numbers of

cells to be looked up, though no rays in the packet actually intersect them. This in turn

causes many unnecessary intersection tests to be performed. Successful intersection tests are

no less expensive, as packlet-cell intersection degenerates to single-ray performance without

primitive-level coherence. These higher costs eventually overwhelm any gains made by more

efficient traversal, and cause the coherent ray tracer, without multiresolution, to perform

worse than a single-ray algorithm on sufficiently complex scenes.

4.6.4 Multiresolution Results

The combination of multiresolution level of detail and coherence enables frame rates

up to an order of magnitude faster for coherent scenes. With large volume data and small

frame buffers, coherence is less common, but in general it is possible to decrease dP/dV to

achieve interactive frame rates and interesting, albeit coarser-quality, representations of the

data. For highly entropic large volume data, this behavior is frequently useful as coarser

LODs inherently possess less variance, thus manifesting less aliasing. However, coarser

LOD rendering are also less correct with respect to the original resolution, as shown in

Fig. 4.12.

55

Table 4.1: Results from clipping optimizations, when ray-casting a moderately com-
plex scene with low primitive-level coherence, from the heptane fire dataset (HEP302,
Table 4.2). We compare single-ray traversal and 8x8 octree-CGT packet traversal with
and without optimizations. +slice: use slice-based cell reconstruction. +mcell: clip the
deepest macrocell slice extents to discard nodes not containing the isovalue. +cell: clip
the cell slice extents to the set of active rays. +mulres: multiresolution scheme, with
dP/dV = 1. Tests at 5122 using one core of an Intel Core Duo 2.16 GHz.

TRAV. LOOKUPS ISECS L/RAY I/RAY FPS
single 314707 166719 1.2 0.64 2.3
packet 1187798 469560 4.5 1.8 .78
+slice 1187798 469560 4.5 1.8 2.2
+mcell 561889 124221 2.14 0.47 3.9
+cell 270123 120514 1.0 0.47 4.6
+mulres 98055 44419 0.37 0.17 7.6

Table 4.2: Results with coherent packets, showing the net number of intersections per
ray and frames per second with a single-ray tracer, and our coherent system with
varying packet sizes. We examine three scenes of increasing complexity. Leftmost
(HEP64) is the 643 downsampled heptane data, which has high intersection-level co-
herence. The full 3023 heptane data (HEP302) has low intersection-level coherence, but
benefits from coherent traversal. The 20483 RM data set yields even less coherence,
and is a pathological case for packet traversal. Benchmarks on a single core of an Intel
Core Duo 2.16 GHz, with a 5122 frame buffer and multiresolution disabled.

SCENE HEP64 HEP302 RM
I/RAY FPS I/RAY FPS I/RAY FPS

single 0.70 1.9 0.64 2.3 3.58 0.57
coherent
2x2 0.26 4.3 0.5 2.84 5.65 0.38
4x4 0.11 9.7 0.45 4.54 7.94 0.33
8x8 0.058 14.4 0.47 4.6 12.4 0.22
16x16 0.041 14.5 0.50 2.81 20.5 0.08

56

Figure 4.12: Qualitative impact of multiresolution on the Richtmyer-Meshkov data at
t=270, isovalue 20. Top left to bottom right: single-ray, then coherent multiresolution
with dP/dV of 1,2 and 4. On an Intel Core Duo 2.16 GHz with a 5122 frame buffer,
these render at 0.92, 1.0, 1.9, and 3.6 FPS, respectively. To illustrate LOD transitions,
like shades indicate the same resolution.

4.6.5 Overall Performance

In best-case scenarios, our system significantly outperforms the single-ray tracer. With

close camera views of the RM data and dP/dV = 1, we see order-of-magnitude improvement.

The coherent technique usually yields modest improvements even for scenes with generally

poor coherence. For sufficiently far camera angles viewing complex data, the single-ray

system may actually outperform the coherent method, when using an LOD dP/dV = 1. For

57

these pathological cases, we recommend relaxing dP/dV for exploration, or resorting to

single-ray traversal for quality.

Coherent traversal handles a difficult scenario for the single-ray system: a close-up scene

deep within the volume, with an isovalue for which the min/max tree is particularly loose.

Such is the case in the last example of Table 4.3. While single-ray suffers from data access

demand, coherent traversal largely amortizes these costs and performs comparably to other

scenes with similar complexity.

Another substantial advantage of coherence is that large frame buffers can be rendered

relatively faster. Doubling the frame buffer dimensions generally causes a factor of four

Figure 4.13: The visible female femur. The original, full 617x512x512 volume occupies
more space as an octree than uncompressed, due to the entropic nature of soft tissues.
Bone, which is more appropriately visualized as an isosurface, can be represented by
100-163 isovalue segments, and compressed into an octree volume with a 20:1 ratio,
including the multiresolution data and min/max acceleration structure. For this scene,
coherent ray tracing scales well to large frame buffers. The image renders at 6.0 FPS at
5122, versus 3.1 FPS at 10242 on an Intel Core Duo 2.16 GHz, with central differences
and shadows.

58

Table 4.3: Richtmyer-Meshkov reference images for the coherent multiresolution sys-
tem. Frame rates on an 2-core Intel Core Duo 2.16 GHz laptop (2 GB RAM) and
an 8-core dual 3 GHz Intel Xeon (Clovertown) with 4 GB RAM; with our coherent
multiresolution method with 8x8 packets and dP/dV = 1, and single-ray without mul-
tiresolution [61]. Refer to Fig. 4.14 for images.

SCENE C.Duo,5122 Xeon,5122 Xeon,10242

single 8x8 single 8x8 single 8x8
50, far 2.5 3.5 14.5 19.5 4.5 6.5
150, far 1.9 2.5 11.1 15.0 3.4 4.9
270, far 1.1 1.1 7.2 12.4 2.2 2.2
50, close 2.0 6.9 12.1 39.8 3.6 14.2
150, close 1.7 8.1 12.0 44.2 3.5 14.6
270, close 0.2 4.7 1.4 38.6 0.4 9.2

slowdown in a single-ray tracer; by comparison the packet system frequently experiences a

factor of two or better performance decrease, particularly when higher resolution leads to

improved intersection-level coherence. For the segmented dataset in Fig. 4.13, coherent ray

tracing scales especially well to large frame buffers.

4.6.6 Comparison to Existing Systems

Table 4.3 and Figure 4.14 show performance for the Richtmyer Meshkov dataset with our

coherent multiresolution system with dP/dV = 1; and the single-ray implementation [61]

with no multiresolution scheme. In the best-case scenario we achieve a factor of 23 faster

than single-ray performance, and even in worst cases the coherent multiresolution imple-

mentation does not exhibit substantially inferior performance. These numbers compare

favorably to other implementatations. For similar camera positions, we achieve the same

2 FPS RM data performance on an two-core Intel Core Duo as DeMarle et al. [19] report on

a 64-processor cluster with a distributed shared memory layer. We are competitive with Wald

et al. [129] for far views, and perhaps faster for close-up scenes, while generally requiring

an order of magnitude lesser memory footprint. The performance of our system is also on

par with that of Friedrich et al. [25]; however such comparison is not completely fair as that

system employs LOD for progressive as opposed to dynamic rendering.

Comparison with state-of-the-art GPU methods is more difficult. Clearly, slice-based

direct-volume rasterization on the GPU outperforms our method by well over an order of

magnitude for small data (less than 5123). For larger data, this gap is less pronounced, but

59

Figure 4.14: Results for the coherent multiresolution system. From left to right,
timesteps 50, 150 (isovalue 20), and 270 (isovalue 160). Top: various close-up camera
views, illustrating highly coherent scenes. Bottom: far views exhibiting generally poor
coherence. We use dP/dV = 1.

GPU DVR methods can equally employ multiresolution compression schemes on blocks [37]

and space-skipping and culling optimizations [103]. These techniques are still limited by

bus latency, and to our knowledge data the size of the Richtmyer-Meshkov has yet to be

visualized at original data resolution on a GPU. Out-of-core streaming and progressive

rendering, as well as multi-GPU distributed systems, are clearly valid approaches to large-

scale volume visualization [13]. Our system is still not as fast as some GPU isosurface

raycasting approaches such as [38]. Particularly on a dual-core laptop; the CPU likely lacks

the horsepower to compute isosurfaces using higher-order filters such as a tricubic spline ker-

nel. However, it arguably scales better than out-of-core approaches for the GPU. Multicore

workstations are increasingly inexpensive commodities, and share a more straightforward

and scalable programming model. Ultimately in rendering large data, performance is bound

more by memory access than by computation. To that end, multicore CPUs, with hierarchical

60

caches that directly access expandable mainboard memory, are increasingly attractive. Ray

tracing algorithms are well-suited for both this application and platform.

4.6.7 Quality Comparison

We conclude this chapter by considering the impact of multiresolution isosurfacing on

image quality. Fig. 4.15 compares results with and without multiresolution at dP/dV = 1,

with forward and central differences gradients. The bottom images show per-pixel differ-

ences (computed using 1−abs(re f erence− image) per color channel), comparing multireso-

lution and non-multiresolution results, both rendered as white surfaces on black background.

In reproducing major features, renderings with and without multiresolution look essentially

identical. However, the difference images reveal that though most features remain intact,

actual isosurfaces are slightly offset when rendered at varying resolution – this accounts for

the black pixels (shown in closeup) where the surface exists at one resolution but not another.

Otherwise, most differences lie in the intensity of the gradient at different resolutions, as

evidenced by grayscale pixels in the difference images.

61

Figure 4.15: Comparing multiresolution and single-resolution results on the RM data.
Top row: without multiresolution, with forward differences (left) and central differ-
ences (right), rendering at 1.8 and 1.3 fps, respectively. Middle row: multiresolution
with dP/dV = 1, rendering at 4.2 and 3.1 fps for forward and central differences
respectively. Bottom row: differences with and without multiresolution.

CHAPTER 5

COHERENT ISOSURFACE RAY TRACING OF

TETRAHEDRAL MESHES

In this section, we discuss a system for interactively rendering isosurfaces of tetrahedral

finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing

state-of-the art methods for polygonal ray tracing, namely aggressive packet/frustum traver-

sal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured

volume data. In conjunction with this efficiency structure, we introduce a technique for

intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for

dynamic changes in isovalue and time step, visualization of multiple isosurfaces, shadows,

and depth-peeling transparency effects. The resulting system offers a scalable, dynamic

and consistently interactive solution for visualizing unstructured volumes. This work was

originally published as “Interactive Isosurface Ray Tracing of Time-Varying Tetrahedral

Volumes” [128].

5.1 Motivation
Large unstructured volumes pose a difficult problem in visualization. Due to its adaptive

nature and simplicity, finite element (FE) analysis has experienced widespread adoption in

simulations for numerous computational scientific and engineering disciplines such as CFD,

meteorology, geology, and astronomy. While the size of most FE data is relatively small

compared to large structured data from finite differences simulations, techniques for volume-

rendering and isosurfacing unstructured data are less straightforward than those for rendering

volumetric datasets in a regular grid.

Unlike marching cubes, which generates a piecewise linear approximation of a typically

piecewise cubic isosurface, the marching tetrahedra algorithm of Doi and Koide [23] yields

piecewise planar surfaces which represent the correct isosurface for first-order finite ele-

ments. However, as is the case with marching acubes, isosurface extraction remains bound

63

by data complexity and is often slow. Recent works have accelerated marching tet extrac-

tion on the GPU. Pascucci [91] showed that the vertex processor can be utilized to create

appropriate quadrilaterals for the isosurface within a tetrahedron. Similarly, Klein et al.[53]

exploit fragment programs for their quadrilateral computation. These GPU approaches yield

overall rendering frame rates from 1 fps for million-tet data to 60 fps for smaller data

sets. Object-order direct volume rendering methods for unstructured data [11, 31] can

effectively approximate isosurfaces, and in some cases are modified to directly rasterize

isosurfaces [137, 3]. However, GPU volume rendering is less efficient than for structured

data, which benefits from built-in 3D texture fetching and interpolation hardware. Moreover,

most methods exhibit poor scalability for even moderately complex tetrahedral meshes, even

when these are sufficient small to reside in-core on a GPU. Currently, for all published

rasterization-based GPU techniques, interactivity degrades significantly for larger datasets

over 1 million tets. Lastly, point-based methods employing proxies [143] can render effi-

ciently, but require copious preprocessing time and are ill-suited for dynamic data. Moreover,

proxy methods resample the data before rendering them, which can result in loss of quality.

CPU-based ray tracing of tetrahedral data has been performed by Marmitt & Slusallek [77]

using a new ray marching algorithm for directly traversing tet meshes using Plücker coordi-

nates. In motivating the following work, we were inspired by the application of multicore

CPU ray tracing to isosurfacing structured volume data [90, 129, 61]. Performance for such

systems, as seen in the previous chapters, is largely limited by the ray-cell intersection for

a trilinear interpolant implicit, which is computationally expensive. However, isosurfaces

for first-order FE defined on tets are inherently polygonal, allowing for fast ray tracing via

simpler geometric intersection tests. While it is difficult to adapt the current rasterization

pipeline to tet rendering, ray tracing irregular data is quite efficient, and can interactively

render dynamic objects using recent advances in coherent bounding volume hierarchy traver-

sal [127, 65].

The main contributions of this work are extending polygonal bounding volume hierarchy

construction to accomodate a tetrahedral mesh scalar field, implementing a fast coherent

traversal algorithm for this BVH, and devising a fast packet-isourface intersection test for

tetrahedra. The resulting system is surprisingly fast even on modest dual-core CPU hard-

ware, and compares favorably to GPU systems in performance for rendering large unstruc-

tured data.

64

5.2 System Overview
Our core approach to ray tracing unstructured scalar fields is an implicit dynamic bound-

ing volume hierarchy in the spirit of implicit kd-trees [129], combined with aggressive

large-packet coherent ray traversal, and a specially designed packet-isopolygon intersection

technique inspired by fast packet-triangle intersectors and the Marching Tetrahedra algo-

rithm.

In unstructured grids, the scalar field is defined through linear interpolation over tetra-

hedral primitives; each such isotetrahedron can then contain one or more more isosurfaces

given user-specified iso values. As with implicit kd-trees [129], we build a hierarchical data

structure over these primitives such that each node in the hierarchy contains the minimum

and maximum of the scalar field below that node’s subtree; these isoranges can then be used

during traversal to discard subtrees that cannot contain the isovalue. Instead of kd-trees, we

opt for bounding volume hierarchies. In practice, they are at least as fast, equally efficient for

time-varying data, and better suited to the irregular, overlapping geometry of unstructured

volumes.

The implicit bounding volume hierarchy encourages a variation of the aggressive packet-

frustum BVH traversal that was recently proposed for polygonal ray tracing [127]. This

operates on much larger packets (typically 8x8 or 16x16 rays) than the 4-ray SIMD traversal

proposed for implicit kd-trees, and uses frustum culling and speculative descent to minimize

the number of ray-node traversal steps. Larger packets also imply better amortization of

per-packet costs, and thus help in hiding the overhead induced through implicit culling. Since

the implicit BVH is built over the space of all isovalues, the isovalue(s) of interest can be

changed interactively any time, and even multiple isovalues can be trivially supported. A

BVH also allows for easily updating the data structure once the scalar field or even vertex

positions change, and thus allows for naturally supporting time-varying data.

When a packet reaches a leaf of the BVH, we intersect the isotetrahedra contained in that

leaf using a new technique inspired both by marching tetrahedra [23] and fast packet-polygon

tests. In both intersection and traversal, we will make heavy use of large-packet/frustum

techniques recently developed in polygonal ray tracing. Unless otherwise specified, both

intersection and traversal are assumed to operate on packets of 16×16 rays.

65

5.3 Isosurface Intersection
An isosurface is the implicit surface f (~x) = v where a scalar field f (~x) takes on a given

isovalue v. For conventional first-order finite elements, the scalar field is given as a tetrahe-

dral mesh in which the scalar values are specified at the vertices A, B, C, and D; the scalar

field inside each isotetrahedron, or isotet, is defined by linear interpolation

f (~x) = f (α,β ,γ,δ) = αA+βB+ γC +δD,

where α,β ,γ,δ are the barycentric coordinates of~x.

To intersect a ray ~x(t) = ~o + t~d with any isosurface f (~x) = v one can immediately

substitute the ray equation into the linear interpolation, solve a linear system for t, and

check that the solution lies within the isotet. However, we can also observe that for linear

interpolation the isosurface must be planar. This plane is bounded by line segments along the

edges of the isotet in which it exists, forming either a triangular or quadrilateral polygon as

shown in the various cases of Marching Tetrahedra, and illustrated in Figure 5.1. We denote

this polygon an isopolygon (or isopoly), as it represents the base geometric primitive we

seek to ray-trace. Unlike solving the ray-parametrized implicit, this isopolygon must only

be computed once per isotet traversed; that cost is amortized over all rays in the packet, and

the full array of fast ray-polygon techniques can be applied.

5.3.1 Extracting the Isopolygon

To compute the plane equation and bounding edges of the isopolygon, we turn to the

Marching Tetrahedra algorithm [23]. Vertices of the isopolygon lie on edges of the isotet,

and isopolygon edges lie on the tet faces. Polygon vertices will lie only on those tet edges

for which one vertex is greater and one is smaller than the isovalue. Having 4 vertices, there

are only 16 cases for which a given vertex is either larger or smaller than the isovalue. For

each of these cases, we can store how many vertices the resulting polygon will have, and

the indices of the 2 tet vertices that span the edge on which that polygon vertex must lie.

In SSE, this lookup is particularly simple: after loading the four vertices’ isovalues into a

SIMD register, an SSE comparison followed by a movemask operation will return the desired

case. The result is conveniently returned in a 4-bit integer (one bit for each comparison) that

can be directly used to index into the aforementioned table of 16 cases. Once we know

66

which tet edges contain isopolygon vertices, each isopoly vertex can be computed by linear

interpolation along the two vertices of the corresponding tet edge.

5.3.2 Ray-Isopolygon Intersection

Once the vertices of our polygon are known, we can use an extension of Wald’s triangle

test [126] to intersect it. As shown in Figure 5.1 (left), ray-isopolygon intersection first

computes the distance to the precomputed plane, then projects the ray hit point onto a suitable

2D coordinate plane. Here, each of the edges defines a (2D) half-space, which we orient to

point towards the inside of the isopolygon. Since the isopolygon must be convex, we can then

take the projected hit point and perform a 2D half-space test with each of the edges, rejecting

the hit point as soon as any of these tests fails. This test can be performed efficiently for four

rays in SSE for both triangle and quad cases.

A

B

C

D

A

B

C

D

Figure 5.1: Ray-isopolygon intersection in an isotetrahedron. Knowing that the isosur-
face inside the tetrahedron is a plane, we first extract an isopolygon. We then compute
the point where the ray pierces that polygon’s supporting plane, and project both the
polygon and that hit point to a 2D coordinate plane. In 2D, we then perform a point
in (convex) polygon test by considering if the point is on each of the edges’ positive
half-spaces. The test can trivially be extended to support frustum culling: If all corner
rays of the bounding frustum fail at the same edge, all rays inside the frustum must fail.

67

5.3.3 SIMD Frustum Culling

In addition to fast SIMD intersection, we also apply conservative “full miss” and “full

hit” tests for the entire packet, using packet frustum culling [22, 7]. These tests require com-

putation of the four corner rays bounding the packet frustum in SSE. For a given isopolygon,

we can forgo individual ray intersections when all four bounding rays fail for the same 2D

half-space test (Figure 5.1, right). Similarly, if all four rays pass all half-space tests, the

entire packet passes through the triangle, and we must only perform a distance test for our

component rays. Thus, intersection tests for individual rays are only required when the

frustum neither fully misses nor fully hits.

The efficiency of frustum culling depends on the relative areas of the frustum and isopoly-

gon within the plane. For complex scenes, tets are too small to have full hits, and frustum

culling rarely succeeds. However, full misses are quite common due to the loose nature of

the implicit BVH, making this test highly effective overall. Typically, frustum culling can

reject 40–60% of the packet-isopolygon tests, though this ratio declines for larger models.

