
Interactive Isosurface Ray Tracing of Large Octree Volumes

Aaron Knoll Ingo Wald Steven Parker Charles Hansen

Scientific Computing and Imaging Institute, University of Utah
{knolla|wald|sparker|hansen}@sci.utah.edu

Figure 1: Large volume data ray-traced at 5122 using octrees for compression and acceleration. From left to right: (1) LLNL Richtmyer-Meshkov
instability field (shown at timestep 270, with an isovalue of 100). (2) Closer view of the previous scene. (3) Utah CSAFE heptane fire simulation
(timestep 152, isovalue 42). Data is losslessly compressed into an octree volume to occupy less than one quarter the size of the original 3D
array. Our approach permits storage of large data such as the LLNL simulation, and full sequences of medium-size data such as the heptane, in
main memory of consumer machines. Frame rates on an Intel Core Duo 2.16 GHz laptop with 2 GB RAM are 2.4, 1.3, and 3.3 fps respectively.
On a 16-core NUMA 2.4 GHz Opteron workstation, these images render at 17.9, 9.8, and 22.0 fps.

ABSTRACT

We present a technique for ray tracing isosurfaces of large com-
pressed structured volumes. Data is first converted into a lossless-
compression octree representation that occupies a fraction of the
original memory footprint. An isosurface is then dynamically ren-
dered by tracing rays through a min/max hierarchy inside interior
octree nodes. By embedding the acceleration tree and scalar data
in a single structure and employing optimized octree hash schemes,
we achieve competitive frame rates on common multicore architec-
tures, and render large time-variant data that could not otherwise be
accomodated.

Keywords: isosurface, ray tracing, octree, compression, volume

1 INTRODUCTION

Interactive rendering of large volumes is a difficult problem in visu-
alization. With direct volume rendering, GPU memory imposes an
absolute limit on the volume size, and the video bus restricts real-
time rendering of time-variant data. Adaptive isosurface extraction
techniques are fast, but depend on effective processing and stream-
ing of geometry. Furthermore, they render a piecewise linear mesh
that may be topologically different from the true isosurface as de-
fined by the source data. Ray tracing, though traditionally slower,
is not limited to rendering polygonal geometry, and can guarantee
continuous isosurfaces that locally interpolate the input data. Ray
tracing also scales well to large data, particularly when scene com-
plexity is high relative to the number of rays that must be cast to
fill a frame. Finally, rendering on the CPU allows for access to full

system memory, and greater control over hierarchical data struc-
tures than provided by current GPUs. This flexibility enables use of
an adaptive-resolution octree, which we can use as both a natively
compressed data format and an acceleration structure for rendering.

Previous works have applied octrees as acceleration structures
for ray tracing geometry. In modern interactive ray tracers, how-
ever, octrees are unpopular compared to kd-trees, bounding volume
hierarchies or hierarchical grids. For general ray tracing, octrees
lack the nonrecursive traversal of grids, or ability of kd-trees and
BVHs to adapt to overlapping polygonal scene geometry. Volume
rendering, however, guarantees regularly spaced, non-overlapping
voxels, which are directly used to construct cell intersection prim-
itives. Moreover, one can potentially extract cache savings from
traversing the same hierarchical data structure that encapsulates
volume data. Thus, octrees are worth revisiting in the context of
volume ray tracing. Our work involves compressing volumes into
an octree structure, and employing that for ray traversal.

2 RELATED WORK

Mesh Extraction. With the widespread availability of GPU
hardware, a common volume visualization trend has been isosur-
face extraction via marching cubes [14] paired with z-buffer ras-
terization of the resulting mesh. Much work has been done in this
area; one of the first applications of an octree for extraction was by
Wilhelms and Van Gelder [27], though the structure was used only
for acceleration and not compression. Velasco and Torres [23] pro-
pose using an incomplete octree to contain cells of 8 voxels defined
by a single-width, forward differences stencil.

With extraction, it is generally desirable to implement an adap-
tive scheme that generates a view-dependent mesh per frame, e.g.
Livnat et al. [13]. Westermann et al. [26] use an octree for mul-
tiresolution adaptive mesh extraction. Liu et al. [12] actually cast
a ray through an octree to determine visible seed cells for isosur-
face extraction. A major advantage of extraction techniques is that

geometry can be effectively streamed from CPU to GPU, e.g. Mas-
carenhas et al. [16], and extended to remote client-server visualiza-
tion of large datasets.

Direct Volume Rendering. An alternative to isosurfacing is
direct volume rendering (DVR), e.g. Levoy [11], which integrates
rays intersecting a volume. While this process is slow in ray tracing,
it is effective on current GPUs by storing the volume as slices of 2D
textures and computing gradients across sequential cutting planes.
This no longer restricts the user to rendering an isosurface, though
a singular transfer function can approximate a surface if desired.

To address the issue of size, Boada et al. [2] proposed a coarse
octree built upon uniform sub-blocks of the volume, and a memory
paging scheme. This enabled a DVR system to access larger data,
at high cost in performance. Kniss et al. [10] implemented an ef-
ficient similar structure for mesh painting on the GPU, though did
not apply it to large volume data.

Ray Tracing Volumes. Interactive volume isosurfacing was
first realized in a ray tracer by Parker et al. [17], using a hierarchical
grid of macrocells as an acceleration structure. A single ray is tested
for intersection inside a cell of 8 voxels, using a cubic root solver to
find the intersection point on the implicit isosurface that trilinearly
interpolates the cell. Ray tracing permits the full use of large main
memory on supercomputers or workstations. Parallel isosurface ray
tracing was extended by DeMarle et al. [4] to clusters, allowing
arbitrarily large data to be accessed via distributed shared memory.

The recent trend of coherent packets [18, 25] has brought inter-
active ray tracing to the commodity desktop. The ray-cell intersec-
tion test was adapted to exploit SIMD and packets by Marmitt et
al. [15]. Then, using coherent kd-tree traversal, Wald et al. [24]
applied packet ray tracing to isosurface rendering.

Ray Tracing Octrees. Our choice of octree as a container for
volume data is convenient for ray tracing. We can use the same hi-
erarchy as an acceleration structure; octrees have been well-studied
as structures in ray tracing.

Octrees are, in fact, theoretically optimal in terms of fewest
traversal steps, assuming objects are contained uniformly within
cells of the acceleration structure, with no overlap [3]. The combi-
nation of regular, hierarchical nature of the structure affords many
different styles of traversal algorithm. The original Glassner im-
plementation [7] proposed top-down point location testing along
successive octree nodes hit by the ray. Samet [19] modified this
marching procedure to incorporate a neighbor-finding algorithm,
delivering dramatic speedups. Sung [22] proposed a DDA traversal
similar to a hierarchical grid. Finally, Gargantini and Atkinson [6]
implemented a traversal similar to a kd-tree where the ray intersec-
tion with each octant mid-plane is ordered.

Due to their high memory consumption and lack of a clearly
optimal traversal implementation [8], octrees were overtaken by hi-
erarchical grids as general-purpose ray tracing structures [9]. With
coherent ray tracing, kd-trees have in turn come into favor [18, 25].
Nonetheless, the ability to use a single structure for both ray traver-
sal and scalar storage is tempting, and recommends the octree as an
acceleration structure for our application.

Octree Hashing. Of final but important note is previous work
in octree hashing. The general goal is point location: given (x,y,z)
coordinates and the root node of the octree, retrieve a leaf node of
the octree at that location. A related problem is neighbor-finding,
in which we are given a leaf node and asked to find an adjacent
neighboring leaf. While these two algorithms were pioneered by
Glassner [7] and Samet [19] in ray tracing, their application ex-
tends to general use of any regular binary tree (quadtree, octree,
etc.). Frisken and Perry [5] propose an efficient and concise hashing
scheme using binary arithmetic on integer coordinates. We build
upon their work to create our own fast, general-purpose hashing
scheme.