Every time SIMD frustum culling rejects a packet test, all individual ray-isopolygon tests are

avoided, for example, 256 tests for a 16×16 ray packet.

5.3.4 Isopolygon Precomputation

Isopolygon computation can be executed in three ways:

1. Full precomputation. Precompute all isopolys every time the user changes the iso-

value(s) of interest.

2. On-the-fly computation from scratch on demand.

3. On-the-fly computation with caching. Compute isopolys only when needed, but keep

a cache of already computed isotets; clear the cache every time the user changes the

isovalue(s) or time step.

Full precomputation maximizes performance for navigation with static isovalues, but

requires larger memory footprint and incurs delays when the user changes isovalue or time

step. On-the-fly computation is slower during rendering, but offers greater flexibility with

scene interaction. Caching in theory offers a compromise, but in practice is quite complicated

in a multicore environment, as it requires the resolution of cache conflicts in a thread-safe

manner, requiring significant synchronization overhead. We therefore opt for pure on-the-fly

68

computation by default. Due to the use of large packets – which allow for amortizing the

on-the-fly computations over all rays in the packet – the overhead is in the range of 5–8%,

which we believe is a tolerable price for the ability to arbitrarily change the time step or

isovalue.

5.4 The Implicit Bounding Volume Hierarchy
The concept of the implicit BVH is similar to that of the implicit kd-tree [129] in that

the acceleration structure is not built for a single isovalue, but rather as a tree of min-max

isovalue ranges (as in Wilhelms & Van Gelder [134]). Each node stores the minimum and

maximum of all scalar field values contained within that subtree. During traversal, we can

consequently cull all BVH nodes that do not contain our desired isovalue. Once built, the

implicit BVH structure is valid for all isovalues, and thus allows for simultaneously rendering

multiple isosurfaces from the entire range of isovalues. As subtrees that do not contain the

isovalue are never traversed, the only effective cost of supporting arbitrary isovalues is a

slightly looser-fitting BVH.

5.4.1 Building the BVH

Building an implicit BVH for tets in fact is similar to building a BVH for triangle

meshes. Most mesh-BVH builds rely on bounding boxes or centroids of their primitives

as construction metrics [127, 125], and tets behave similarly to triangles in this regard.

Traditional bottom-up BVH builds [33] generally result in inefficient BVHs [42]. Recent

BVH literature has favored top-down builds, which recursively partition primitives into two

subgroups. Two partitioning strategies are of particular interest: the Wald et al. sweep

surface area heuristic (SAH) build [127], and the Wächter et al. fast spatial median build as

proposed in his bounding interval hierarchy (BIH) paper [125]. The SAH build employs a

surface area heuristic [33, 42] to select a partition with lowest expected cost, but is costly to

build. The BIH-style build is closer in spirit to spatial median builds and, as it requires no cost

function evaluation, it builds significantly faster than SAH methods. In both constructions,

nodes are partitioned until leaves contain 12 or fewer tet primitives. Empirically, we have

found this fixed value to work best.

Our BVH node employs the same structure as [127], with a crucial modification: we

interpret the isovalue v as a fourth dimension of the bounding volume, leading to 4D bounds

{x,y,z,v}. This can then be stored and processed as SSE vectors. Integers for the child

69

node index and traversal bookkeeping follow, padded to ensure SSE-friendly 16-byte align-

ment. Storing isovalues alongside geometric extents allow all dimensions to be processed

simultaneously in SSE.

5.4.2 Implicit BVH Traversal

Having constructed the implicit BVH, we now proceed to traversal. As previously

mentioned, we employ the coherent traversal algorithm of Wald et al. [127], and extend

it to implicit iso range culling. In general, this algorithm operates on large packets of rays,

and tracks both a bounding frustum and the first “active” ray in the packet that intersects a

current BVH node. Instead of intersecting each traversed node with all the rays in the packet,

it employs optimizations such as speculative descent and frustum culling of nodes. Nodes

not containing an isovalue in their min-max range are culled.

5.4.2.1 Implicit culling

As shown in Figure 5.2, at the heart of implicit BVH traversal lies the concept of culling

subtrees that are known to be inactive – those whose isorange does not contain an isovalue.

0,100

0,60 20,100

0,30 20,60 20,30 30,100

0,20 20,30 20,40 38,60 20,22 21,30 30,60 40,100

isovalue = 39

0

1

2 3

4

5

6

bifurcation nodes

intersected leaves

Figure 5.2: Implicit culling in the BVH. The implicit BVH is a min-max tree containing
only a subset of BVH nodes containing our desired isovalue(s). We can speculatively
descend the min-max tree until we reach a leaf, or an intersection test fails. Only
at bifurcation nodes must we resort immediately to geometric packet-BVH traversal
computation. Thus, geometric tests are performed as if the BVH had only been built
over active nodes for a single isovalue.

70

As this test is very cheap, we naturally perform it first. In addition, we observe that each

active node must have at least one active child, and if the first child is inactive, we can proceed

to its active sibling. Only at bifurcation nodes - where both children are active - do we

actually revert to the geometric tests outlined below. In the worst case, this behavior causes

us to descend several times into a subtree that is not actually visible. Since these speculative

descents are fast, however, this is still quicker than testing all the nodes for visibility, and

even if the fast descent led to a subtree that is outside the packet’s bounding frustum, this

node would be immediately rejected by the frustum test outlined below.

5.4.2.2 Speculative first-active descent

For our first geometric traversal test, we examine the first active ray in the packet. If that

hits the current node, we can immediately descend without performing any more ray-box

tests, as illustrated in Figure 5.3, top. Since we never test whether any of the other rays

actually hit the current node, this test is speculative. Though it may cause modest extra work

when few rays in the packet are also active, this strategy allows many ray-box tests to be

skipped when numerous consecutive rays are active.

5.4.2.3 Frustum test

If the first active test fails, we know that the packet at least partially misses the box,

and can perform a frustum test to conservatively determine if the entire packet misses.

Technically we employ an interval arithmetic [99, 7] test instead of a geometric frustum

test, but the effect is similar in behavior. If the full packet missed, we reject the current node

and go to the next node on the stack (Figure 5.3, middle).

5.4.2.4 First-active ray tracking

If both the speculative descent and frustum tests fail, we test all remaining rays until we

find the first active one that hits the current node. Those rays that failed the test are marked

inactive by tracking the index of the first active ray in the packet (all rays with a smaller

index are known to be inactive). If no active ray could be found, we reject the node and pop

the next subtree from the stack. Rays with indices higher than the first active one we found

are not tested, and are speculatively descended into the subtree also (Figure 5.3, bottom).

71

Figure 5.3: First-active descent, frustum test, and active ray tracking.

72

5.4.2.5 Leaf traversal

When encountering a leaf, we first perform a frustum test as for all other nodes. If that

test passes, we iterate over all the tets referenced in that node, then determine that tet’s

isorange (which may be smaller than the node’s isorange). We test that range, and finally

either reject the tet or intersect it as described above.

5.5 Time-Varying Data
Time-varying data are extremely common in FE simulations. In the simplest time-

varying tet meshes, geometry remains constant and only scalar values change. More complex

scenarios include changing geometry and topology, and potentially dynamic addition and

removal of elements from one time step to the next. To address these possibilities, we

implement two schema for BVH construction, balancing performance and memory footprint.

Results are analyzed in Sec. 5.7.6.

5.5.1 Schema I: Unique BVH Per Step

The naı̈ve way of accommodating time-varying data is to compute a unique BVH for each

time step. No render-time computation is necessary to progress from one time step to the

next, regardless of changes in geometry or scalar element values. As we operate completely

in host memory, this approach is in fact very efficient. However, for large data sets with

many time steps such as the fusion data set, this approach may entail a considerable memory

footprint.

5.5.2 Schema II: Dynamic Refitting

Fully computing a new BVH on-the-fly during rendering is too costly for large data, even

using the fast BIH-style build. However, we observe that when tet mesh vertices change

position but connectivity remains constant, the BVH structure will not change between time

steps. Thus, simply refitting the nodes’ bounding extents will yield a correct BVH. This

technique has been successfully applied to ray tracing dynamic triangle meshes [127, 65].

The main drawback is that, particularly in cases of extreme geometric deformation, the refit

BVH may perform worse than a BVH built from scratch for that particular time step. Fortu-

nately, for tet meshes and our BVH, this method works extremely well due to the continuous

nature of tet deformations in FE simulation, particularly for rigid bodies. Moreover, when

73

vertices remain constant but the scalar field changes, the BVH is identical for all time steps,

as only the min-max isovalues must be updated.

As previously mentioned, minimum and maximum geometric bounds and isovalues are

stored adjacently in 4D SSE vectors. Refitting the 4D extents can thus be accomplished with

one SSE min and one SSE max per BVH node. Tet vertices and scalars are also stored as

4D points; thus computing the 4D bounds of a tet is also extremely efficient, requiring only

3 SSE min and max operations each per tet. It is straightforward to parallelize the update

process. After the initial BVH has been built we find all the subtrees for a given level in the

BVH hierarchy, and store their indices. During a refit, we can then update these subtrees in

parallel. Once all subtrees are updated, a single thread refits the remaining few nodes close

to the root node.

5.6 Shading and Interaction Modalities
Having leveraged these algorithms for efficient unstructured volume ray tracing, we

describe several visualization modalities that can assist in understanding our data sets.

5.6.1 Shadows

Shadows add important visual cues in understanding shape (see Figure 5.4). In casting

shadow packets, rays are generally coherent and share a common origin in the case of point

lights. Unlike primary rays, shadow rays do not inherently form a regular beam, and thus

have no concept of “corner rays” for SIMD frustum culling. Fortunately, shadow packets

may still employ the Reshetov et al. [99] frustum-culling technique at traversal, as this

requires no actual geometric frustum. The overall speed impact of shadow rays varies, but is

typically lower than 2×.

5.6.2 Multiple Isosurfaces

Supporting multiple isosurfaces in an implicit BVH is straightforward, by simply testing

whether a BVH subtree overlaps any of the isovalues before descending it. To follow the

SIMD paradigm, we currently support up to four different isosurfaces, though it would be

trivial to add more. Keeping the four isovalues in a SIMD vector, we can test when a BVH

node’s or isotetrahedron’s iso range contains any of these four isovalues in parallel. These

are in turn intersected with all the rays that actually hit the leaf node. Though rendering

74

(a) (b)

(c) (d)

Figure 5.4: Additional shading effects. a) A bucky ball rendered with a single iso-
surface, and diffuse shading. b) After turning on diffuse shading with shadows. c)
With a second isosurface and an interactive clip-box to expose the interior. d) Adding
transparency as well. At 1024× 1024 pixels on a Intel Core 1 duo laptop, these
screenshots render at 15.6, 10.2, 5.4, and 2.6 frames per second, respectively. On our
16-core Opteron 3.0 GHz workstation, they render at 90, 70, 42, and 19 frames per
second, respectively.

multiple surfaces can require tracing more rays per image, particularly when transparency is

enabled, it causes no significant computation penalty in and of itself.

5.6.3 Clipping Planes and Boxes

While isosurfaces provide an intuitive way of visualizing a data set, one of their draw-

backs is that the surface often occludes the data set’s interior. For that reason, visualization

systems often employ clipping planes (or boxes) that allow for cropping certain parts of the

75

model to expose its interior. We currently allow for a single box that may or may not extend

to infinity (to simulate a plane), and use this to clip BVH subtrees. During traversal, if a

node’s subtree is completely enclosed in the crop box, we skip the subtree just as if it was

out of the isorange. In SIMD, a box-in-box test is very cheap and can be amortized per

packet, incurring negligible cost.

5.6.4 Transparent Depth Peeling

Rendering transparent isosurfaces also provides better understanding of the dataset. Though

straightforward to implement, transparency multiplies the complexity of rendering an image

by the number of transparent hits required. Though it is possible to implement by recording

multiple hits per ray, in our packet architecture it is more elegant to implement as a shader

via secondary rays. By simply specifying a minimum hit distance for each transparency ray,

we can reuse the origin, corner rays and frustum of the original ray packet. Rays that do

not require a transparency ray are disabled, sometimes leading to partially-filled packets, but

incurring no additional traversal steps or isopolygon intersections. As shading is performed

front-to-back, shadows and transparency are always computed accurately.

5.7 Results
In this section, we evaluate the system as a whole, and the overall success of coherent

BVH ray tracing for tet-volume isosurfaces. For our benchmarks, we consider three rep-

resentative machines: a laptop equipped with an Intel Core (1) Duo 2.33 GHz and 1 GB

RAM; a 4-core dual Intel Xeon 2.33 GHz desktop with 4 GB RAM; and a 8-CPU dual-core

(16 cores total) Opteron 3.0 GHz workstation with 64 GB RAM. Unless otherwise stated, all

examples run at 1024×1024 pixels, and use packets of 16×16 rays. The data sets and scenes

we used for our comparisons are depicted in Figures 5.5 and 5.6, and overall performance

figures are given in Table 5.1.

5.7.1 Build Time and Performance

Because a tetrahedral mesh has far less geometric variation than a polygonal model (i.e.,

tets form a partition of space, and never overlap or self-intersect), the qualitative difference

between a SAH and a BIH build is virtually nonexistent (Table 5.1). Because of the lower

build times, we default to the BIH-style build. With the fast BIH-style build, most of the

smaller data sets could in fact be rebuilt from scratch per frame.

76

Figure 5.5: Benchmark scenes for the BVH. From left to right, top to bottom: ell32P
(149k tets), bucky ball (177k tets), bluntfin (225k tets, two isosurfaces), tjet (1m tets),
timestep 50 of the fusion data (3m tets), and the sf1 seismic data (14m tets). With
simple shading, these examples run at 14.2, 13.3, 18.9, 10.1, 4.0 and 3.3 frames per
second (1024× 1024 pixels) on an Intel Core 1 Duo 2.33 GHz laptop with 1GB RAM,
and at 116, 112, 95, 66, 57, and 32 frames per second on a 16-core 3.0 GHz Opteron
workstation.

Table 5.1: BIH-style build vs. SAH for building the implicit BVH. Because the tetra-
hedra are distributed over space more evenly than triangles in a polygonal model, the
render performance for between BIH-style build and SAH build is very similar, but
executing the BIH-style build is much faster.

ell32p bucky blunt tjet fusion (t=50) sf1

#tets 148,995 176,856 224,874 1.0m 3m x 116 14m
render performance (frames per second)

BIH 48.0 39.4 53.8 28.5 11.8 13.1
SAH 43.7 39.5 57.1 27.7 12.3 13.1

build time (ms, dual Intel Xeon 2.33 GHz)
BIH 32 40 61 607 1402 4908
SAH 1647 1794 2710 20886 70119 311267

77

Figure 5.6: Two examples of time-varying tet data sets, rendered at 1024×1024 pixels,
using a 16-core 3.0 GHz Opteron workstation. Top: An artificially created deforming
bucky ball that shows severe deformation of its 226K tets, running at 50+ frames per
second including shadows from a point light source. Bottom: The fusion data set
with a time-varying scalar field (3m tets, 116 time steps), rendered with four layers
of isosurfaces, a crop box, shadows, and transparency, running at 7 to 15 frames per
second. Camera and light positions, time step, and number and parameters of the
isosurfaces can be changed interactively.

78

5.7.2 Rendering Performance

As seen in Tables 5.1 and 5.2 and Figure 5.5, all of the static examples can be rendered

at multiple frames per second even on the dual-core laptop. For static scenes, performance

is typically linear in the number of CPU cores. Empirically, we found our application scales

roughly linearly with respect to the number of pixels per frame. Thus, a frame buffer of

512×512 generally renders four times faster than at 1024×1024, enabling interactive rates

for difficult scenes on the laptop.

5.7.3 Scalability in Model Size

Performance degrades gracefully when increasing model size, dropping only by 4x from

from the smallest model (feok, 121k tets) to the most complex one (sf1, 14M tets). This

is largely due to the logarithmic complexity of ray tracing efficiency structures, and the

packet-amortized cost of memory access. To further evaluate scalability to large models, we

have synthetically replicated a bucky ball n×n×n times without instancing. As evident in

Table 5.3, performance drops moderately even for hugely complex models of up to nearly a

billion tets. Though they require workstation-class memory capacity, large unstructured data

such as the STP bullet simulation (36m tets) render equally efficiently (Figure 5.7).

5.7.4 Traversal Efficiency

The key to this interactive performance lies in the aggressive large-packet traversal scheme.

Speculative descent and frustum culling greatly reduce the number of individual ray-box tests

during traversal by roughly a factor of 18–51 compared to tracing 2×2 packets (the smallest

an SSE-based system can trace). Using packets allows for traversal and intersection code in

SSE, which is crucial to realizing the performance potential of modern CPUs. Because we

have transformed the ray-isotet intersection to a polygonal problem, the same frustum culling

Table 5.2: Performance in frames per second for various data sets and platforms.
Laptop is an Intel Core Duo 2.33 GHz, 1 GB RAM. Desktop is a 4-core dual Intel Xeon
2.33 GHz, 4 GB RAM. Workstation is a 16-core cc-NUMA 3.0 GHz Opteron, with 64
GB RAM. Refer to Figure 5.5 for images.

ell32p bucky blunt tjet fusion (t=50) sf1
render performance (frames per second)

laptop 14.2 13.3 18.9 10.1 4.0 3.3
desktop 48.0 39.4 53.8 28.5 11.8 13.1
workstation 116 112 95 66 57 32

79

Table 5.3: Bucky ball replication and scalability. Performance in frames per second on
four Opteron 3.0GHz cores, for varying numbers of replication of the bucky ball scene
(no instancing is used).

replications 1 23 43 83 163

tets total 177k 1.4m 11.3m 90.4m 724m
frames per second 43 16.7 6.2 2.0 0.80

Figure 5.7: Large data and scalability. Left: 43 replicated buckyballs with 11.3m tets.
Right: STP dataset with 36m tets. With simple shading, these datasets perform at 27.8
and and 26.9 fps, respectively, on a 16-core 3.0 GHz Opteron workstation with 64 GB
RAM.

techniques can also be used to significantly reduce the number of individual ray-isopolygon

tests, by about 2–3×, though for the most complex scene the number of ray-isopolygon tests

actually increases (see Table 5.4). Finally, larger packets allow for amortizing per-packet

operations like isorange culling and isotet extraction over the entire packet, thus reducing the

total number of these operations per frame. As evident in Table 5.4, this reduces the number

of isopolygon generations by about 6–40×, and the number of culling tests by 22–55×.

Regarding isopolygon caching versus on-the-fly recomputation, we note that because

large packets reduce the number of isopolygon extractions, caching the isopolygons has a

relatively low impact. Even when using only a single CPU and a large enough cache (so no

conflicts occur, and all synchronization can be disabled), caching only increases total frame

rate by 5–8% over on-the-fly recomputation. Thus, we opt for the on-the-fly recomputation

by default.

80

Table 5.4: Traversal statistics of the frustum method (using 16×16 rays) vs. standard
2×2 packet traversal.

scene ell32P bucky bluntfin tjet fusion (t=50) sf1
number of individual packet-box tests
2x2 56.75 93.84 48.05 44.67 175.83 33.21
16x16 1.11 1.8 0.94 1.20 4.32 1.69
ratio 52× 52× 51× 37× 41× 20×
number of individual ray-isopolygon tests
2x2 8.0 13.52 8.90 6.8 29.35 9.37
16x16 3.39 4.42 3.19 3.95 16.47 7.64
ratio 2.4× 3.0× 2.4× 1.7× 1.8× 1.22×
number of total packet isorange tests
2x2 99.89 152.31 76.75 135.32 279.75 77.10
16x16 1.88 2.84 1.45 3.00 6.48 2.72
ratio 53× 54× 51× 45× 43× 28×
number of total isopolygon extractions (×1000)
2x2 1908 354 2216 1154 7285 1943
16x16 64 10 69 110 296 373487
ratio 29× 34× 32× 10.3× 25× 5.2×

5.7.5 Multiple Isosurfaces, Shadows, and Transparency

Rendering multiple isosurfaces in itself does not significantly raise the cost of an image,

due to the ray tracer’s implicit occlusion culling – the 2× drop in framerate in Figure 5.4 is

due to the 2× higher projected area of the model after adding the outer isosurface. However,

as mentioned in Section 6.6.6, advanced shading bears a significant cost due to the higher

number of rays traced. Shadows usually increase the render cost by about 2x if the rendered

object covers the entire screen, and somewhat less, otherwise (also see Figure 5.4). Trans-

parency similarly increases to the total number of rays traced per-frame, and thus increases

the render cost. We typically limit the number of transparency rays to a user-specified

maximum (2 by default), which can be changed interactively. All these effects can be

supported simultaneously, even for large time-varying data sets (see Figures 5.6 and 5.4).

5.7.6 Time-Varying Data Sets

Precomputing a BVH and replicating vertex arrays for each timestep, as in Sec. 5.5.1, is

only practical for small data or workstations with copious memory. For the fusion dataset

this requires over 22 GB in memory footprint. Nevertheless, this scheme remains desir-

able, as moving across timesteps incurs no noticeable penalty in frame rate. Conversely,

by employing a single BVH and refitting it per-frame (Sec. 5.5.2), the BVH and all 116

time steps of the fusion data occupy only 538 MB, allowing us to render that model on

81

the laptop. However, refitting requires updating the vertex array, all the BVH nodes, and

some precomputed shading data (e.g., per-tet gradients) per frame. This update is fully

parallelized, but scales poorly due to intensive and asymmetrical memory access on our

workstation’s cc-NUMA architecture. Effectively, refitting adds a significant per-frame cost

that limits maximum performance to 3.5 fps on the workstation. Moreover, precomputation

and refitting offer a classical trade-off between performance and memory consumption.

5.7.7 Memory Overhead

The bounding volume hierarchy structure occupies a significant footprint in main mem-

ory. In our implementation, the BVH requires two arrays: one for BVH nodes, at 32 bytes

per node, and another for storing the lists of tet IDs that the leaf nodes refer to. The tetID

list uses a constant amount of memory, requiring exactly 4 bytes per tet. The size of the

node array depends on how many nodes are allocated, which in turn depends on the data and

build strategy. In the worst case, a BVH would always split until each tet is contained in

exactly one leaf, in which case a total of 2N−1 nodes, (i.e., roughly 64×N bytes) would be

allocated for the node array. In practice, the optimal BVH is much shallower, and uses only

a fraction of that memory (1
4

th−−1
6

th
).

For that worst-case assumption, however, Table 5.5 shows that for static scenes, memory

overhead is around 4× that of the raw input data. For the time-varying deformed bucky and

fusion data sets, this overhead increases to a significant 18× and 20× if a separate BVH

is stored per time step. If the BVH is shared over time, the overhead drops to 92% for the

Table 5.5: Memory usage and BVH overhead. Note that we report a worst-case upper
bound on BVH memory (2×N−1 nodes for N tets), as this is what our system actually
pre-allocates memory for. In practice, only about one fourth to one sixth of that
pre-allocated memory is actually used (i.e., memory overhead could be reduced rather
easily should that ever become an issue).

scene number of raw BVH per step shared BVH
tets verts steps mem mem ratio mem ratio

ell32p 149k 33k 1 2.8MB 9.6MB 4.1× – –
bluntfin 225k 41k 1 4.1MB 18MB 4.2× – –
SF1 13.9m 2.5m 1 251MB 906MB 3.6× – –
TJet 1m 163k 1 17.7MB 64.9MB 3.6× – –
bucky ×43 11.3m 2.1m 1 205MB 734MB 4.2× – –
STP 36m 6.3m 1 1.7GB 7.2GB 4.2× – –
bucky. def. 176k 32k 20 12.7MB 234MB 18× 11.7MB 0.92×
fusion 3.0m 622k 116 1.1GB 22GB 20× 194MB 0.18×

82

deformed bucky while for the fusion data set the overhead is only 18%. In general, more

time steps reduce the relative overhead, as they amortize input tet data footprint.

5.7.8 Comparison to Existing CPU Based Approaches

Our results compare favorably to the performance achieved by the Marmitt et al. Plücker-

based tet marching algorithm [77], which reported 1.67 and 0.92 fps at 512× 512 on a

dual-Opteron for isosurfaces on the bluntfin and buckyball, respectively. On comparable

hardware and frame buffer size, our system performs around 40 times faster. However, it

is important to note that the Marmitt et al. method also supports semitransparent volume

raycasting, which ours does not.

5.7.9 Comparison to Existing GPU Based Approaches

GPU hardware is continually changing, so comparing to previously published results

would be an unfair comparison to already-outdated hardware. For that reason, we have

decided to base our comparisons mainly on HAVS [11] and its isosurface extension [3],

running on a state-of-the-art nVidia 8800 GTX. HAVS is well-known and freely available,

thus an appropriate system for benchmarking GPU performance. As seen in Table 5.6, when

isosurfacing small and moderate-sized datasets (less than 1M), ray tracing achieves roughly

equivalent performance on a 4-core Xeon as rasterization on the nVidia 8800 GTX in the

same desktop. For larger data sets, however, our method can outperform HAVS significantly,

even for models that fit comfortably in GPU memory.

For small data such as the bluntfin, isosurfacing via the GPU ray-casting method of

Georgii & Westermann [31] reports 175 fps at 512× 512 on an nVidia 7900 GTX; our

system achieves 160 fps on the 4-core Xeon desktop at the same resolution. However, their

performance degrades significantly for larger datasets over 1M tets. We refrain from absolute

comparison, but our system achieves similar performance for small data, and is substan-

tially faster for large data. Again, it should be noted these GPU methods are designed for

object-order volume rendering without acceleration structures, whereas our technique relies

on logarithmic-order BVH traversal and is restricted to isosurface visualization. Nonetheless,

CPU ray tracing is roughly competitive in performance with GPU methods for isosurface

visualization of unstructured grids, and exhibits better overall scalability. In closing this

chapter, Figure 5.8 provides an overview of effects supported by our system.

83

Table 5.6: GPU performance comparison, in frames per second, with HAVS [11, 3],
running on an nVidia 8800 GTX, and our method on a 4-core Intel Xeon 2.33 GHz, at
1024×1024 resolution.

scene ell32P bucky bluntfin tjet fusion SF1
Tetrahedra 149k 177k 225k 1m 3m 14m
BVH 48 39.4 53.8 28.5 11.8 13.1
HAVS 50 50 30 3.0 1.5 0.3

(a) (b)

(c) (d)
Figure 5.8: Teaser scenes from the tet mesh isosurface ray tracer. a) tjet (1m tets) with
shadows, transparent depth-peeling, and multiple isosurfaces b) SF1 (14m tets) with
four isosurfaces. c) buckyball with two a clip-box, multiple isosurfaces and shadows, d)
Time step 60 of the time-varying fusion data set (3m tets, 116 time steps), rendered with
four isosurfaces, shadows, and transparency. With a 1024× 1024 frame buffer, these
examples render at 2.0, 3.1 5.4, and 0.8 fps, respectively, on an Intel Core Duo 2.33 GHz
laptop with 1 GB RAM; and and 11, 18, 52, and 10 fps, on a 16-core 3.0 GHz Opteron
workstation with 64 GB RAM.

CHAPTER 6

RAY TRACING ARBITRARY-FORM IMPLICIT

SURFACES

In this section, we consider a more general problem in rendering a wide class of implicit

surfaces. Existing techniques for rendering arbitrary-form implicit surfaces are limited,

either in performance, correctness or flexibility. Ray tracing algorithms employing interval

arithmetic (IA) or affine arithmetic (AA) for root-finding are robust and general in the class

of surfaces they support, but traditionally slow. Nonetheless, implemented efficiently using

a stack-driven iterative algorithm and SIMD vector instructions, these methods can achieve

interactive performance for common algebraic surfaces on the CPU. A similar algorithm

can also be implemented stacklessly, allowing for efficient ray tracing on the GPU. This

paper presents these algorithms, as well as an inclusion-preserving reduced affine arithmetic

(RAA) for faster ray-surface intersection. Shader metaprogramming allows for immediate

and automatic generation of symbolic expressions and their interval or affine extensions.

Moreover, we are able to render even complex forms robustly, in real-time at high resolution.

The results of this chapter were published as “Interactive Ray Tracing of Arbitrary Implicits

with SIMD Interval Arithmetic” [59] for the CPU IA algorithm, and subsequently “Fast and

Robust Ray Tracing of General Implicits” [58] for the GPU IA/AA method.

6.1 Motivation
Ray tracing methods for implicit surfaces have historically sacrificed either speed, cor-

rectness or flexibility. Piecewise algebraic implicits have been rendered in real-time on the

GPU using Bézier decompositions [72], but approximating methods do not render arbitrary

expressions directly, nor always robustly. Self-validated arithmetic methods, such as interval

arithmetic (IA) or affine arithmetic (AA), are extremely general in that theoretically any

composition of Lipschitz-boundable functions can be expressed as an inclusion extension

and solved robustly. However, these approaches have historically been among the slowest.

85

This work discusses optimization of interval and affine arithmetic methods to allow for

interactive ray tracing of arbitrary-form implicit surfaces on the CPU and GPU. We first

create an optimized coherent intersection algorithm using SSE vector instructions, achieving

interactive ray tracing for most simple surfaces on a dual-core CPU. We then derive a

separate algorithm for the GPU, using a stackless interval bisection algorithm for general

implicit intersection. We also implement an efficient implementation of a reduced affine

arithmetic (RAA) that correctly preserves the inclusion property. Together, these allow

real-time rendering of complex implicit functions. Shader metaprogramming allows users

to design implicit forms and procedural hypertextures flexibly, with immediate results and

full support for dynamic 4D surfaces. The ray tracing algorithm enables multibounce effects

to be computed interactively without image-space approximations, enabling effects such as

transparency and shadows. While the direct application is simply the computer graphics

technique and a mathematical graphing tool, the ability to accurately and quickly render

general-form implicits could ultimately facilitate isosurface rendering of geometric data with

arbitrary user-specified filters.

Chapter 2 provides an overview of related work in rendering general implicit surfaces.

Section 2.5.1 discusses ray tracing approaches for rendering algebraic and implicit surfaces.

Approaches for specific implicits, such as [5] and [38], frequently combine point sampling

and a superlinearly-convergent numerical technique, such as bracketed Newton and regula

falsi, to converge to the intersection point of surfaces that contain multiple roots along a ray.

These methods are fast and surprisingly sophisticated, but can fail near singularities when

brackets are wide enough to contain multiple roots. Better numerical iterative techniques

such as the Brent and Dekker methods exist [97], but require some tuning to the individual

implicit. These secant-method derivatives are also employed in special-case implicit inter-

sectors [75]. Analytical closed-form root-solving can also be effective [111], but frequently

requires double precision for accuracy.

In ray-casting implicit surfaces, the problem lies in selecting appropriate brackets before

employing a numerical root-finding method. Strategies for arbitrary-form implicits differ

when bracketing assumptions cannot easily be made. Hanrahan [39] proposed a brute-

force uniform sampling of points, using Descartes’ rule of signs to isolate roots. Sturm

sequences [122], bracketing based on Lipschitz conditions [52], and derivation and evalu-

ation of signed distance functions [40] have been proposed; however these methods either

86

sacrifice robustness, generality, or the ability to directly render an implicit surface given

its closed form. A common approach to rendering general implicit surfaces is to refactor

them into a polynomial that can be easily solved. With low-degree polynomials this can be

extremely efficient [72, 87] and sacrifice some robustness; or it can be more accurate but

expensive [98].

The appeal of interval and affine arithmetic is that they allow for direct evaluation of the

implicit function itself, and, assuming numerical stability, a robust method of determining

whether a root is possibly contained within an interval bracket. Toth [121] first applied

interval arithmetic to ray tracing parametric surfaces, in determining an initial convex bound

before solving a nonlinear system. Mitchell [82] ray traced implicits using recursive IA

bisection to isolate monotonic ray intervals, in conjunction with standard bisection as a

root refinement method. Heidrich and Seidel [44] employed affine arithmetic in render-

ing parametric displacement surfaces. De Cusatis Junior et al. [16] used standard affine

arithmetic in conjunction with recursive bisection. Sanjuan-Estrada et al. [107] compared

performance of two hybrid interval methods with Interval Newton and Sturm solvers. Florez

et al. [24] proposed a ray tracer that antialiases surfaces by adaptive sampling during interval

subdivision. Gamito and Maddock [28] proposed reduced affine arithmetic for ray casting

specific implicit displacement surfaces formulated with blended noise functions, but their

AA implementation fails to preserve inclusion in the general case.

6.2 Background
6.2.1 Ray Tracing Implicit Surfaces

Recall that a surface S in implicit form in 3D is the set of solutions of an equation

f (x,y,z) = 0 (6.1)

where f : Ω⊆ R3 → R. In ray tracing, we seek the intersection of a ray

~p(t) =~o+ t~d (6.2)

with this surface S. By simple substitution of these position coordinates, we derive a unidi-

mensional expression

87

ft(t) = f (ox + tdx,oy + tdy,oz + tdz) (6.3)

and solve where ft(t) = 0 for the smallest t > 0.

In ray tracing, all geometric primitives are at some level defined implicitly, and the

problem is essentially one of solving for roots. Simple implicits such as a plane or a sphere

have closed-form solutions that can be solved trivially. More complicated surfaces without

a closed-form solution require iterative numerical methods. However, easy methods such as

Newton-Raphson, and even “globally-convergent” methods such as regula falsi, only work

on ray intervals where f is monotonic. As shown in Fig. 6.1, point sampling using the rule

of signs [39] fails as a robust rejection test on nonmonotonic intervals. While many methods

exist for isolating monotonic regions or approximating the solution, inclusion methods using

interval or affine arithmetic are among the most robust and general. Historically, they have

also been among the slowest, due to inefficient implementation and impractical numerical

assumptions.

6.2.2 Interval Arithmetic and Inclusion

Interval arithmetic (IA) was introduced by Moore [83] as an approach to bounding

numerical rounding errors in floating point computation. The same way classical arithmetic

operates on real numbers, interval arithmetic defines a set of operations on intervals. We

denote an interval as x = [x,x], and the base arithmetic operations are as follows:

x+ y = [x+ y,x+ y], x− y = [x− y,x− y] (6.4)

x× y = [min(xy,xy,xy,xy),max(xy,xy,xy,xy)] (6.5)

Moore’s fundamental theorem of interval arithmetic [83] states that for any function f

defined by an arithmetical expression, the corresponding interval evaluation function F is an

inclusion function of f :

F(x)⊇ f (x) = { f (x) | x ∈ x} (6.6)

88

(a)

f(h)

f(l)

f(v) v

hl

I=[l,h]

x

f(x)

f(I)

(b)

f(v) v

hl

I=[l,h]

x

f(x)
CH(I)

F(I)

Figure 6.1: The inclusion property. (a) When a function f is nonmonotonic on an
interval I, evaluating the lower and upper components of a domain interval is insuffi-
cient to determine a convex hull over the range. This is not the case with an inclusion
extension F (b), which encloses all minima and maxima of the function within that
interval. Ideally, F(I) closely envelopes the actual convex hull, CH(I), enclosing the
upper and lower Lipschitz bounds of f .

89

where F is the interval extension of f .

The inclusion property provides a robust rejection test that will definitely state whether

an interval x possibly contains a zero or other value. Inclusion operations are powerful in

that they are composable: if each component operator preserves the inclusion property,

then arbitrary compositions of these operators will as well. As a result, in practice any

computable function may be expressed as inclusion arithmetic [82]. Some interval opera-

tions are ill-defined, yielding empty-set or infinite-width results. However, these are easily

handled in a similar fashion to standard real-number arithmetic. A more difficult problem

is converting existing efficient real-number implementations of transcendental functions to

inclusion routines, as opposed to implementing an IA version from base operators. This

requires ingenuity, but is usually possible and far faster than implementing an extension

approximation from scratch.

The IA extension is often referred to as the natural inclusion function, but it is neither the

only mechanism for defining an inclusion algebra, nor always the best. Particularly in the

case of multiplication, it greatly overestimates the actual bounds of the range. To overcome

this, it is necessary to represent intervals with higher-order approximations.

6.2.3 Affine Arithmetic

Affine arithmetic (AA) was developed by Comba & Stolfi [15] to address the bound

overestimation problem of IA. Intuitively, if IA approximates the convex hull of f with a

bounding box, AA employs a piecewise first-order bounding polygon, such as the parallelo-

gram in Fig. 6.2.

An affine quantity x̂ takes the form:

x̂ = x0 +
n

∑
i=1

xiei (6.7)

where the xi,∀i≥ 1 are the partial deviations of x̂, and ei ∈ [−1,1] are the error symbols. An

affine form is created from an interval as follows:

x0 = (x+ x)/2, x1 = (x− x)/2, xi = 0, i > 1 (6.8)

90

IA AA

Figure 6.2: Bounding forms resulting from the combination of two interval (left) and
affine (right) quantities.

and can equally be converted into an interval

x = [x0− rad(x̂),x0 + rad(x̂)] (6.9)

where the radius of the affine form is given as:

rad(x̂) =
n

∑
i=1
|xi| (6.10)

Affine operations in AA, where c ∈ R, are as follows:

c× x̂ = cx0 + c
n

∑
i=1

xiei

c± x̂ = (c± x0)+
n

∑
i=1

xiei (6.11)

x̂± ŷ = (x0± y0)±
n

∑
i=1

(xi± yi)ei

91

However, non affine operations in AA cause an additional error symbol ez to be intro-

duced. This is the case in multiplication between two affine forms,

x̂× ŷ = x0y0 +
n

∑
i=1

(xiy0 + yix0)ei + rad(x̂)rad(ŷ)ez (6.12)

Other operations in AA, such as square root and transcendentals, approximate the range

of the IA operation using a regression curve – a slope bounding a minimum and maximum

estimate of the range. These operations are also non affine, and require a new error symbol.

6.2.4 Condensation and Reduced Affine Arithmetic

The chief improvement in AA comes from maintaining correlated error symbols as

orthogonal entities. This effectively allows error among correlated symbols to diminish,

as opposed to always increasing monotonically in IA. Unfortunately, as the number of non

affine operations increases, the number of noncorrelated error symbols increases as well.

Despite computing tighter bounds, standard AA ultimately is inefficient in both computa-

tional and memory demands. To remedy this, AA implementations employ condensation.

If x̂ has n symbols, then it can be condensed into an affine entity ŷ with m < n symbols as

follows [15]:

yi = xi ∀i = 0, ...,m−1

ym =
n

∑
i=m

|xi| (6.13)

While ŷ indeed bounds x̂, condensation destroys all correlations pertaining to em. As

a result, after condensation involving a symbol em, only positive-definite affine operations

involving that symbol may be applied in order to preserve inclusion. Gamito and Mad-

dock [28] employ a three-term reduced affine arithmetic that performs such condensation

for every non affine operation. Though symbol correlation is destroyed, they construct their

92

specific extension evaluation to preserve inclusion. Nonetheless, condensation is ill-suited

for arbitrary expressions, which may perform affine or non affine operations in any order.

6.2.5 Inclusion-Preserving Reduced Affine Arithmetic

In our own search for a correlation-preserving reduced affine arithmetic, we adopted a

formulation equivalent to that proposed by Messine [78]. In his AF1 formulation, condensa-

tion of an entity with n+1 total symbols,

x̂ = x0 +
n

∑
i=1

xiei + xn+1en+1 (6.14)

entails arithmetic operations as follows:

c± x̂ = (c± x0)+
n

∑
i=1

xiei + |xn+1|en+1

x̂± ŷ = (x0± y0)+
n

∑
i=1

(xi± yi)ei +(xn+1 + yn+1)en+1

c× x̂ = (cx0)+
n

∑
i=1

cxiei + |cxn+1|en+1 (6.15)

x̂× ŷ = (x0y0)+
n

∑
i=1

(xoyi + y0xi)ei +(|x0yn+1|+ |y0xn+1|+ rad(x̂)rad(ŷ))en+1

Here, affine operations enforce positive-definite correlations between error symbols. While

this does not compute bounds as tight as conventional AA, it is suitable for fixed-size vector

implementation, and is in most cases a significant improvement over IA. We therefore use

this as our formulation for reduced affine arithmetic (RAA).