3 RAY TRACING OCTREE VOLUMES

An original goal of this work was to render data already in octree
form from an adaptively-computed simulation. However, as evident
from related work, storing and rendering large 3D array volumes is
difficult for commodity machines with limited memory. We pro-
pose to compress scalar data from a 3D grid into an octree, similar
to the approach of Velasco and Torres [23] but encapsulating actual
voxels as opposed to eight-voxel cells. Then, rather than extract-
ing a mesh and streaming geometry to the GPU, we ray trace the
octree-encapsulated volume directly.

We draw inspiration from previous works that use a min/max
tree to simplify extraction and rasterization [23, 26, 27]. The same
min/max tree can be used as an acceleration structure for ray trac-
ing, similar to the macrocell grid employed by Parker et al. [17]
and implicit kd-tree of Wald et al. [24]. The crux of our work is
employment of a single octree structure, used simultaneously as an
acceleration structure for ray tracing, and as a hierarchical compres-
sion structure for scalar volume data.

Figure 2: Generation of a quadtree from a 2D grid by consolidating
pixels with zero inter-pixel variance. The same principle extends to
3D with our octree, a 3D grid and inter-voxel variance.

3.1 Octree Volume Definition

An octree volume is an adaptive-resolution, hierarchical scalar
field. Scalar values are stored at leaf nodes. At maximum oc-
tree depth, these correspond to the finest available data resolution.
Scalars at less than maximum depth store coarser resolutions, by
factors of 8 per depth level. Interior nodes need not contain scalar
data unless we desire a multiresolution representation. Invariably,
however, interior nodes define the structure of the octree by main-
taining pointers from parents to children.

Volume data could be natively computed and stored in this for-
mat; however for our purposes it is desirable to build an octree vol-
ume from a scalar field in a 3D array. The process of creating an
octree volume is conceptually simple: given input data in the form
of a 3D array, we group regions with low variance and output a hi-
erarchically compressed octree volume. Specifically, we consider
groups of 8 voxels nested within a parent node of the octree. If
these voxels are identical (in lossless compression), or have a com-
bined variance below a desired threshold (lossy compression), we
compute their average and consolidate them into a single node at
the previous depth level of the octree (Figure 2). By recursively
consolidating nodes with low inter-voxel variance, we can build an
octree volume in bottom-up fashion.

3.2 Ray Tracing and Voxel-Cell Duality

The crucial technique of our application is ray intersection with the
octree data itself, thus using the same structure encapsulating the
data to accelerate traversal. Moreover, we wish to use the octree
structure in the same manner in which other isosurface ray trac-
ers [17, 24] employed grids and kd-trees: avoiding traversal and

Figure 3: Ray traversal of the octree. While the octree volume (a)
is given with voxels at the center of each node, we actually seek to
ray trace a field of cells with voxel values at the corners (b). To
accomplish this, we observe a duality between voxels and cells, by
mapping each voxel to the lower-left corner of a cell. Values outside
the octree data (in gray) are defined to be zero. Thus, the ray
traverses interior nodes of the octree, and intersects with a well-
defined cell primitive composed of 8 voxels.

intersection in regions of space that do not contain our desired iso-
value within their min/max range.

Our choice to use the same structure for data and acceleration
comes with a caveat: though our volume data consists of voxels, we
ray trace an isosurface that is defined within cells of 8 voxels. For-
tunately, there exists a dual relationship between voxels and cells.
By logically shifting the position of all scalars backward by half a
unit of voxel width, we re-map our scalar field to cells (Figure 3).

Two options exist to accomplish this mapping in memory. One
could expand each voxel to contain its forward neighbors, thus
store each cell completely. While this would require no additional
searching through a structure to retrieve cell corner values, it re-
quires 8 times the storage of the original volume. With our goal
of ray tracing compressed data, we instead turn to the approach of
Parker et al. [17] which simply retrieves the 7 forward neighbors
of a voxel at intersection time. This permits us to traverse inte-
rior nodes of the octree volume, and intersect with an 8-voxel (Fig-
ure 4), even though the data stored at each leaf node is actually a
single scalar value.