6.2.6 Ray Tracing Implicits with Inclusion Arithmetic

The inclusion property extends to multivariate implicits as well, making it suitable for

a spatial rejection test in ray tracing. Moreover, by substituting the inclusion extension of

the ray equation (Equation 6.2) into the implicit extension F(x,y,z), we have a univariate

extension Ft(X ,Y,Z). To check whether any given ray interval t = [t, t] possibly contains our

surface, we simply check if 0 ∈ Ft(t). As a result, once the inclusion library is implemented,

93

any function composed of its operators can be rendered robustly. To pick domain intervals

on which to evaluate the extension, one has a wide choice of interval numerical methods.

The simplest option is pure recursive bisection of intervals, examined in the order of the

ray direction [82, 16, 28, 59]. Alternatives involve quasi-Newton methods and variants of

the Interval Newton algorithm [12, 107] that rely on the inclusion extension of the function

gradient.

6.3 SIMD CPU Ray Tracing Algorithm
We first present the SSE interval arithmetic method of [59], an example of which is

shown in Figure 6.3. Our algorithm simplifies the interval bisection method first proposed

by Mitchell [82], and employs a variant of coherent octree traversal [57] as opposed to direct

bisection of t intervals along the ray. Together, these decisions allow us to perform bisection

in a nonrecursive manner, evaluate intervals quickly using SIMD vector instructions, and

avoid unnecessary per-step interval multiplication. The simplicity and efficiency of this

algorithm allow it to interactively visualize most implicit functions.

The conventional Mitchell algorithm [82] employs interval bisection to reject empty

(rootless) intervals. For each nonempty interval, it then computes the gradient interval, and

determines whether 0 /∈ F ′
t (t), i.e. if the function is monotonic over an interval t. When this

occurrs, Mitchell resorts to a robust numerical “refinement” method, such as non IA bisection

or regula falsi. Interval Newton methods [12, 107] also compute F ′
t (t) per-iteration. Gradient

interval computation proves expensive. Although previous works suggest these techniques

offer improved convergence and efficiency compared to pure bisection, that supposition has

been weakly scrutinized. In the context of coherent traversal, we find that interval bisection

yields unequivocally better performance, and achieves equivalent visual results efficiently at

coarser sampling rates.

To leverage SIMD vector operations, we perform interval bisection on four rays at a time.

Rather than bisecting t along the ray direction as in Figure 6.4(a), we bisect space along a

major directional axis K, similar to the coherent octree volume traversal proposed in [60], and

illustrated in Figure 6.4(b). Particularly when the space between rays exceeds the domain

sampling width ε , this ensures more regular sampling of the function across neighboring

rays, and preserves the spatial lockstep of coherent traversal (see Section 6.6.4).

The process of evaluating intervals is then simple. Given an interval box b = x× y× z,

94

Figure 6.3: Barth sextic surface on the CPU. rendered roughly interactively at 9.0 fps
(6.1 fps with shadows) with a 5122 frame buffer on an Intel Core Duo 2.16 GHz.

our function f and its corresponding IA evaluation F , we evaluate whether 0 ∈ F(b) for any

ray in the packet. If so, we bisect that interval along the major march axis, or register a

hit if a maximum depth threshold is reached. Rather than evaluating the IA extension of the

implicit Ft(t) projected along the ray, as preferred by previous works, our K-bisection method

evaluates the 3D implicit F(x,y,z) directly. This is convenient as both the IA extension and

evaluation functions are natively given as f (x,y,z) expressions. Moreover, our traversal

algorithm computes domain intervals b incrementally, requiring only three SSE additions

per iteration. Conversely, evaluating Ft(t) requires IA evaluation of Equation 6.3: three IA

multiplications and IA additions, or six SSE multiply, min, max and add operations in total.

The SIMD CPU algorithm shows that interval arithmetic can in fact be an effective

method for rendering arbitrary-form implicits. While bound overestimation and computa-

tionally complex implicits can be costly to render using this technique, it is still orders of

95

magnitude better than the most recently published interval arithmetic or affine arithmetic

method [24]. Interestingly, as we later show in Section 6.6.4, brute-force bisection outper-

forms more sophisticated quasi-Newton methods, particularly for the purpose of rendering

implicits which requires relatively low numerical precision. Ultimately, in Section 6.6.4, we

find that strategies for maximizing SIMD coherence and performance differ on CPU and

GPU platforms.

6.4 SIMD CPU Implementation
Our application takes as inputs a domain Ω ⊆ R3, and an implicit function expression.

For simplicity, we chose to hard-code most functions as IA expressions; however the function

can also be received from the user as a string and then parsed and compiled into IA code in

a dynamic library on-the-fly.

Figure 6.4: Spatial interval bisection methods. The conventional method (a) recursively
bisects each ray along its parameter t until a surface is located to the satisfaction of a
termination criterion. Our K−marching technique (b) marches rays along a common
axis in lockstep. Evaluating along 3D interval boxes B requires slightly less computation
per iteration than evaluating the projected function ft(t). More importantly, traversing
along a common spatial axis induces more coherent behavior between rays in a packet.

96

6.4.1 SSE Interval Arithmetic

The foundation of our implicit ray tracing system is our own SSE IA library, which

allows us to quickly evaluate intervals in SIMD. Implementation is straightforward; interval

multiplication is particularly efficient as SSE itself is relatively fast for both multiplication

and minimum/maximum operation. The only nontrivial operators are periodic functions such

as modulus and sine; and division which requires special-case handling during traversal (see

Section 6.4.4). Examples of SSE IA pseudocode are given in Algorithm B.1 in Appendix B.

We deliberately ignore IA rounding rules for numerical conditioning. Empirically, we find

floating point round-off errors are insignificant compared to the termination tolerance of

our bisection algorithm. One could likely devise numerically ill-conditioned functions that

would require IA rounding, but in practice it is not a major issue.

6.4.2 Ray Packet Structure

We chose conservative 2x2 packets for our implementation. Above all, we wish to eval-

uate baseline performance with SIMD ray tracing using 4-wide SSE vectors; thus behavior

of our system should be consistent on wider SIMD hardware, such as a GPU or FGPA.

Though larger packets coupled with multilevel algorithms could be significantly faster [99],

2x2 packet traversal is better-suited for general-purpose ray tracing, and easily allows our

implicits to be integrated into a ray tracer as geometric intersection primitives. The actual

packet architecture should generalize to any coherent ray tracer; our packet implementation

consists of origin and direction stored for each X,Y,Z axis in SSE packed floats. Packets also

store the ray hit parameters t, and a mask indicating which rays have hit.

6.4.3 Traversal

Once the user has supplied a function, a domain box Ω ⊆ R3, and a maximum depth

dstop, we are ready to perform traversal. As in coherent grid traversal [130], we first find K,

the dominant axis of the first ray in the packet, and denote the remaining two axes U and V.

We then perform a standard ray bounding-box test on our domain. We store the actual tenter

and texit parameters as well as the intersections with the K entry and exit planes, tKenter and

tKexit . Now, we consider the total increment along K, tKexit − tKenter, and compute the total U

and V increments over the entire domain. As our implementation is iterative, not recursive,

we store an array containing a traversal “stack” for each depth {0..dstop−1}, containing the

t, K,U and V increments bisected at each level.

97

The algorithm then simply marches from one K slice to the next, incrementing the t, K,U

and V positions once per step and keeping track of current and next values, orthogonally

for each ray using SSE. It constructs intervals from the K,U and V current and next values.

This enables us to iteratively increment domain intervals simply with three SSE additions, as

opposed to three SIMD IA multiplications and additions using the conventional t-marching

method. Branching is only used to omit intervals when t < tenter, and exit when all rays hit

successfully or have t > texit . We store and check a flag for each depth, which indicates when

both sides of a K-subtree have been traversed. When this happens, we decrement the depth,

and exit traversal when depth =−1.

At each march iteration, we evaluate the IA function expression on this domain interval

B = X ×Y ×Z. If 0 ∈ F(X ,Y,Z), we “recurse” by incrementing d and using the bisected

increments one level deeper. We register a hit on the surface when d == dstop − 1 (or

another hit criterion is met, such as ||F(B)|| < δ , as in Section 6.4.5). Finally, we mask

rays that successfully hit or terminate traversal when all rays hit. Traversal is illustrated in

Figure 6.4(b), and pseudocode is given in Algorithm 7.

6.4.4 Division

IA division requires a slight modification to the above algorithm. In theory, IA divi-

sion by intervals containing zero is ill-defined, similar to division of real numbers by zero.

Fortunately, we can easily detect and handle these cases. For two intervals a and b, when

0 ∈ b, we define a/b = [−∞,∞]. When rays traverse these intervals, they will always find a

surface within and recurse to maximum depth. Thus, without modification to the traversal,

asymptotes will be rendered. To avoid rendering asymptotes, we simply neglect to register

a hit when f − f = ∞. This principle is illustrated in Figure 6.5. With division correctly

handled, our traverser will work for literally any function composed of IA operators.

6.4.5 Precision Criterion

In our implementation, dstop determines the default precision for rendering the implicit.

Roughly, this corresponds to a domain precision of 2−dstop , though indeed this varies by ray.

However, for a more view-independent domain-space metric, the user may optionally specify

an ε , such that ||b||2 < ε serves as hit criterion, where b is an interval box x× y× z. In this

case, the stopping depth is determined adaptively per packet as

98

Figure 6.5: Handling division with IA. For functions with division, and intervals con-
taining zero near an asymptote, our IA implementation returns “infinite” F(I) intervals
(bottom left). As a result, these regions are always subdivided until termination (top
left). Fortunately, we may detect this infinite case within the traverser before registering
a hit, and thus choose whether or not to visualize asymptotes.

dstop = log2(∆packet/ε) (6.16)

where for world-space ray entry and exits ~Pr with the domain box Ω, and their corresponding

K-coordinates Kr,

∆packet = maxr∈packet
(||~Pexit

r −~Penter
r ||2)2

|Kexit
r −Kenter

r |
(6.17)

Alternately, the user may specify a range tolerance δ , in which case our algorithm registers

a hit when ||F(B)|| < δ . Empirically, the performance differences between these metrics

proved minor, and at low precision the dstop method yields more continuous results for neigh-

99

boring rays. Thus, in practice we use dstop as the default metric for evaluating performance

at varying sampling quality.

6.4.6 Shadows

In ray tracing, hard shadows are fairly trivial, requiring a shadow ray cast for every

primary camera ray that hits a surface. On the CPU this typically entails a 20% to 50%

decrease in frame rate, depending on the coherent behavior of shadow rays. Fortunately,

useful shadow rays require less accuracy than primary rays; it frequently suffices to cast

shadows to a coarser termination depth, such as dstop− 2, while employing a higher depth

for primary rays. As shadows are primarily useful as depth cues, this is generally acceptable.

The performance penalty is reduced, and loss of shadow detail is seldom perceptible (Fig-

ures 6.3 and 6.6).

6.4.7 Gradient Computation

For Lambertian shading, we require the surface normal at the ray hit position, given by

the ∂ f
∂x , ∂ f

∂y , ∂ f
∂ z partial derivatives at that point. While analytical gradients can be manually

defined, they are not strictly necessary. If the user fails to define partials, we employ central

differences by evaluating our function (using SSE, not SSE IA evaluation) six times to

create a central differences stencil. The results look excellent in most cases, and have no

Figure 6.6: The Klein bottle rendered using SIMD IA bisection. Dynamic shadows aid
the visualization and are trivial with ray tracing. Images rendered at 4.0 fps and 2.9
fps, respectively, at dstop = 12.

100

Figure 6.7: Gradient normal computation, on the Heart function f (x,y,z) = (2x2 +
y2 + z2− 1)3− (.1x2 + y2)z3. Left: using analytical partial derivatives as gradient, we
see shading artifacts where the gradient magnitude approaches zero. Center: with a
central differences stencil of width ∆S = 0.001, the results are visually indistinguishable.
Right: smoother normals with ∆S = 0.01. All images render at 6.7 fps using the SIMD
CPU method of [59].

appreciable impact on performance. We allow the user to specify stencil width; this is

frequently beneficial for surface regions with near-zero gradient magnitude (Figure 6.7).

6.5 GPU Algorithm
The GPU technique involves a Cg implementation of the interval bisection algorithm

(Section 6.5.5) and an implementation of reduced affine arithmetic (Section 6.5.3) suitable

for the NVIDIA G80 architecture. Overall, shader languages such as Cg 2.0 allow for a

more graceful implementation than the optimized SSE C++ counterpart on the CPU. Just-in-

time shader compilation, in conjunction with metaprogramming, can easily and dynamically

generate IA/AA extension routines from an input expression. Nonetheless, implementing a

robust interval-bisection ray tracer on the GPU poses challenges. Principally, the CPU algo-

rithm relies on an efficient iterative algorithm for bisection, employing a read/write array for

the recursion stack. Storing such an array per-fragment occupies numerous infrequently-used

registers, which slows processing on the GPU. Similar problems have clearly hampered per-

formance of hierarchical acceleration structure traversal for mesh ray tracing [95]. Our most

significant contribution is a traversal algorithm that overcomes this problem. By employing

simple floating-point modulus arithmetic in conjunction with a DDA-like incremental algo-

rithm operating on specially constructed intervals, we are able to perform traversal without

any stack. Though this algorithm would be inefficient on a CPU, it is well-suited for the

GPU architecture thanks to efficient floating-point division.

101

In implementing affine arithmetic to mitigate IA bound overestimation, it was immedi-

ately clear that a full array-based implementation of conventional AA would be impractical

on the GPU. Though efficient, the reduced affine arithmetic method proposed by Gamito

& Maddock [28] only preserves inclusion under specific circumstances. Fortunately, with

modifications ensuring that the last error term is positive-definite, a formulation similar

to that of Messine et al. [78] implements a correct inclusion for all compositions of AA

operations. In adopting such an arithmetic, we implement a robust reduced AA suitable

for ray tracing on the GPU. Particularly for complex forms requiring cross-multiplication

between interval entities, this yields more correct results at lower required precision than

standard IA, and superior frame rates for most functions.

6.5.1 Application Pipeline

As input, the user must simply specify a function in implicit form, a domain Ω ⊂

R3, and a termination precision ε that effectively bounds relative error (see Section 6.6.3).

User-specified variables are stored on the CPU and passed dynamically to Cg as uniform

parameters. Some runtime options, such as the implicit function, choice of inclusion algebra,

or shading modality, are compiled directly into the Cg shader through metaprogramming. In

simple cases, the CPU merely searches for a stub substring within a base shader file, and

replaces it with Cg code corresponding to the selected option. More advanced metapro-

gramming involves creating routines for function evaluation. Given an implicit function

expression, we require two routines to be created within the shader: one evaluating the

implicit f , and another evaluating the inclusion function, the interval or affine extension

F . We use a simple recursive-descent parser to generate these routines in the output Cg

shader. Alternately, we allow the user to directly provide inline Cg code. Because the shader

compiler identifies common subexpressions, this is seldom necessary for improving perfor-

mance. Our only examples employing inline code are special-case conditional evaluations

in CSG objects.

Though our system is built on top of OpenGL, we use the fixed-function rasterization

pipeline very little. Given a domain Ω ⊂ R3 specified by the user, we simply rasterize that

bounding box once per frame. We specify the world-space box vertex coordinates as texture

coordinates as well. These are passed straight through a minimal vertex program, and the

fragment program merely looks up the automatically interpolated world-space entry point

102

of the ray and the bounding box. By subtracting that point from the origin, we generate a

primary camera ray for each fragment.

6.5.2 Shader IA Library

Implementing an interval arithmetic library (Section 6.2.2) is straightforward in Cg.

Most scalar operations employed by IA (such as min and max) are highly efficient on the

GPU, and swizzling allows for effective horizontal vector implementation (Algorithm 5

in Appendix B), unlike SSE SIMD on the CPU. Transcendental functions are particularly

efficient for both their floating-point and interval computations.

On the GPU, we can use JIT compiling and metaprogramming to dynamically generate

efficient IA routines for large integer powers. Russian peasant multiplication [81] allows us

to recursively create routines for scalar evaluation of integer powers. Then, we can employ

the IA rule:

x n = [min(x n,x n),max(x n,x n)] (6.18)

The bound-efficiency of this IA rule, combined with the fast evaluation of integer pow-

ers via logarithmic decomposition of multiplications, frequently makes evaluation of high-

degree polynomials more efficient with IA than with AA (see Section 6.6). This suggests that

implicit surfaces defined by fully-expanded algebraic functions will in fact perform better

with interval arithmetic.

6.5.3 Shader RAA Library

In implementing our RAA library on the GPU, we adopt a formulation similar to AF1

in Messine et al. [78], with changes to the absolute value bracketing that are mathematically

equivalent but slightly faster to compute. We implemented AF1 with n = 1 using a float3 to

represent the reduced affine form. We also experimented with n = 2 (float4), and n = 6 (a

double-float4 structure). For all the functions in our collection, the float3 version delivered

the fastest results by far. We also found that the computational overhead of the bound-

improved AF2 formulation [78] was too high to be efficient. Examples of the float3 version

of the forms in Equation 6.15 are given in Algorithm 6 in Appendix B.

103

The float3 implementation of AF1 makes for a versatile and fast reduced affine arith-

metic. Particularly for functions with significant multiplication between noncorrelated affine

variables, such as the Mitchell or the Barth surfaces involving cross-multiplication of Cheby-

shev polynomials, significant speedup can be achieved over standard IA.

6.5.4 Numerical Considerations

A technical difficulty arises in the expression of infinite intervals, which may occur in

division; and empty intervals that are necessary in omitting nonreal results from a fractional

power or logarithm. While these are natively expressed by nan on the CPU, GPU’s are not

always IEEE compliant. The G80 architecture correctly detects and propagates infinity and

nan, but the values themselves (inf = 1/0 and nan = 0/0) must be generated on the CPU

and passed into the fragment program and subsequent IA/AA calls.

Conventionally, IA and AA employ a rounding step after every operation, padding the re-

sult to the previous or next expressible floating point number. We deliberately omit rounding

– in practice the typical precision ε is sufficiently large that rounding has negligable impact

on the correct computation of the extension F . However, numerical issues can be prob-

lematic in certain affine operations: RAA implementations of square root, transcendentals

and division itself all rely on accurate floating point division for computing the regression

lines approximating affine forms. Though inclusion-preserving in theory, these methods are

ill-suited for inaccurate GPU floating point arithmetic; and a robust strategy to overcome

these issues has not yet been developed for RAA. We therefore resort to interval arithmetic

for functions that require regression-approximation AA operators.

6.5.5 Traversal

With the IA/RAA extension and a primary ray generated on the fragment unit, we can

perform ray traversal of the domain Ω ⊂ R3. Though not as trivial as standard numerical

bisection for root finding, the ray traversal algorithm is nonetheless elegantly simple, and

can be found in its entirety in Algorithm 7 in Appendix B.

6.5.5.1 Initialization

We begin by computing the exit point pexit of the generated ray and the bounding box Ω.

We reparameterize the ray as ~r(t) := ~penter + t(~pexit −~penter). The interval t along the ray

intersecting Ω is now [0,1]. We now perform a first rejection test outside the main loop.

104

6.5.5.2 Rejection test

In the rejection test, we evaluate the IA/AA extensions of the ray equation to find X ,Y

and Z over t, and use these (as well as scalars w,ri for time and other animation variables)

to evaluate the extension of our implicit function. The result gives us an interval or affine

approximation of the range F . If 0∈ F , then we must continue to bisect and search for roots.

Otherwise, we may safely ignore this interval and proceed to the next, or terminate if it is the

last.