For a volume stored in a 3D array, querying the values of these
neighbors is trivial: simply an array index into memory that is typi-
cally already in cache. For the octree, the process is more intensive.
Here, we must employ point location to retrieve the voxel values of
the forward neighbors. Full top-down point location from the root
would result in a O(log(N)) algorithm. However, with neighbor-
finding techniques we can significantly reduce this lookup cost.
The worst-case complexity of neighbor-finding is O(log(N)), but in
practice the algorithm skews heavily toward the best-case of O(1),
when neighboring voxels lie within the same parent [20]. Even
then, neighbor-finding on octree data must perform competitively
with the O(1) complexity of lookup on uncompressed 3D arrays.
It is readily apparent that octree hashing, specifically neighbor-
finding, is a fundamental algorithmic component of our work.

3.3 Computing the Min/Max Tree

Ray tracing cells defined by forward-neighbors (Figure 4) directly
impacts the construction of our min/max tree. Specifically, a parent
node in the octree must compute the minimum and maximum based
not only its own children, but on voxels forward-adjacent to its chil-
dren as well (Figure 5). Knowing this, one can compute a min/max
pair for that leaf node based on the cell corner values. The min/max
tree is then computed recursively, by finding for each parent node
the minimum and maximum of all children min/max pairs. As we

Figure 4: Retrieving a cell from a neighborhood of voxels. Given an
octree interior node composed of eight voxels (solid blue), we seek
to intersect a leaf node (red outline) consisting of a single scalar
value. We perform neighbor-finding on the octree structure to re-
trieve the forward-neighboring voxels (green). This yields a cell of 8
voxels, which we then use as the intersection primitive from which
we reconstruct the isosurface.

are only concerned with cells at the finest depth of the octree, it
suffices to account for forward-neighbors once at the deepest leaf
level, and thereafter compute each parent’s min/max pair based on
the pairs of the 8 children.

Clearly, storing the min/max tree within the octree data structure
entails some overhead. As compression is a major goal of our work,
it would be unwise to store the min/max pairs of each scalar voxel,
which would demand over three times the storage of the raw octree
data. Instead, one could compute the extrema temporarily at leaf
nodes, and begin storing the min/max tree at depth dmax −1. Omit-
ting the min/max pair at leaf nodes would seem to generate a looser
tree and hurt performance; but in practice, it simply forces us to
compute the minimum and maximum of forward voxels while we
are looking them up via neighbor-finding. Logically, this approach
entails an overhead of one min/max pair for 8 voxels, plus pairs for
other interior nodes of the tree. This suggests approximately a 22%
additional footprint on top of raw scalar octree-compressed data.
While not insubstantial, that seems acceptable given the accelera-
tion capabilities of the min/max structure.

Figure 5: Min/max tree construction from forward neighbors. In
the quadtree case, each leaf node must compute the minimum and
maximum of its cell, hence account for the values of neighbors in the
positive X and Y dimensions (a). This yields a min/max pair for the
leaf node (b). Neighbors can potentially exist at different depths of
the octree, as is the case for at the blue leaf node.

4 IMPLEMENTATION

Our implementation builds on the theoretical foundation laid in the
previous section, with details provided for the octree data format,
point location and neighbor-finding, and the octree traversal itself.
Pseudocode of these algorithms is provided in the appendices; how-
ever it is not necessary to understand our approach.

We chose not to employ SIMD or packets. Given our focus on
large data, we would expect highly-variant scenes and at best mod-
est speedups from coherent techniques. Wald et al. [24] reported
little performance gains from coherent techniques on large data.
Specifically, with comprehensive scenes of large volumes, a pixel
can frequently cover multiple voxels. With agressively coherent
techniques such as frustum-based traversals, this entails much un-
necessary work and potentially a performance decrease over single-
ray techniques. Moreover, we are first interested in how an op-
timized single-ray octree algorithm behaves compared to known
techniques, and the relative performance of octree volumes versus
uncompressed structured data. Coherent octree traversal will likely
be explored in future work, however.