6.5.5.3 Main loop

If the outer rejection test succeeds, we compute the effective bisection depth required for

the user-specified ε . This is given by the integer ceiling:

dmax := ceil(log2(
||~pexit −~penter||

ε
)) (6.19)

We initialize our depth d = 0, and distance increment, tincr = 0.5. Now, recalling the

bisection interval t, we set t := t + tincr. We then perform the rejection test on this new t. If

the test succeeds, we either hit the surface if we have reached d = dmax, or recurse to the next

level by setting tincr := tincr/2, and incrementing d.

If the rejection test fails, we proceed to the next interval segment at the current depth

level by setting t := t. Within the main loop, we now perform another loop to back-recurse

to the appropriate depth level.

6.5.5.4 Back-recursion loop

In back-recursion, we decrement the depth d (and update tincr) until we find an unvisited

segment of the bisection tree. This allows us to perform ray bisection iteratively, not recur-

sively, and without employing registers to mimic a recursion stack. Specifically, we perform

floating-point modulus (t % 2tincr = 0) to verify whether the current distance has visited one

or both bisected segments in question. Currently on the G80, the fastest method proves to be

performing division and examining the remainder. Back-recursion proceeds iteratively until

it finds an unvisited second branch of the bisection tree, or d = −1 in which case traversal

has completed.

105

6.5.6 Traversal Metaprogramming

The traversal algorithm largely remains static, but some functions and visualization modal-

ities require special handling. To render functions containing division operations, we must

check whether intervals are infinitely wide before successfully hitting, as detailed in Knoll et

al. [59]. Multiple isovalues and transparency require modifications to the rejection test and

hit registration, respectively, as discussed in Section 6.6.6. More generally, modifications to

the traversal algorithm are simple to implement via “inline” implicit files (Section 6.5.1). We

allow the user to directly program behavior of the rejection test, hit registration and shading.

This is particularly useful in rendering special-case constructive solid geometry objects.

6.5.7 Shading

Phong shading requires a surface normal, specifically the gradient of the implicit at the

found intersection position. We find central differencing to be more than adequate, as it

requires no effort on the part of the user in specifying analytical derivatives, nor special

metaprogramming in computing separable partials via automatic differentiation. By default

we use a stencil width proportional to the traversal precision ε; variable width is often also

desirable [59].

6.6 Results
All benchmarks are measured in frames per second at 1024x1024 frame buffer resolution.

6.6.1 Performance

Table 6.1 shows base frame rates of a variety of surfaces using single ray-casting and

basic Phong shading. Performance on the NVIDIA 8800 GTX is up to 22× faster than the

SIMD SSE method on a 4-core Xeon 2.33 GHz CPU workstation. Frame rate is determined

both by the bound tightness of the chosen inclusion extension, and the computational cost

of evaluating it. In practice, the order of the implicit form has little impact on performance.

Forms of these implicits can be found in Appendix B.3.

6.6.2 IA versus RAA

For typical functions with fairly low-order coefficients and moderate cross-multiplication

of terms, reduced affine arithmetic is generally 1.5−2× faster than interval arithmetic. For

functions with high bound overestimation, such as those involving multiplication of large

106

Table 6.1: Implicit surface performance on the CPU and GPU, for various surfaces at
1024x1024 resolution, with corresponding renderings indicated by the figure numbers
in parentheses. The CPU SIMD algorithm is benchmarked on a four-core 2.33 GHz
Intel Xeon desktop, using only IA. The GPU algorithm runs on an NVIDIA 8800GTX;
results are shown with both IA and RAA. Results in these first three columns are evalu-
ated with common ε = 2−11; the last column labelled “converged ε” shows performance
at the the highest ε yielding a correctly converged visual result, using either IA or RAA
on the GPU.

CPU GPU
ε 2−11 2−11 2−11 converged ε

arithmetic IA IA RAA IA or RAA

sphere 15 75 147 165 /RAA /2−10

steiner (6.9) 7.5 34 40 38 /RAA /2−12

mitchell (6.8) 5.2 16 58 60 /RAA /2−10

teardrop (6.10a) 5.5 102 115 121 /RAA /2−10

4-bretzel (6.10c) 13 78 48 90 /IA /2−10

klein b. (6.10b) 11 30 110 101 /RAA /2−12

tangle (6.10d) 3.2 15 68 71 /RAA /2−10

decocube (6.12) 5.5 28 27 28 /IA /2−11

barth sex. (6.11l) 7.4 31 76 88 /RAA /2−10

barth dec. (6.11r) 0.92 4.9 15.6 15.6 /RAA /2−11

superquadric 18 119 8.3 108 /IA /2−12

icos.csg (6.13l) 1.8 13.3 - 13.3 /IA /2−11

sesc.csg (6.13r) 1.6 8.9 - 7.2 /IA /2−13

sin.blob (6.15) 0.71 6.0 - 6.0 /IA /2−12

cloth (6.14l) 2.2 38 - 44 /IA /2−9

water (6.14r) 2.2 37 - 44 /IA /2−9

polynomial terms (e.g., the Barth surfaces) or Horner forms, RAA is frequently 3 to 4 times

faster. Conversely, thanks to an efficient inclusion rule for integer powers, IA remains far

more efficient for superquadrics, as evident in Table 6.1. As explained in Section 6.5.4, IA

is currently required for extensions of division, transcendentals, and fractional powers.

6.6.3 Error and Quality

As seen in Equation 6.19, a global user-specified ray-length precision ε is used to deter-

mine a per-ray maximum bisection depth dmax. If a candidate ray interval t contains a zero,

then the actual error is

εactual ≤ ||t||= 2−dmax ≤ ε (6.20)

107

This effectively specifies an upper bound on the absolute error in ray space t; by scaling by

the magnitude of the ray segment over Ω, ||pexit − penter||, we normalize to bound relative

error in world space. Our application also allows the user to specify a tolerance δ , which

halts bisection only when the width of the interval ||F || < δ . This would seem a more

adaptive way of guaranteeing convergence, as bisection proceeds until the interval width is

sufficiently small to better guarantee existence (or nonexistence) of a root. However, range

interval width varies widely by function, and is more difficult for the user to gauge than the

domain-space ε .

Choice of appropriate ε depends greatly on the implicit in question. For most of our

examples, ε = 2−11 yields a topologically correct rendering, and thus is suitable as a default.

Figure 6.8 on the next page shows the impact of precision ε , controlling relative error, on

the Mitchell and Barth decic surfaces, both examples with particularly high bound overes-

timation and sensitivity to low precision. RAA generally converges far more quickly than

IA, given lesser bound overestimation at low ε . In addition, refining ε has lesser impact on

frame rate once RAA has effectively converged. Finally, we note that increasing ε generates

progressively tighter convex hulls around the ideal surface at ε = 0.

6.6.4 Algorithm Coherence and Performance

Table 6.2 shows the relative performance of various algorithms on the Mitchell and

Barth Decic functions shown in Figure 6.8, at ε = 2−11 and ε = 2−22. Our suggested

implementations (also used in Table 6.1) are shown in boldface. The efficiency of both CPU

Table 6.2: Performance of various algorithms on the Mitchell and Barth decic func-
tions, using interval arithmetic only.

function Mitchell Barth Decic
ε 2−11 2−22 2−11 2−22

CPU SSE
t-bisection 5.0 1.0 0.90 0.061
K-bisection 5.1 1.2 0.92 0.18
Mitchell 0.54 0.22 0.19 0.036

GPU (IA)
t-bisection 16 6.2 4.9 1.4
K-bisection 11 5.6 4.4 1.1
Mitchell 3.9 1.0 1.1 0.29

108

ε = 2−6 2−8 2−10 2−12

Mitchell

IA 63 fps 34 fps 19 fps 13 fps

RAA 80 fps 64 fps 59 fps 56 fps
Barth Decic

IA 29 fps 13 fps 7.1 fps 4.9 fps

RAA 25 fps 19 fps 17 fps 16 fps

Figure 6.8: The Mitchell (top) and Barth Decic (bottom) surfaces, at various ε , with IA
and RAA.

109

(Section 6.3) and GPU (Section 6.5) algorithms depends on exploitation of SIMD coherence.

The CPU SSE algorithm benefits from explicit spatial coherence, as shown in Figure 6.4(b).

With the t-marching method in SSE (Figure 6.4(a)), rays in the same packet can fall out

of lockstep, destroying coherence. Conversely, the GPU algorithm requires more general

instruction-level coherence, with a minimum of used registers. A modification of the GPU

algorithm to march along the major K-axis yielded noticeable performance decrease. We

also note that both the SSE CPU and GPU implementations of the Mitchell [82] algorithm

(employing interval arithmetic followed by standard numerical root refinement) perform far

worse than naı̈ve bisection, particularly at higher ε . This can be attributed to the high cost

of evaluating the gradient interval, and both worse instruction-level coherence on the GPU

and spatial coherence in the SSE CPU algorithm. Though difficult to fairly evaluate on

the GPU, our experimentation with SSE versions of other quasi-Newton methods such as

Interval Newton method and [12] empirically suggested far worse results. However, these

algorithms could prove desirable if efficiently mapped to SIMD architecture.

6.6.5 Feature Reproduction and Robustness

As it entails more floating-point computation than IA, RAA has worse numerical condi-

tioning, particularly with smaller ε . Figure 6.9 illustrates the challenge in robustly ray tracing

the Steiner surface with IA and AA. Both inclusion methods identify the infinitely thin

surface regions at the axes, but a small ε < 2−18 is required for correct close-up visualization

of these features. Affine arithmetic yields a tighter contour of the true zero-set than IA, but

Figure 6.9: Fine feature visualization in the Steiner surface. Left to right: shading with
depth peeling and gradient magnitude coloration; close-up on a singularity with IA at
ε = 2−18; and with RAA at the same depth.

110

with some speckling. While not crucial with IA, a comprehensive rounding strategy would

greatly benefit the numerical stability of RAA. Nonetheless, both IA and RAA yield more

robust results than noninclusion ray tracing methods [72] on the Steiner surface, or than

inclusion-based extraction [88] on the teardrop (Figure 6.10(a)).

6.6.6 Shading Modalities

As our algorithm relies purely on ray-tracing, we can easily support per-pixel lighting

models and multiple bounce effects, many of which would be difficult with rasterization

(Figure 6.10). We briefly describe the implementation of these modalities, and their impact

on performance.

6.6.6.1 Shadows

Nonrecursive secondary rays such as shadows are straightforward to implement. Within

the main fragment program, after a successfully hit traversal, we check whether ~N ·~L > 0, and

if so, perform traversal with a shadow ray. To ensure we do not hit the same surface, we cast

the shadow from the light to the hit position, and use their difference to reparameterize the

ray so that t = [0,1], as for primary rays. Shadows often entail around 20−50% performance

penalty. One can equally use a coarser precision for casting shadow rays than primary rays.

RAA is sufficiently accurate for secondary rays even at ε > .01; which can decrease the

performance overhead to 10−30%.

6.6.6.2 Transparency

Transparency is also useful in visualizing surfaces, particularly functions with odd con-

nectivity or disjoint features. With ray tracing, it is simple to implement front-to-back,

order-independent transparency, in which rays are only counted as transparent if a surface

behind them exists. Our implementation lets the user specify the blending opacity, and casts

up to four transparent rays. This costs around 3× as much as one primary ray per pixel.

6.6.6.3 Multiple isosurfaces

One may equally use multiple isovalues to render the surface. This is significantly less

expensive than evaluating the CSG object of multiple surfaces, as the implicit extension

need only be evaluated once for the surface. The rejection test then requires that all of those

isovalues miss. At hit registration, we simply determine which of those isovalues hit, and

111

Figure 6.10: Shading Effects. Top left to bottom right: (a) shadows on the teardop (40
fps); (b) transparency on the Klein bottle (41 fps); (c) shadows and multiple isovalues
of the 4-Bretzel (18 fps); and (d) the tangle with up to six reflection rays (44 fps).

flag the shader accordingly to use different surface colors. With no other effects, multiple

isovalues typically entail a cost of anywhere from 10−40%.

6.6.6.4 Reflections

Reflections are a good example of how built-in features of rasterization hardware can

be seamlessly combined with the implicit ray tracing system. Looking up a single reflected

value from a cubic environment map invokes no performance penalty. Tracing multiple

112

reflection rays in an iterative loop is not significantly more expensive (20−30%), and yields

clearly superior results (Figure 6.10d).

6.6.7 Applications

6.6.7.1 Mathematical visualization

The immediate application of this system is a graphing tool for mathematically inter-

esting surface forms in 3D and 4D. Ray tracing ensures view-dependent visualization of

infinitely thin features, as in the teardrop and Steiner surfaces. It is similarly useful in ren-

dering singularities – Figure 6.11 shows the Barth sextic and decic surfaces, which contain

the maximum number of ordinary double points for functions of their respective degrees in

R3.

6.6.7.2 Interpolation, morphing and blending

Implicit forms inherently support blending operations between multiple basis functions.

Such forms need only be expressed as an arbitrary 4D implicit f (x,y,z,w), where w varies

over time. As ray-tracing is performed purely on-the-fly with no precomputation, we have

great flexibility in dynamically rendering these functions. The blending function itself can

operate on multiple kernels, and be of arbitrary form. Figure 6.12 shows morphing between

a decocube and a sphere by interpolating a sigmoid convolution of those kernels.

Figure 6.11: The Barth sextic and decic surfaces.

113

Figure 6.12: 4D morphing example. Morphing between a decocube and a sphere using
a sigmoid interpolation function, running at 33−50 fps.

6.6.7.3 Constructive solid geometry

Multiple-implicit CSG objects can accomplish similar effects to product surfaces and sig-

moid blending, but with C0 trimming. Unions and intersections of functions can be expressed

natively using min and max operators, which are well-defined for both interval and affine

forms. However, this inevitably requires evaluation of all sides of a compound expression.

A more efficient approach employs 3-manifold level-sets, or inequality operations on CSG

solids, as conditions over an implicit or set or implicits. This technique is frequently used in

modeling F-Rep solid objects [92]. Given an implicit f (ω) and a condition g(ω), inclusion

arithmetic allows us to verify g+ = {g(ω)≥ 0} or g− = {g(ω)≤ 0}, given the interval form

of the inclusion extension G over an interval domain ω ⊆ Ω. Then, one can render f ∩ g+

or f ∩ g− for arbitrary level sets of g, as well as identify during traversal which surface is

which. In the case of union, only the first condition need be evaluated if it contains a zero.

Solid conditions are evaluated independently as boolean expressions; by determining which

level sets are intersected inside the traversal, we can shade components differently as desired

(Figure 6.13).

6.6.7.4 Procedural geometry

Implicits have historically been nonintuitive and unpopular for modeling large-scale

objects. However, the ability to render dynamic surfaces and natural phenomena using

114

Figure 6.13: CSG using inequalities on 3-manifold solids.

combinations of known closed-form expressions could prove useful in modeling small-scale

and dynamic features. Sinc expressions, for example, define closed-form solutions of simple

wave equations for modeling water and cloth (Figure 6.14). Previous applications of implicit

hypertextures focused on blended procedural noise functions [93, 28]. Recently, implicits

based predominately on generalized sinusoid product forms similar to that in Figure 6.15

have been used within some modeling communities [50]. Arbitrary implicits are intriguing

Figure 6.14: Sinusoid procedural geometry. With IA, these surfaces render at 38 and
37 fps, respectively.

115

in their flexibility, and ray tracing promises the ability to dynamically render entire new

classes of procedural geometries, independently from any polygonal geometry budget.

Figure 6.15: An animated sinusoid-kernel surface. Ray-traced directly on fragment
units, no new geometry is introduced into the rasterization pipeline. IA/AA methods
ensure robust rendering of any inclusion-computable implicit.

CHAPTER 7

CONCLUSION AND FUTURE WORK

We have contributed five implementations of implicit surface ray tracing with varying ap-

plications and hardware platforms. These systems show that implicit ray tracing, consisting

of both fast spatial acceleration structure traversal and efficient ray-isosurface intersection,

can be an effective algorithm for certain classes of problems in visualization. In particular, it

is ideal for scalable rendering of large volume data, and pixel-exact intersection with implicit

surfaces. In analyzing these systems, we consider the three broad problems addressed in this

dissertation: isosurface rendering of large structured volume data, unstructured volume data,

and general-form implicits.

7.1 Isosurface Ray Tracing of Octree Volumes
In Chapter 3, detailing work published from the RT06 Symposium [61], we showed that

isosurface ray tracing can be employed in direct rendering of a compressed data structure

for the purpose of large volume visualization. Our method allows for interactive exploration

of large structured data on multicore computers using a fraction of the original memory

footprint. Compressing volumes into octrees allows us to visualize data locally with the

same quality as uncompressed arrays. While other spatial structures could deliver greater

compression or faster traversal, the octree strikes a particularly good balance of these goals.

Our traversal is highly dependent on a fast octree hashing scheme. Our contributions in

ray traversal and min/max tree construction are designed for this application alone; however,

the point location and neighbor-finding implementations extend to general use of a binary

hash tree. While benchmarking other applications of octree hashing falls outside the scope

of this paper, our routines seem well-optimized for this application, and suggest general

improvement over the code proposed by Frisken and Perry [26].

Octree ray tracing is not necessarily the ideal solution for general-purpose volume render-

ing. For smaller volume data with uniformly high isovalue variance, an octree can actually

117

occupy more space than a 3D array; moreover, the uniform grid and coherent kd-trees would

likely outperform the octree for such scenes. However, in these cases a GPU volume renderer

would generally be preferable to an interactive ray tracing solution. Thus, our method is

primarily useful for large volumes, or medium volumes with numerous timesteps. Moreover,

as large volumetric data sets are often the impetus for CPU ray tracing in the first place, this

method is highly appropriate for its particular application.

Ultimately, this work illustrates that single-ray methods for large-volume isosurface ren-

dering can perform roughly on par (albeit slightly slower) than packet methods, and that

octree traversal is comparable in speed to grid and kd-tree traversal for this application.

Moreover, techniques such as this continue to be attractive for rendering large structured

data sets. Doubling each dimension of a 3D grid entails a factor of eight increase in memory

footprint; this all but guarantees that main memory will continue to be a scarce resource in

large volume rendering, and that logarithmic as opposed to object-order methods will prevail.

7.2 Coherent Multiresolution Isosurface Ray Tracing
of Octree Volumes

In Chapter 4, drawing on work published in The Visual Computer [60], we employ

coherent packet methods to accelerate the octree volume method of the previous chapter.

Our approach was packet-based coherent ray tracing of large octree volume data using a

multiresolution level of detail scheme to improve performance. Octree volume ray tracing

allows for interactive exploration of large structured data on multicore computers using a

fraction of the original memory footprint. While other spatial structures might deliver greater

compression or faster traversal, the octree strikes a particularly good balance of these goals.

With multiresolution and coherent traversal, we are able to trade quality for performance and

render at interactive rates. Coherent traversal amortizes the cost of cell lookup, which allows

for faster intersection and improved shading techniques.

One concern with the work in Chapter 4 compared to that in Chapter 3 is that LOD

may not be an ideal solution for high-quality rendering, and ultimately performance gains

from improved coherence may not justify the increase in code complexity and loss in visual

quality. One of the major advantages of ray tracing, when compared to rasterization, is that

performance depends logarithmically, not linearly, on geometric complexity. The single-ray

tracer renders both simple and complex data at roughly equal, though slow, frame rates.

118

Coherent multiresolution essentially forfeits this advantage; it instead opts to improve best-

case performance of simple scenes, while attempting to simplify complex scenes to mitigate

worst-case performance. In a way, coherent ray tracing behaves similarly to rasterization in

that its performance depends on LOD.

Nonetheless, for the purposes of large volume visualization, packet-based multiresolu-

tion isosurface ray tracing presents clear benefits. The main goal of our optimizations was

to overcome limitations of single-ray octree volume ray tracing [61] and to ensure general

interactivity. Overall, we accomplish that: our system is generally faster than single-ray

noncoherent methods, allows for improved shading at reduced cost, and permits the user to

trade visual quality for speed to better ensure interactivity. Moreover, as multicore CPUs

increase in power and availability, techniques such as these become increasingly practical,

and retain their scalability to large data and more cores in the long term.

Anecdotally, we have found this implementation to perform far better on recent multicore

CPUs such as the Intel Clovertown and Penryn series, than on earlier architectures such as

AMD Opteron and Intel Merom. We initially tested this system and its single-ray predeces-

sor [61] on a NUMA Opteron workstation that cost nearly $50,000. The coherent technique

performs almost equally well on an 8-core Clovertown that now costs less than $2,000; this is

not the case for the single-ray technique. Performance is superior still on recent Intel Penryn

chips, even at lower clock speed. This is likely due to improved SSE swizzling performance,

but also the improved L2 cache model of recent CPUs.

As future work, the multiresolution octree could trivially be employed for out-of-core

progressive rendering similar to Friedrich et al. [25], using the same compressed structure

for LOD. Equally intriguing would be adapting the slice-caching reconstruction algorithm

to perform direct volume rendering. Though computationally demanding, it could be im-

plemented to take advantage of SIMD vector instructions [56], and would exhibit similar

overall complexity to isosurfacing if the transfer function were sufficiently sparse. Also of

interest would be employing generalized higher-order implicit surfaces [59] as intersection

primitives, which could yield higher-quality reconstructions. Finally, generating coarser

LODs with improved filtering, as well as smoothly blending between LOD levels as opposed

to only interpolating at transitions, could improve visual quality.

119

7.3 Isosurface Ray Tracing of Tetrahedral Volume Data
In Chapter 5, previously published in TVCG [128], we have shown it is possible to ray

trace isosurfaces of tetrahedral scalar fields at interactive to real-time frame rates, purely

on the CPU. In doing so, we are able to correctly visualize large unstructured volumes,

interactively manipulate isovalues and shader modalities, and handle time-varying data with

hundreds of steps. The main algorithmic contributions of this method are the fast packet-

isotetrahedron intersection test and extension of the coherent BVH to an implicit min-max

tree over the tetrahedral volume. Our implementation naturally supports multiple isosur-

faces, on-the-fly clipping, semitransparent depth peeling, and shadows. Accommodation of

large data is limited only by host memory capacity, though the overhead of the BVH must

be taken into consideration. Time-varying data can be handled by either precomputing an

implicit BVH per time step, or by building a single BVH that is updated on the fly.

Compared to existing GPU methods, our system exhibits better scalability to large data,

and is not limited by the GPU memory capacity. However, our current system is limited to

isosurfacing, whereas existing GPU methods support direct volume rendering. Moreover,

multicore CPUs are increasingly mainstream, and future GPUs could ultimately be capable

of running a similar ray tracing system. Ultimately, the question is not one of GPU vs. CPU,

but rather which rendering algorithm is used.

The BVH excels as a spatial subdivision structure for irregular data where objects overlap

across axis-aligned boundaries. While it is difficult to directly compare geometric complex-

ity of structured and unstructured datasets, the coherent BVH scales more gracefully to large

data and scenes with poor primary-ray coherence than coherent grid traversal, or the packet

octree traversal method of Chapter 4. While the grid and octree benefit greatly from multires-

olution to reduce traversal-time complexity, the BVH seems less sensitive to pathological

cases of incoherent viewing rays. This can likely be attributed to the unique first-active

tracking approach of packet-BVH traversal [127]. Perhaps due to the regular nature of

structured data and the relatively large number of primitives, coherent BVH traversal of an

octree volume has not proven as effective. Nevertheless, the BVH could theoretically be used

in constructing a min-max tree, alongside a compression/multiresolution scheme employing

run-length encoding. Particularly for large volume data, this could prove competitive with

kd-tree approaches [129]. In the case of unstructured data, it could also prove useful to

employ compression techniques in reducing the footprint of the BVH and the tet mesh.

120

Since the publication of this work [128], Gross et al. [36] have demonstrated a highly

efficient ray tracing system employing SSE traversal of 2x2 packets using skd-trees [43].

Although not as fast as our system at isosurfacing smaller datasets, it is nonetheless quite

competitive, and capable of interactive volume rendering. Unlike the case of structured data,

the lack of hardware support for fetching and interpolating from a tet mesh suggests that

optimized CPU techniques and GPU ray casting methods will be competitive with GPU

rasterization methods for rendering unstructured data.

The tet isosurfacing system opens several avenues for future work. We could extend BVH

traversal to direct volume rendering methods, such as maximum intensity projection (MIP)

or full transfer-function methods. Though the latter suffer from high traversal complexity,

the BVH could still be useful for space-skipping when the transfer function is sufficiently

sparse, as in [62]. Another intriguing extension would be support for higher-order finite

elements in the spirit of Nelson & Kirby [84] or Rössl et al. [101]. This would require a

completely different intersection routine, but the BVH traversal would remain unchanged.

Also of interest would be more advanced lighting effects such as soft shadows, ambient

occlusion, or global illumination, which can significantly improve understanding of data

sets [34]. Finally, investigating scalable build algorithms could allow for rendering even

complex data with arbitrary deformations without precomputation.

7.4 Ray Tracing Arbitrary Implicit Surfaces
In Chapter 6, covering work published in the RT07 Symposium [59] and Computer

Graphics Forum [58], we have demonstrated a fast, robust and general algorithm for ren-

dering implicits of arbitrary form, using interval and affine arithmetic. On both the CPU

and GPU, the key to performance lies in optimization of the interval bisection algorithm.

Coherent traversal using SIMD vector instructions; and a stackless fractional modulus traver-

sal algorithm, aid the efficiency of CPU and GPU algorithms, respectively. These imple-

mentations perform up to four orders of magnitude faster than the previously published

state-of-the-art interval arithmetic ray tracing method [24]. This performance is due to the

SIMD-parallel efficiency of their respective platforms, and the reality that high rendering

quality can be achieved with relatively coarse numerical precision, corresponding to fewer

iterations of the interval bisection algorithm.

The GPU algorithm is arguably the state-of-the-art solution for guaranteed-robust ren-

121

dering of arbitrary implicit forms. The SSE CPU technique remains interesting in that

the K-marching approach outperforms direct ray bisection. Similar algorithms, designed to

leverage explicit coherence of SIMD vector instructions, could prove useful in future hard-

ware such as Intel Larrabee [112]. The main advantage of bisection with interval and affine

arithmetic methods, as employed in both methods, is the general guarantee of correctness in

rendering a wide variety of implicit forms.

Following publication of the works in Chapter 6, two noteworthy methods for rendering

arbitrary implicit surfaces on the GPU have been published. The blossoming approach

of Seland and Reimers [98] is a hybrid GPU-CPU method based on refactoring arbitrary

implicit functions into a Bernstein polynomials, and efficiently solving their roots using the

De Casteljau algorithm. Given similar ε , its results appear comparably robust to our IA/AA

method. However it is more complicated to implement and around 2x-4x slower. The other

approach, by Singh and Narayanan [114], is an adaptive point-sampling method similar to

Hanrahan [39] but using a two-level root-isolation and bracketing strategy, and implemented

on an NVIDIA G80 GPU. While not robust for rendering singularities such as the teardrop,

it is extremely fast, typically 2x–5x faster than our IA/AA method on the 8800GTX, and

in practice it renders most implicit surfaces accurately. This latter method is intriguing,

as it shows that brute-force linear methods can outperform even our bisection method on

the GPU, which in turn outperforms most higher-order convergent methods. Nonetheless,

this approach is only competitive on GPU architectures, where computational throughput is

sufficient to overcome poor time complexity. Ultimately, we believe that the IA/AA method

will prove a good balance between algorithmic simplicity, adaptivity and robustness, as CPU

hardware becomes more parallel and as GPU hardware improves its handling of branching

code.

Our interval and affine arithmetic algorithms for ray tracing arbitrary implicits would

benefit from several extensions. Further development of approximating regression operations

for RAA could allow for correct and fast affine extensions of transcendental functions and

their compositions. Also, while robust per-ray, our system ignores aliasing issues on bound-

aries and subpixel features. To robustly reconstruct the surface between pixels would require

supersampling and ideally beam tracing. More generally, the application front-end could

be extended to support point, mesh or volume data, which could then be reconstructed by

arbitrary implicit filters. Scalable rendering of complex objects featuring multiple piecewise

122

implicits with CSG operators could prove desirable. This could be accomplished either

by extending the rasterization system and restricting the application to ray casting, or by

attempting a full ray-tracing system, with an acceleration hierarchy, on the fragment shader

or in CUDA. Finally, though applied here to general implicits, inclusion methods could

potentially be employed in rendering arbitrary parametric or free-form surfaces.

7.5 Conclusion
Efficient rendering of implicit surfaces is a broad endeavor with numerous and often

competing constraints. The systems we have presented here each benefit from different

strategies in maximizing performance towards their respective applications and architec-

tures. It is remarkable how even subtle changes in platform mandate wholesale changes

in implementation. This is particularly the case in the octree volume isosurfacing systems in

Chapters 3 and 4, and the arbitrary-form implicit renderers in Chapter 6.

Over the course of the research contained in this dissertation, techniques for interactive

ray tracing on both CPU and GPU have improved significantly. Isosurface ray tracing of

large structured data, which required a small supercomputer or cluster less than a decade ago,

now operates efficiently on a multicore desktop. Octrees have not been popular structures

for ray tracing for over a decade, yet they proved efficient in our work on CPUs, and more

recently are experiencing resurgence as efficiency structures for ray tracing on the GPU.

Ray tracing with bounding volume hierarchies was not popular until recently, but is now

considered the state-of-the-art acceleration structure on both CPU and GPU. Our tetrahedral

isosurface renderer marks the first application of the coherent BVH towards visualization.

Similarly, interval and affine arithmetic have traditionally been considered accurate but slow

methods of graphing implicit functions as surfaces in 3D. Our CPU and GPU algorithms

employing IA and reduced AA are between three and four orders of magnitude faster than

the best previously published implementations.

Moving forward, perhaps the biggest challenge lies in developing scalable isosurface

rendering algorithms that perform well on both CPU (or Larrabee [112]) and GPU hardware.

The choice of heavily threaded, explicit SIMD vector instructions of the CPU, or lightly

threaded instruction parallelism with implicit SIMD on the GPU, dictates which algorithms

work well on each platform. The costs of irregular memory accesses, so prevalent in ray

tracing, also have a significant impact on performance. Currently, packet-based BVH and

123

kd-tree traversals, and variants, are the fastest structures for CPU ray tracing. Conversely,

on the GPU, grids and increasingly full octrees seem to perform significantly better than the

competition. While this does not necessarily impact the ability to perform ray intersection

with implicit surfaces, it does change strategies for compression, traversal, and reconstruc-

tion of local support.

Extrapolating from current hardware trends, we believe that implicit surface ray tracing

will continue to play a role in visualization and graphics in general. The lessons drawn

from this work could have implications towards future rendering techniques: as compu-

tation becomes less of a bottleneck than memory access, rendering methods that employ

multiresolution and compression will prove useful. In rendering higher-order geometry, it

will be interesting to see whether brute-force or more sophisticated numerical methods will

prevail. Similarly, rendering techniques currently stand at an interesting threshold where

changes in geometric complexity tip the balance towards favoring rasterization or ray tracing

methods. Ultimately, in visualization, we believe that irrespective of hardware platform,

surface-based ray tracing methods hold promise for scalable rendering of massive data, and

implicit surfaces allow for fast surface reconstruction from arbitrary filters in a wide range

of scientific datasets.

APPENDIX A

OCTREE VOLUME HASHING AND TRAVERSAL

This appendix details structures and algorithms used in Chapters 3 and 4 of the disserta-

tion.

A.1 Octree Volume Structure
An octree volume consists of the following structure: interior nodes are stored in an

array indexed by depth, from root depth 0 to depth dmax− 2. “Cap” nodes exist at dmax−

1, and always contain scalars of the maximum depth. “Scalar leaves” are represented by

child scalars in the interior node structure.

struct OctreeData
{
int max_depth;
OctNode* nodes[max_depth];
OctCap* caps;
int child_bit_depth[max_depth];

};

struct OctNode
{
T child_scalars[8]; //scalar leaves
T child_mins[8]; //min/max tree
T child_maxs[8];
unsigned int child_start; //base pointer to children
char child_offset[8]; //offset from base

};

struct OctCap
{
T child_scalars[8];

};

A.1.1 Cached Hash Array

When the max depth=dmax of the octree is given, we compute an array that is subse-

quently used in hashing and ray traversal:

for(int d=0; d < max_depth; d++)
child_bit_depth[d] = 1 << (max_depth - d - 1);

125

A.2 Octree Hashing
Our octree hash scheme consists of accelerated routines for point location and neighbor

finding in canonical octree coordinates, [0,dmax]. While binary arithmetic on integers is not a

new hashing scheme [32, 26], we propose caching the depth masks to avoid costly arbitrary

left shifts, and then shifting by constants. The following functions may be considered as

members of OctreeData in Appendix A.

A.2.1 Point Location

Point location algorithm. We use the precomputed array, child bit depth[] (Appendix

A.1), to avoid arbitrary left-shift operations.

T point_locate(Vec3i dest, int depth, int index)
{
for(;;)
{
OctNode& node = nodes[depth][index];
int child_bit = child_bit_depth[depth];
int child = (dest.x & child_bit!=0) << 2

|| (dest.y & child_bit!=0) << 1
|| (dest.z & child_bit!=0);

if (node.child_offset[child] == -1)
{
return node.child_scalars[child];

}
else if (depth == max_depth - 2)
{
index = node.child_start + node.child_offset[child];
child = (dest.x & 1)<<2 |

(dest.y & 1)<<1 |
(dest.z & 1);

return caps[index].child_scalars[child];
}
index = node.child_start + node.child_offset[child];
depth++;

}
return 0;

}

126

A.2.2 Neighbor-Finding

Neighbor finding algorithm. The parent trace array contains pointers to nodes, so we

only need store 1-way pointers in the octree. As a simple optimization, one could use static

polymorphism via templates for each X,Y,Z dimension, and thus only perform one or two

equality tests per iteration to neighbors along designated axes.

T neighbor_find(Vec3i start, Vec3i dest, int depth,
int parent_trace[])

{
for(int up=depth; up >= 0; up--)
{
int child_bit = child_bit_depth[up];
if ((dest.x & child_bit) == (start.x & child_bit)

&& (dest.y & child_bit) == (start.y & child_bit)
&& (dest.z & child_bit) == (start.z & child_bit)

return point_locate(dest, up, parent_trace[up]);
}
//root node
if ((dest.x & child_bit) == (start.x & child_bit)

&& (dest.y & child_bit) == (start.y & child_bit)
&& (dest.z & child_bit) == (start.z & child_bit)

return point_locate(dest, 0, 0);
return 0;

}

A.3 Single-Ray Octree Traversal
Pseudocode for a ray traversal through an interior node of an octree volume. For brevity,

some operations are omitted; those are bracketed with a brief description. Traversals of

scalar leaves and cap nodes operate similarly.

bool traverse(Ray ray,
int depth, uint node_index,
int parent_trace[], Vec3f cell,
float tenter, float texit)

{
OctNode& node = nodes[depth][node_index];
parent_trace[depth] = node_index;
int child_bit = child_bit_depth[depth];
Vec3f center = Vec3f(cell | Vec3i(child_bit));
Vec3f tcenter = (center ray.orig) / ray.dir;
Vec3f penter = ray.orig + ray.dir * tenter;
Vec3i child_cell = cell;
Vec3i tc;
tc.x = (penter.x >= center.x);
tc.y = (penter.y >= center.y);
tc.z = (penter.z >= center.z);

int child = tc.x << 2 | tc.y << 1 | tc.z;
child_cell.x |= tc.x ? child_bit : 0;

127

child_cell.y |= tc.y ? child_bit : 0;
child_cell.z |= tc.z ? child_bit : 0;

Vec3i axis_isects;
{perform 3-way minimum of tcenter such that axis_isects
contains the sorted intersection with the X,Y,Z
octant mid-planes}

const int axis_table[] = {4,2,1};

float child_tenter = tenter;
float child_texit;
for({all valid axis_isects[i] while tcenter < texit} ; i++)
{
child_texit = min(tcenter[axis_isects[i]], texit);
if (isovalue >= node.child_mins[child] ||

isovalue <= node.child_maxs[child]){
//traverse scalar leaf, cap or node
if (node.child_offset == -1)
if (traverse_scalar_leaf(...)) return true;

else if (depth == max_depth -- 2)
if (traverse_cap(...)) return true;

else
if (traverse(ray,depth+1,parent_trace,

child_cell, child_tenter, child_texit))
return true;

}
if (child_texit == texit)

return false;
child_tenter = child_texit;
axisbit = axis_table[axis_isects[i]];
if (child & axisbit){

child &= ~axisbit;
child_cell[axis_isects[i]] &= ~child_bit;

}
else{

child |= axisbit;
child_cell[axis_isects[i]] |= child_bit;

}
}
return false;

}

128

A.4 Packet-Octree Traversal
Algorithm 1 Octree CGT algorithm
Require: axes ~K,~U ,~V ; packet P; octree volume OV ; isovalue
Ensure: compute P intersection with OV

for all depths i ∈ {0..dmax} do
duv[i]⇐ [dumin,dvmin,dumax,dvmax] / 2dmax−i

k0[i]⇐ (P enters OV)~K / 2dmax−i

k1[i]⇐ (P exits OV)~K / 2dmax−i

euv[i]⇐ [umin,vmin,umax,vmax] at k0[i],k1[i]
k[i]⇐ k0[i]
knextMC[i]⇐ k[i]+2

end for
d ⇐ 0
while k[d]≤ k1[d] do

if k[d] = knextMC[d] then
d ⇐ d−1
continue

end if
traverseChild ⇐ f alse;
for all u ∈ [umin,umax],v ∈ [vmin,vmax] of euv do

node⇐ OV.lookup(vec3(k,u,v),d)
if isovalue ∈ [node.min,node.max] then

traverseChild ⇐ true
break

end if
end for
if d = dcap then

clip euv to non-empty cap-level macrocells
end if
if traverseChild = true then

if d = dmax then
clip cell slice euv to active rays
intersect P with slice k[dcap] at euv[dcap]
if all rays in P hit then

return
end if

else
euv[d]⇐ euv[d]+duv[d]
knew[d +1]⇐ 2∗ k[d]
k[d +1]⇐ knew[d +1]
knextMC[d +1]⇐ k[d +1]+2
d ⇐ d +1
continue

end if
end if
euv[dcap]⇐ euv[dcap]+duv[dcap]

end while

129

A.5 Transition Array Computation
This precomputation is executed per-frame, as described in Section 4.4 of Chapter 4.

Algorithm 2 Transition Array Computation
Require: Pixel-width to voxel-width ratio, dP/dV

Per-ray camera offset along ~U axis, ducamera
Ensure: Array of ~K-transition slices, ktransition[]

for all octree depths d ∈ {0..dmax−1} do
voxelWidth[d]⇐ 2dmax−d ∗dP/dV
ttransition[d]⇐ voxelWidth[d] / ducamera
ktransition[d]⇐ korigin + ttransitionkdirection

end for

APPENDIX B

ARBITRARY-FORM IMPLICITS

This Appendix contains pseudocode and results from Chapter 6. Section B.1 provides

code for the SIMD interval arithmetic method for the CPU using SSE; and Section B.2 has

code for the GPU method.

B.1 SSE IA Pseudocode

Algorithm 3 Examples of SIMD Interval Arithmetic
struct interval4 {
__m128 lo, hi;

};
interval4 add_i4(interval4 a, interval4 b) {
return interval4(_mm_add_ps(a.lo, b.lo), _mm_add_ps(a.hi, b.hi));

}
interval4 mul_i4(interval4 a, interval4 b) {
__m128 lolo = _mm_mul_ps(a.lo, b.lo);
__m128 lohi = _mm_mul_ps(a.lo, b.hi);
__m128 hilo = _mm_mul_ps(a.hi, b.lo);
__m128 hihi = _mm_mul_ps(a.hi, b.hi);
return interval4(_mm_min_ps(lolo, _mm_min_ps(lohi, _mm_min_ps(hilo, hihi))),

_mm_min_ps(lolo, _mm_min_ps(lohi, _mm_min_ps(hilo, hihi))));
}
interval4 abs_i4(interval4 a) {
return interval4(_mm_max_ps(a.lo, _mm_max_ps(-a.hi), 0)), _mm_max_ps(-a.lo, a.hi));

}
interval4 sqr_i4(interval4 a) {
interval4 aa = abs_i4(a);
return interval4(_mm_mul_ps(a.lo, a.lo), _mm_mul_ps(a.hi, a.hi));

}
interval4 circle(interval4 x, interval4 y, interval4 z, float radius) {
return sub_i4(add_i4(sqr_i4(x), add_i4(sqr_i4(y), sqr_i4(z))),

radius*radius);
}

131

Algorithm 4 Ray-Implicit Traversal pseudocode.
template<int K, int U, int V, int DK>

void traverse(RayPacket r, Box domain,

Implicit implicit, int d_stop) {

(get t_enter, t_exit, t_kenter, t_kexit)

__m128 validmask = intersectBB(r, domain);

//validmask indicates rays that are active

float full_tk = t_kexit - t_kenter;

float full_u = _mm_mul_ps(r.dir[U], full_tk);

float full_v = _mm_mul_ps(r.dir[V], full_tk);

struct Stack {

__m128 t_incr;

__m128 u_incr, v_incr;

float k_incr;

char side;

};

Stack stk[maxDepth];

for(int d=0;d<maxDepth;d++){

float width = 1.f / (float)(1<<d);

stk[d].t_incr = _mm_mul_ps(full_tk, width);

stk[d].u_incr = _mm_mul_ps(full_u, width);

stk[d].v_incr = _mm_mul_ps(full_v, width);

stk[d].side = -1;

}

int depth = 0;

float curr_k = DK==+1 ? domain.min[K]:domain.max[k];

__m128 curr_t, curr_u, curr_v;

curr_t = t_kenter;

curr_u = _mm_add_ps(r.org[U],_mm_mul_ps(r.dir[U],curr_t));

curr_v = _mm_add_ps(r.org[V],_mm_mul_ps(r.dir[V],curr_t));

__m128 next_t, next_u, next_v;

for(;;) {

stk[depth].side++;

next_k = DK==+1 ?

curr_k + stk[depth].k_incr :

curr_k - stk[depth].k_incr;

next_u = _mm_add_ps(curr_u, stk[depth].u_incr);

next_v = _mm_add_ps(curr_v, stk[depth].v_incr);

next_t = _mm_add_ps(curr_t, stk[depth].t_incr);

hitmask = and4(validmask, cmp_ge4(next_t, tenter));

if (any4(hitmask)) {

interval4 ibox;

(fill ibox with curr and next k,u,v)

interval4 F = implicit.evalute_interval4(ibox);

if (any4(F.contains(0))) {

if (!all4(cmp_ge4(sub4(F.hi,F.lo),INFINITY))){

if (depth == maxDepth-1){

//hit

hit(r, curr_t);

(compute normal);

if (all4(r.hitmask))

return;

} else {

//recurse

depth++;

continue;

}

}

}

}

validmask = and4(validmask, cmp_le4(next_t, texit));

if (none4(validmask))

return;

curr_k = next_k;

curr_t = next_t;

curr_u = next_u;

curr_v = next_v;

if (stk[depth].side & 1)

{

do{

if (--depth == -1)

return; }

while(stk[depth] & 1);

continue;

}

}

}

132

B.2 GPU IA/AA Pseudocode

Algorithm 5 Excerpt of GPU Interval Arithmetic.
typedef float2 interval;

interval iadd(interval a, interval b) {
return interval(add(a.x, b.x), add(a.y, b.y));

}
interval imul(interval a, interval b) {
float4 lh = a.xxyy * b.xyxy;
return interval(min(lh.x, min(lh.y, min(lh.z, lh.w))),

max(lh.x, max(lh.y, max(lh.z, lh.w))));
}
interval ircp(const float inf, interval i) {
return ((i.x <= 0 && i.y >= 0) ?

interval(-inf, inf) : 1/i.yx);
}

Algorithm 6 Excerpt of GPU Reduced Affine Arithmetic.
typedef float3 raf;

raf interval_to_raf(interval i){
raf r;
r.x = (i.y + i.x);
r.y = (i.y - i.x);
r.xy *= .5; r.z = 0;
return r;

}
float raf_radius(raf a){
return abs(a.y) + a.z;

}
interval raf_to_interval(raf a){
const float rad = raf_radius(a);
return interval(a.x - rad, a.x + rad);

}
raf raf_add(raf a, raf b){
return (a + b);

}
raf raf_mul{raf a, raf b){
raf r;
r.x = a.x * b.x;
r.y = a.x*b.y + b.x*a.y;
r.z = abs(a.x*b.z) + abs(b.x*a.z) +

raf_radius(a)*raf_radius(b);
return r;

}

133

Algorithm 7 Traversal algorithm with RAA.
float traverse(float3 penter, float3 pexit, float w,

float max_depth, float eps, float nan, float inf){
const float3 org = penter;
const float3 dir = pexit-penter;
interval t(0,1);
raf F, it, ix, iy, iz;
//rejection test
ix = raf_add(org.x, raf_mul(it, dir.x));
iy = raf_add(org.y, raf_mul(it, dir.y));
iz = raf_add(org.z, raf_mul(it, dir.z));
F = evaluate_raf(ix, iy, iz, w, nan, inf);
if (raf_contains(F, 0)){
int d=0;
float tincr = .5;
const int dlast = log2(length(dir)/epsilon);
//main loop
for(;;){
t.y = t.x + tincr;
(compute ix, iy, iz, F again for rejection test)
if (raf_contains(F, 0)){
if (d==dlast){ return t.x; /*hit*/}
else{ tincr *= .5; d++; continue; }

}
t.x = t.y;
//back-recursion
float fp = frac(.5*t.x/tincr);
if (fp < 1e-8){
for(int j=0; j<=dlast; j++){
tincr *= 2;
d--;
fp = frac(.5*t.x/tincr);
if (d==-1 || fp > 1e-8) break;

}
if (d==-1) break;

}
}

}
return -1; //no hit

}

134

B.3 Reference Implicits

Table B.1: Formulas of simple test surfaces used in Table 6.1.

sphere
x2 + y2 + z2− r2

steiner
x2y2 + y2z2 + x2z2 + xyz

mitchell
4(x4 +(y2 + z2)2)+17(x2(y2 + z2)−20(x2 + y2 + z2)+17

teardrop
x5+x4

2 − y2− z2

4-bretzel 1
10(x2(1.21− x2)2(3.8− x2)3−10y2)2 +60z2−2

klein bottle
(x2 + y2 + z2 +2y−1)((x2 + y2 + z2−2y−1)2−8z2)

+16xz(x2 + y2 + z2−2y−1)

tangle
x4− rx2 + y4−5y2 + z4−5z2 +11.8

decocube
((x2 + y2−0.82)2 +(z2−1)2)((y2 + z2−0.82)2+
(x2−1)2)((z2 + x2−0.82)2 +(y2−1)2)−0.02

barth sextic
4(τ2x2− y2)(τ2y2− z2)(τ2z2− x2)− (1+2τ)(x2 + y2 + z2−1)2

where τ is the golden ratio, 1+
√

5
2

barth decic
8(x2−τ4y2)(y2−τ4z2)(z2−τ4x2)(x4 +y4 +z4−2x2y2−2x2z2−2y2z2)+
(3+5τ)(x2 +y2 + z2−w2)2(x2 +y2 + z2− (2− τ)w2)2w2 , τ = 1+

√
5

2

superquadric
x500 + 1

2 |y|
35 + 1

2z4−1

135

Table B.2: Formulas of more complicated implicit surfaces used in Table 6.1.

icos.csg
ic(x,y,z) = 2− (cos(x+ τy)+ cos(x− τy)+ cos(y+ τz)+

cos(y− τz)+ cos(z− τx)+ cos(z+ τx)) , τ = 1+
√

5
2

CSG condition (on inclusion intervals):
(0 ∈ ic) and sphereinner < 0 and sphereouter > 0

sesc.csg CSG of superellipsoid (se) and sinusoid convolution (sc)
se(x,y,z) = x6 + 1

2(y4 + z4)4−20
sc(x,y,z) = xy+cos(z)+1.741sin(2x)sin(z)cos(y)+sin(2y)sin(x)cos(z)

+sin(2z)sin(y)cos(x)− cos(2x)cos(2y)
+cos(2y)cos(2z)+ cos(2z)cos(2x)+0.05

CSG condition (on inclusion intervals):
((sc > 0) and (0 ∈ se)) or ((se < 0) and (0 ∈ sc))

sin.blob
1+ r1(y+w)+ cos(r2z)+4(sin(4r0r2x)sin(r0z)cos(r1y)

+sin(2r0r1y)sin(r2x)cos(r2z)+ sin(2r2z)sin(r1y)cos(r2x))
−(cos(2r2x)cos(2r0y)+ cos(2r0r1y)cos(2r2z)+ cos(2r2z)cos(2r2x)))

where r0 = 0.104, r1 = 0.402, r2 =−0.347

cloth
y−0.5sin(x+3w)−0.1(1+ .1sin(xz))cos(z+3w)

where w = [0,2π] is a time-dependent variable

water
sin(

√
((x+ r1)2 + z2)−w)/(10+

√
((x+ r1)2 + z2))+ sin(

√
((x−

r1)2 + z2)−w+ r0)/(10+
√

((x− r1)2 + z2))+
sin(2

√
((z− r1)2 + x2)−w− r0)/(10+

√
((z− r1)2 + x2))− y

2
where r0 = 2.736, r1 = 15, r2 =−.830746 and w is time-dependent.

REFERENCES

[1] AMANATIDES, J., AND WOO, A. A Fast Voxel Traversal Algorithm for Ray Tracing.
In Eurographics ’87. Eurographics Association, 1987, pp. 3–10.

[2] APPEL, A. Some Techniques for Shading Machine Renderings of Solids. SJCC
(1968), 27–45.

[3] BERNARDON, F. F., CALLAHAN, S. P., COMBA, J. L. D., AND SILVA, C. T. An
Adaptive Framework for Visualizing Unstructured Grids with Time-Varying Scalar
Fields. Parallel Computing (2007).

[4] BIGLER, J., STEPHENS, A., AND PARKER, S. G. Design for Parallel Interactive
Ray Tracing Systems. In Proceedings of the 2006 IEEE Symposium on Interactive
Ray Tracing (2006), pp. 187–196.

[5] BLINN, J. A Generalization of Algebraic Surface Drawing. ACM Transactions on
Graphics 1, 3 (July 1982), 235–256.

[6] BLOOMENTHAL, J. An Implicit Surface Polygonizer. Graphics gems IV (1994),
324–349.

[7] BOULOS, S., WALD, I., AND SHIRLEY, P. Geometric and Arithmetic Culling
Methods for Entire Ray Packets. Tech. Rep. UUCS-06-010, SCI Institute, University
of Utah, 2006.

[8] BRONNIMANN, H., AND GLISSE, M. Cost-Optimal Trees for Ray Shooting. In
Proceedings of the Latin American Symposium on Theoretical Informatics (2004).

[9] BUNYK, P., KAUFMAN, A., AND SILVA, C. Simple, Fast, and Robust Ray Casting
of Irregular Grids. In Proceedings of Scientific Visualization, Dagstuhl, Germany
(1997), pp. 30–36.

[10] CALLAHAN, S. P., BAVOIL, L., PASCUCCI, V., AND SILVA, C. T. Progressive
Volume Rendering of Large Unstructured Grids. IEEE Transactions on Visualization
and Computer Graphics (Proceedings Visualization / Information Visualization 2006)
12, 5 (Sept/Oct 2006), 1307–1314.

[11] CALLAHAN, S. P., COMBA, J. L. D., SHIRLEY, P., AND SILVA, C. T. Interactive
Rendering of Large Unstructured Grids Using Dynamic Level-of-Detail. IEEE Trans-
actions on Visualization and Computer Graphics (Proceedings Visualization 2005)
12, 5 (Sept/Oct 2005), 199–206.

[12] CAPRIANI, O., HVIDEGAARD, L., MORTENSEN, M., AND SCHNEIDER, T. Robust
and Efficient Ray Intersection of Implicit Surfaces. Reliable Computing 6 (2000),
9–21.

137

[13] CASTANIE, L., MION, C., CAVIN, X., AND LEVY, B. Distributed Shared Memory
for Roaming Large Volumes. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (2006), 1299–1306.

[14] CO, C. S., HAMANN, B., AND JOY, K. I. Iso-splatting: A Point-based Alternative to
Isosurface Visualization. In Proceedings of Pacific Graphics 2003 (Oct. 8–10 2003),
J. Rokne, W. Wang, and R. Klein, Eds., pp. 325–334.

[15] COMBA, J. L. D., AND STOLFI, J. Affine Arithmetic and its Applications to
Computer Graphics. In Proceedings of SIBGRAPI (1993), pp. 9–18.

[16] DE CUSATIS JUNIOR, A., DE FIGUEIREDO, L., AND GATTAS, M. Interval Methods
for Raycasting Implicit Surfaces with Affine Arithmetic. In Proceedings of XII
SIBGRPHI (1999), pp. 1–7.

[17] DE FIGUEIREDO, L. H., AND STOLFI, J. Adaptive Enumeration of Implicit Surfaces
with Affine Arithmetic. Computer Graphics Forum 15, 5 (1996), 287–296.

[18] DE TOLEDO, R., LEVY, B., AND PAUL, J.-C. Iterative Methods for Visualization
of Implicit Surfaces on GPU. In ISVC, International Symposium on Visual Comput-
ing (Lake Tahoe, Nevada/California, November 2007), Lecture Notes in Computer
Science, SBC - Sociedade Brasileira de Computacao, Springer.

[19] DEMARLE, D., PARKER, S., HARTNER, M., GRIBBLE, C., AND HANSEN, C.
Distributed Interactive Ray Tracing for Large Volume Visualization. In Proceedings
of the IEEE PVG (2003), pp. 87–94.

[20] DEMARLE, D. E., GRIBBLE, C., AND PARKER, S. Memory-Savvy Distributed
Interactive Ray Tracing. In Eurographics Symposium on Parallel Graphics and
Visualization (2004).

[21] DJEU, P., HUNT, W., WANG, R., ELHASSAN, I., STOLL, G., AND MARK, W. R.
Razor: An Architecture for Dynamic Multiresolution Ray Tracing. Tech. rep., The
University of Texas at Austin, 2007. (Cond. accepted to ACM Transactions on
Graphics).

[22] DMITRIEV, K., HAVRAN, V., AND SEIDEL, H.-P. Faster Ray Tracing with SIMD
Shaft Culling. Research Report MPI-I-2004-4-006, Max-Planck-Institut für Infor-
matik, Saarbrücken, Germany, 2004.

[23] DOI, A., AND KOIDE, A. An Efficient Method of Triangulating Equi-valued Sur-
faces by Using Tetrahedral Cells. IEICE Trans Commun. Elec. Inf. Syst E-74, 1
(1991), 213–224.

[24] FLOREZ, J., SBERT, M., SAINZ, M., AND VEHI, J. Improving the Interval Ray
Tracing of Implicit Surfaces. In Lecture Notes in Computer Science (2006), vol. 4035,
pp. 655–664.

[25] FRIEDRICH, H., WALD, I., AND SLUSALLEK, P. Interactive Iso-Surface Ray
Tracing of Massive Volumetric Data Sets. In Proceedings of the 2007 Eurographics
Symposium on Parallel Graphics and Visualization (2007), Eurographics.

138

[26] FRISKEN, S. F., AND PERRY, R. N. Simple and Efficient Traversal Methods for
Quadtrees and Octrees. Journal of Graphics Tools 7, 3 (2002).

[27] FRYAZINOV, O., AND PASKO, A. GPU-based Real Time FRep Ray Casting. Pro-
ceedings of Graphicon (2007), 69–74.

[28] GAMITO, M. N., AND MADDOCK, S. C. Ray Casting Implicit Fractal Surfaces with
Reduced Affine Arithmetic. Vis. Comput. 23, 3 (2007), 155–165.

[29] GARGANTINI, I., AND ATKINSON, H. Ray Tracing an Octree: Numerical Evaluation
of the First Interaction . Computer Graphics Forum 12, 4 (1993), 199–210.

[30] GARRITY, M. P. Raytracing Irregular Volume Data. Computer Graphics (San Diego
Workshop on Volume Visualization) 24, 5 (November 1990), 35–40.

[31] GEORGII, J., AND WESTERMANN, R. A Generic and Scalable Pipeline for GPU
Tetrahedral Grid Rendering. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (2006), 1345–1352.

[32] GLASSNER, A. S. Space Subdivision For Fast Ray Tracing. IEEE Computer
Graphics and Applications 4, 10 (1984), 15–22.

[33] GOLDSMITH, J., AND SALMON, J. Automatic Creation of Object Hierarchies for
Ray Tracing. IEEE Computer Graphics and Applications 7, 5 (1987), 14–20.

[34] GRIBBLE, C. Interactive Methods for Effective Particle Visualization. PhD thesis,
University of Utah, 2006.

[35] GRIBBLE, C. P., IZE, T., KENSLER, A., WALD, I., AND PARKER, S. G. A
Coherent Grid Traversal Approach to Visualizing Particle-based Visualization Data.
Tech. Rep. UUSCI-2006-024, SCI Institute, University of Utah, 2006. (submitted for
publication).

[36] GROSS, M., HAGEN, H., PFREUND, F., FRAUNHOFER, I., AND IRTG, G. Interac-
tive SIMD Ray Tracing for Large Deformable Tetrahedral Meshes. In Interactive Ray
Tracing, 2008. RT 2008. IEEE Symposium on (2008), pp. 147–154.

[37] GUTHE, S., WAND, M., GONSER, J., AND STRASSER, W. Interactive Rendering
of Large Volume Data Sets. In Proceedings of the conference on Visualization ’02
(2002), IEEE Computer Society, pp. 53–60.

[38] HADWIGER, M., SIGG, C., SCHARSACH, H., BÜHLER, K., AND GROSS, M.
Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces. Computer
Graphics Forum 24, 3 (2005), 303–312.

[39] HANRAHAN, P. Ray tracing algebraic surfaces. In SIGGRAPH ’83: Proceedings of
the 10th annual conference on Computer graphics and interactive techniques (New
York, NY, USA, 1983), ACM Press, pp. 83–90.

[40] HART, J. C. Sphere tracing: A Geometric Method for the Antialiased Ray Tracing of
Implicit Surfaces. The Visual Computer 12, 10 (1996), 527–545.

[41] HAVRAN, V. A Summary of Octree Ray Traversal Algorithms. Ray Tracing News
12, 2 (1999).

139

[42] HAVRAN, V. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of Electrical
Engineering, Czech Technical University in Prague, 2001.

[43] HAVRAN, V., HERZOG, R., AND SEIDEL, H.-P. On Fast Construction of Spatial
Hierarchies for Ray Tracing. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing (2006).

[44] HEIDRICH, W., AND SEIDEL, H.-P. Ray-Tracing Procedural Displacement Shaders.
In Graphics Interface (1998), pp. 8–16.

[45] HUTCHISON, B., HAINES, E., SAMET, H., AND JANSEN, E. Octree Traversal and
the Best Efficiency Scheme. Ray Tracing News 12, 1 (1999).

[46] IGEHY, H. Tracing Ray Differentials. In Computer Graphics (Proceedings of ACM
SIGGRAPH) (1999), pp. 179–186.

[47] JACKINS, C., AND TANIMOTO, S. Oct-trees and Their Use in Representing Three-
Dimensional Objects. Computer Graphics and Image Processing 14, 3 (1980), 249–
270.

[48] JOHNSON, C., AND HANSEN, C. Visualization Handbook. Academic Press, Inc.,
Orlando, FL, USA, 2004.

[49] JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. Dual Contouring of Hermite
Data. ACM Trans. Graph. 21, 3 (2002), 339–346.

[50] K3DSURF. The K3DSurf Project. http://k3dsurf.sourceforge.net/.

[51] KAJIYA, J. T. The Rendering Equation. In Computer Graphics (Proceedings of ACM
SIGGRAPH) (1986), D. C. Evans and R. J. Athay, Eds., vol. 20, pp. 143–150.

[52] KALRA, D., AND BARR, A. H. Guaranteed Ray Intersections with Implicit Surfaces.
In SIGGRAPH ’89: Proceedings of the 16th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1989), ACM Press, pp. 297–306.

[53] KLEIN, T., STEGMAIER, S., AND ERTL, T. Hardware-accelerated Reconstruction
of Polygonal Isosurface Representations on Unstructured Grids. In Proceedings of
Pacific Graphics ’04 (2004), pp. 186–195.

[54] KNISS, J., KINDLMANN, G., AND HANSEN, C. Multidimensional Transfer Func-
tions for Interactive Volume Rendering. IEEE Transactions on Visualization and
Computer Graphics 8, 3 (2002), 270–285.

[55] KNISS, J., MCCORMICK, P., MCPHERSON, A., AHRENS, J., PAINTER, J., KEA-
HEY, A., AND HANSEN, C. Interactive Texture-Based Volume Rendering for Large
Data Sets. Computer Graphics and Applications, IEEE 21, 4 (2001), 52–61.

[56] KNITTEL, G. The ULTRAVIS System. In Proceedings of the 2000 IEEE symposium
on Volume visualization (2000), ACM Press, pp. 71–79.

[57] KNOLL, A., HANSEN, C., AND WALD, I. Coherent Multiresolution Isosurface Ray
Tracing. Tech. Rep. UUSCI-07-001, University of Utah, School of Computing, 2007.
The Visual Computer (to appear).

140

[58] KNOLL, A., HIJAZI, Y., KENSLER, A., SCHOTT, M., HANSEN, C., AND HAGEN,
H. Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arith-
metic. Computer Graphics Forum 28, 1 (2009), 26–40.

[59] KNOLL, A., HIJAZI, Y., WALD, I., HANSEN, C., AND HAGEN, H. Interactive Ray
Tracing of Arbitrary Implicits with SIMD Interval Arithmetic. In Proceedings of the
2nd IEEE/EG Symposium on Interactive Ray Tracing (2007), pp. 11–18.

[60] KNOLL, A., WALD, I., AND HANSEN, C. Coherent Multiresolution Isosurface Ray
Tracing. The Visual Computer 25, 3 (2009), 209–225.

[61] KNOLL, A., WALD, I., PARKER, S. G., AND HANSEN, C. D. Interactive Isosurface
Ray Tracing of Large Octree Volumes. In Proceedings of the 2006 IEEE Symposium
on Interactive Ray Tracing (2006), pp. 115–124.

[62] KRÜGER, J., AND WESTERMANN, R. Acceleration Techniques for GPU-based
Volume Rendering. In Proceedings IEEE Visualization 2003 (2003).

[63] LAMAR, E., HAMANN, B., AND JOY, K. I. Multiresolution Techniques for Interac-
tive Texture-based Volume Visualization. In VIS ’99: Proceedings of the conference
on Visualization ’99 (Los Alamitos, CA, USA, 1999), IEEE Computer Society Press,
pp. 355–361.

[64] LANEY, D., MASCARENHAS, A., AND MILLER, P. Understanding the Structure
of the Turbulent Mixing Layer in Hydrodynamic Instabilities. IEEE Transactions
on Visualization and Computer Graphics 12, 5 (2006), 1053–1060. Member-P. -T.
Bremer and Member-V. Pascucci.

[65] LAUTERBACH, C., YOON, S.-E., TUFT, D., AND MANOCHA, D. RT-DEFORM:
Interactive Ray Tracing of Dynamic Scenes Using BVHs. In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing (2006), pp. 39–45.

[66] LEVOY, M. Display of Surfaces from Volume Data. IEEE Comput. Graph. Appl. 8,
3 (1988), 29–37.

[67] LEVOY, M. Efficient Ray Tracing for Volume Data. ACM Transactions on Graphics
9, 3 (July 1990), 245–261.

[68] LEVOY, M., AND WHITTED, T. The Use of Points as Display Primitives. Tech. rep.,
CS Department, University of North Carolina at Chapel Hill, 2005.

[69] LIVNAT, Y., AND HANSEN, C. D. View Dependent Isosurface Extraction. In Pro-
ceedings of IEEE Visualization ’98 (Oct. 1998), IEEE Computer Society, pp. 175–180.

[70] LIVNAT, Y., SHEN, H.-W., AND JOHNSON, C. R. A Near Optimal Isosurface
Extraction Algorithm Using the Span Space. IEEE Transactions on Visualization
and Computer Graphics 2, 1 (1996), 73–84.

[71] LIVNAT, Y., AND TRICOCHE, X. Interactive Point Based Isosurface Extraction. In
Proceedings of IEEE Visualization 2004 (2004), pp. 457–464.

[72] LOOP, C., AND BLINN, J. Real-time GPU Rendering of Piecewise Algebraic
Surfaces. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers (New York, NY, USA,
2006), ACM Press, pp. 664–670.

141

[73] LORENSEN, W. E., AND CLINE, H. E. Marching Cubes: A High Resolution 3D Sur-
face Construction Algorithm. Computer Graphics (Proceedings of ACM SIGGRAPH)
21, 4 (1987), 163–169.

[74] MALLAT, S. A Wavelet Tour of Signal Processing. Academic Press, 1999.

[75] MARMITT, G., FRIEDRICH, H., KLEER, A., WALD, I., AND SLUSALLEK, P. Fast
and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray Tracing. In
Proceedings of Vision, Modeling, and Visualization (VMV) (2004), pp. 429–435.

[76] MARMITT, G., AND SLUSALLEK, P. Fast Ray Traversal of Unstructured Volume
Data Using Plucker Tests. Tech. rep., Saarland University, 2005. submitted for
publication.

[77] MARMITT, G., AND SLUSALLEK, P. Fast Ray Traversal of Tetrahedral and Hexahe-
dral Meshes for Direct Volume Rendering. In Eurographics/IEEE-VGTC Symposium
on Visualization (EuroVIS) (2006), pp. 235–242.

[78] MESSINE, F. Extentions of Affine Arithmetic: Application to Unconstrained Global
Optimization. Journal of Universal Computer Science 8, 11 (2002), 992–1015.

[79] MEYER, M., GEORGEL, P., AND WHITAKER, R. Robust Particle Systems for Cur-
vature Dependent Sampling of Implicit Surfaces. Shape Modeling and Applications,
2005 International Conference (2005), 124–133.

[80] MEYER, M., NELSON, B., KIRBY, R., AND WHITAKER, R. Particle Systems for
Efficient and Accurate High-Order Finite Element Visualization. Transactions on
Visualization and Computer Graphics 13, 5 (2007), 1015–1026.

[81] MIDONICK, H. O. The Treasury of Mathematics. Philosophical Library, 1965.

[82] MITCHELL, D. Robust Ray Intersection with Interval Arithmetic. In Proceedings on
Graphics Interface 1990 (1990), pp. 68–74.

[83] MOORE, R. E. Interval Analysis. Prentice Hall, 1966.

[84] NELSON, B., AND KIRBY, R. M. Ray-Tracing Polymorphic Multi-Domain Spec-
tral/hp Elements for Isosurface Rendering. IEEE Transactions on Visualization and
Computer Graphics (Proceedings IEEE Visualization 2005) 12, 1 (2005), 114–125.

[85] NIELSON, G., AND HAMANN, B. The Asymptotic Decider: Removing the Ambigu-
ity in Marching Cubes. In Proceedings of Visualization ’91 (1991), G. Nielson and
L. Rosenblum, Eds., IEEE Computer Society Press, pp. 83–91.

[86] NIELSON, G. M. Dual Marching Cubes. In VIS ’04: Proceedings of the conference
on Visualization ’04 (Washington, DC, USA, 2004), IEEE Computer Society, pp. 489–
496.

[87] OHTAKE, Y., BELYAEV, A., AND ALEXA, M. Sparse Low-Degree Implicit Surfaces
with Applications to High Quality Rendering, Feature Extraction, and Smoothing.
Proceedings of the third Eurographics symposium on Geometry processing (2005).

142

[88] PAIVA, A., LOPES, H., LEWINER, T., AND DE FIGUEIREDO, L. H. Robust
Adaptive Meshes for Implicit Surfaces. In 19th Brazilian Symposium on Computer
Graphics and Image Processing (2006), pp. 205–212.

[89] PARKER, S., PARKER, M., LIVNAT, Y., SLOAN, P.-P., HANSEN, C., AND SHIRLEY,
P. Interactive Ray Tracing for Volume Visualization. IEEE Computer Graphics and
Applications 5, 3 (1999), 238–250.

[90] PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., AND SLOAN, P.-P. Interactive
Ray Tracing for Isosurface Rendering. In IEEE Visualization ’98 (October 1998),
pp. 233–238.

[91] PASCUCCI, V. Isosurface Computation Made Simple: Hardware Acceleration, Adap-
tive Refinement and Tetrahedral Stripping. In Eurographics - IEE TCVG Symposium
on Visualization (2004) (2004), pp. 293–300.

[92] PASKO, A. A., ADZHIEV, V., SOURIN, A., AND SAVCHENKO, V. V. Function
Representation in Geometric Modeling: Concepts, Implementation and Applications.
The Visual Computer 11, 8 (1995), 429–446.

[93] PERLIN, K., AND HOFFERT, E. M. Hypertexture. In SIGGRAPH ’89: Proceedings
of the 16th annual conference on Computer graphics and interactive techniques (New
York, NY, USA, 1989), ACM Press, pp. 253–262.

[94] PESCO, S., LINDSTROM, P., PASCUCCI, V., AND SILVA, C. T. Implicit Occluders.
In IEEE/SIGGRAPH Symposium on Volume Visualization (2004), pp. 47–54.

[95] POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P. Stackless KD-Tree
Traversal for High Performance GPU Ray Tracing. Computer Graphics Forum 26, 3
(Sept. 2007). (Proceedings of Eurographics), to appear.

[96] POV-RAY. http://www.povray.org.

[97] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P.
Numerical Recipes in C (2nd ed.): The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 1992.

[98] REIMERSS, M., AND SELAND, J. Ray Casting Algebraic Surfaces Using the Frustum
Form. In Computer Graphics Forum (2008), vol. 27, Blackwell Synergy, pp. 361–
370.

[99] RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. Multi-Level Ray Tracing Algo-
rithm. ACM Transaction on Graphics 24, 3 (2005), 1176–1185. (Proceedings of
ACM SIGGRAPH 2005).

[100] ROMEIRO, F., VELHO, L., AND DE FIGUEIREDO, L. H. Hardware-assisted Render-
ing of CSG Models. In SIBGRAPI (2006), pp. 139–146.

[101] RÖSSL, C., ZEILFELDER, F., NÜRNBERGER, G., AND SEIDEL, H.-P. Recon-
struction of Volume Data with Quadratic Super Splines. IEEE Transactions on
Visualization and Computer Graphics 10, 4 (2004), 397–409.

143

[102] RUDIN, W. Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, New York,
1976.

[103] RUIJTERS, D., AND VILANOVA, A. Optimizing GPU Volume Rendering. Winter
School of Computer Graphics, Pilzen (2006).

[104] RUSINKIEWICZ, S., AND LEVOY, M. QSplat: A Multiresolution Point Rendering
System for Large Meshes. In Proc. of ACM SIGGRAPH (2000), pp. 343–352.

[105] SAMET, H. Implementing Ray Tracing with Octrees and Neighbor Finding. Com-
puters and Graphics 13, 4 (1989), 445–60.

[106] SAMET, H. The Design and Analysis of Spatial Data Structures. Addison-Wesley
Publishing Company, 1990.

[107] SANJUAN-ESTRADA, J. F., CASADO, L. G., AND GARCIA, I. Reliable Algorithms
for Ray Intersection in Computer Graphics Based on Interval Arithmetic. In XVI
Brazilian Symposium on Computer Graphics and Image Processing, 2003. SIBGRAPI
2003. (2003), pp. 35–42.

[108] SCHAEFER, S., AND WARREN, J. Dual Marching Cubes: Primal Contouring of Dual
Grids. In Proceedings of Pacific Graphics (2004), pp. 70–76.

[109] SCHEIDEGGER, C. E., FLEISHMAN, S., AND SILVA, C. T. Triangulating Point Set
Surfaces with Bounded Error. In SGP ’05: Proceedings of the Third Eurographics
Symposium on Geometry Processing (Aire-la-Ville, Switzerland, 2005), Eurographics
Association, pp. 63–72.

[110] SCHREINER, J., AND SCHEIDEGGER, C. High-Quality Extraction of Isosurfaces
from Regular and Irregular Grids. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (2006), 1205–1212. Member-Claudio Silva.

[111] SCHWARZE, J. Cubic and Quartic Roots. In Graphics Gems, A. Glassner, Ed.
Academic Press, 1990, pp. 404–407. ISBN: 0122861663.

[112] SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T., ABRASH, M., DUBEY,
P., JUNKINS, S., LAKE, A., SUGERMAN, J., CAVIN, R., ESPASA, R., GRO-
CHOWSKI, E., JUAN, T., AND HANRAHAN, P. Larrabee: A Many-core x86 Ar-
chitecture for Visual Computing. ACM Trans. Graph. 27, 3 (2008), 1–15.

[113] SHANNON, C., AND WEAVER, W. The Mathematical Theory of Communication.
University of Illinois Press, 1963.

[114] SINGH, J. M., AND NARAYANAN, P. Real-Time Ray Tracing of Implicit Surfaces on
the GPU. Tech. rep., International Institute of Information Technology, Hyderabad,
India, 2007.

[115] SRAMEK, M. Fast Surface Rendering from Raster Data by Voxel Traversal Using
Chessboard Distance. Proceedings of IEEE Visualization 1994 (1994), 188–195.

[116] STANDER, B., AND HART, J. Guaranteeing the Topology of an Implicit Surface
Polygonization for Interactive Modeling. International Conference on Computer
Graphics and Interactive Techniques (2005).

144

[117] STOLL, C., GUMHOLD, S., AND SEIDEL, H. Incremental Raycasting of Piecewise
Quadratic Surfaces on the GPU. Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing (Sept. 2006), 141–150.

[118] STOLTE, N., AND CAUBET, R. Fast High Definition Discrete Ray Tracing Implicit
Surfaces. 5th DGCI-Discrete Geometry for Computer Imagery (1995), 61–70.

[119] STOLTE, N., AND KAUFMAN, A. Voxelization of Implicit Surfaces Using Interval
Arithmetics. Graphical Models 63, 6 (2001), 387–412.

[120] SUNG, K. A DDA Octree Traversal Algorithm for Ray Tracing. In Eurographics ’91
(Sept. 1991), W. Purgathofer, Ed., North-Holland, pp. 73–85.

[121] TOTH, D. L. On Ray Tracing Parametric Surfaces. In SIGGRAPH ’85: Proceedings
of the 12th annual conference on Computer graphics and interactive techniques (New
York, NY, USA, 1985), ACM Press, pp. 171–179.

[122] VAN WIJK, J. Ray Tracing Objects Defined by Sweeping a Sphere. Computers &
Graphics 9 (1985), 283–290.

[123] VARADHAN, G., KRISHNAN, S., ZHANG, L., AND MANOCHA, D. Reliable
Implicit Surface Polygonization Using Visibility Mapping. In SGP ’06: Proceed-
ings of the fourth Eurographics symposium on Geometry processing (Aire-la-Ville,
Switzerland, 2006), Eurographics Association, pp. 211–221.

[124] VELASCO, F., AND TORRES, J. C. Cell Octree: A New Data Structure for Volume
Modeling and Visualization. VI Fall Workshop on Vision, Modeling and Visualization
(2001), 665–672.

[125] WÄCHTER, C., AND KELLER, A. Instant Ray Tracing: The Bounding Interval
Hierarchy. In Rendering Techniques 2006 – Proceedings of the 17th Eurographics
Symposium on Rendering (2006), pp. 139–149.

[126] WALD, I. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,
Saarland University, 2004.

[127] WALD, I., BOULOS, S., AND SHIRLEY, P. Ray Tracing Deformable Scenes Using
Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics 26, 1
(2007), (article no. 3).

[128] WALD, I., FRIEDRICH, H., KNOLL, A., AND HANSEN, C. Interactive Isosurface
Ray Tracing of Time-Varying Tetrahedral Volumes. IEEE TRANSACTIONS ON
VISUALIZATION AND COMPUTER GRAPHICS (2007), 1727–1734.

[129] WALD, I., FRIEDRICH, H., MARMITT, G., SLUSALLEK, P., AND SEIDEL, H.-P.
Faster Isosurface Ray Tracing Using Implicit KD-Trees. IEEE Transactions on
Visualization and Computer Graphics 11, 5 (2005), 562–573.

[130] WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER, S. G. Ray Tracing
Animated Scenes Using Coherent Grid Traversal. ACM Transactions on Graphics 25,
3 (2006), 485–493. (Proceedings of ACM SIGGRAPH).

145

[131] WALD, I., SLUSALLEK, P., BENTHIN, C., AND WAGNER, M. Interactive Rendering
with Coherent Ray Tracing. Computer Graphics Forum 20, 3 (2001), 153–164.
(Proceedings of Eurographics).

[132] WESTERMANN, R., KOBBELT, L., AND ERTL, T. Real-time Exploration of Regular
Volume Data by Adaptive Reconstruction of Iso-Surfaces. The Visual Computer 15,
2 (1999), 100–111.

[133] WHITTED, T. An Improved Illumination Model for Shaded Display. Communica-
tions of the ACM 23, 6 (1980), 343–349.

[134] WILHELMS, J., AND VAN GELDER, A. Octrees for Faster Isosurface Generation.
ACM Transactions on Graphics 11, 3 (July 1992), 201–227.

[135] WITKIN, A. P., AND HECKBERT, P. S. Using Particles to Sample and Control
Implicit Surfaces. In SIGGRAPH ’94: Proceedings of the 21st annual conference
on Computer graphics and interactive techniques (New York, NY, USA, 1994), ACM
Press, pp. 269–277.

[136] WOODWARK, J., AND QUINLAN, K. The Derivation of Graphics from Volume Mod-
els by Recursive Subdivision of Object Space. In Proceedings Computer Graphics’80
Conference, Brighton, UK (1980), pp. 335–343.

[137] WYLIE, B., MORELAND, K., FISK, L. A., AND CROSSNO, P. Tetrahedral Pro-
jection Using Vertex Shaders. In Proceedings of IEEE Volume Visualization and
Graphics Symposium (October 2002), pp. 7–12.

[138] WYMAN, C., PARKER, S., SHIRLEY, P., AND HANSEN, C. Interactive Display
of Isosurfaces with Global Illumination. IEEE Transactions on Visualization and
Computer Graphics 12 (2006), 186–196.

[139] WYVILL, G., MCPHEETERS, C., AND WYVILL, B. Data Structure for Soft Objects.
The Visual Computer 2 (1986), 227–234.

[140] YAGEL, R., COHEN, D., AND KAUFMAN, A. Discrete Ray Tracing. Computer
Graphics and Applications, IEEE 12, 5 (1992), 19–28.

[141] YOON, S.-E., LAUTERBACH, C., AND MANOCHA, D. R-LODs: Fast LOD-based
Ray Tracing of Massive Models. The Visual Computer (Proceedings of Pacific
Graphics 2006) 22, 9-11 (2006), 772–784.

[142] YU, L., JIN, X., ZHAO, Y., FENG, J., AND PENG, Q. Fast Tessellation for Implicit
Surfaces. Proceedings of the 8th International Conference on CAD/CG, Macao
(2003), 283–287.

[143] ZHOU, Y., AND GARLAND, M. Interactive Point-Based Rendering of Higher-Order
Tetrahedral Data. IEEE Transactions on Visualization and Computer Graphics 12, 5
(2006), 1229–1236.