4.1 Data Format

To avoid explicitly storing a full node for each leaf of the octree
volume, we store nodes corresponding to the parent. In this scheme,
at the maximum depth of the octree, all children are guaranteed
to be leaves. Thus, at depth dmax − 1 of the octree, we employ a
separate structure called a cap, consisting simply of 8 scalar values
at dmax. All other interior nodes contain the scalars, min/max pairs,
and pointers for 8 children. We denote any scalar value at non-cap
depth a scalar leaf, although admittedly scalars inside cap nodes
are logically leaves of the tree as well. Scalar leaves are stored as a
single value within within a parent interior node, and are indicated
by a null child pointer. These three types of logical octree node are
illustrated in Figure 6.

Rather than store full pointers, we store a 32-bit child start and
a single-byte offset per child. In early implementations, we used
binary arithmetic masks and bit-counting to determine which nodes
were leaves; in practice however this requires computation (specif-
ically left-shifting by a non-constant) that hampered performance.
Ultimately, we use an array to indicate the offset of each child, or
−1 if that child is a leaf. We use a second array, child scalars, to
contain the value of each child. In this application we only care
about this value when the octant is a scalar leaf at sub-maximum
depth; however future implementations could take advantage of this
inherently multi-resolution approach to provide a level-of-detail
scheme. Details of the structure are provided in Appendix A.

To build our structure, we use a 3D array of rectilinear grid data
as input. We determine N, the smallest power of 2 that encom-
passes the largest dimension of that volume, and choose the maxi-
mum depth dmax = log2(N). We then proceed from the bottom-up,
assigning groups of 8 voxels from the original structured grid to the
caps. Groups of 8 identical voxels are consolidated into a single
scalar leaf of the parent. Pointers from interior nodes to children
are subsequently filled in, until the root node completes the tree.

The min/max tree is computed simultaneously alongside bottom-
up consolidation. As explained in the previous section and in Fig-
ure 5, we must consider not only the 8 child voxels of each par-
ent, but their forward-neighbors as well. As a result, we compute
the minimum and maximum of 27 voxel values, and store these
in our min/max tree. Similarly to how we store a scalar leaf in
child scalars within the parent node, we store the minimum and
maximum values of the eight children within their parent nodes.
This allows us to reject children without actually traversing them,
sparing us cache misses.

Scalar values are retrieved from the original data only for cap
nodes, and used to compute the min/max tree. Afterwards, par-

ent nodes are computed solely based on the values of their chil-
dren. When child voxels consolidate into a parent, the correspond-
ing child nodes are removed. This process continues recursively
until the root node of the octree is completed.

Figure 6: Octree volume format illustrated, showing examples of an
interior node, a cap node, and scalar leaves. A scalar leaf is not
a separate structure, but rather a single value embedded inside its
parent interior node. Similarly, cap nodes are not leaves themselves
but contain eight scalars at the maximal depth of the octree. Thus,
nodes in this structure are the parents of nodes in the logical octree.

4.2 Octree Data Lookup

Voxel-cell mapping manifests the need for a fast neighbor-finding
routine, which brings us to octree hashing. As mentioned before,
we adopt a scheme like that of Frisken and Perry [5], in which oc-
tree cells are defined on the interval [0,2dmax]. Then, given a vector
in this coordinate space, we simply cast its components to integers
and perform point-location from the root node of the octree.

Point Location. Point location is simply top-down search
through the octree; given an initial node, that node’s current co-
ordinates, and the coordinates of the desired destination. With full
point location, the initial node would be the root, with all-zero coor-
dinates. With neighbor-finding, one can begin point-location deep
in the tree. Frisken and Perry [5] propose creating a single-bit mask
corresponding to the current depth, with an offset shift to interleave
the X,Y and Z components. Though theirs is an elegant algorithm,
repeatedly left-shifting bits by arbitrary integers is expensive. Thus,
we precompute child bit depth[d] = 1 << (max depth - depth
- 1) and left-shift by 1 or 2 for X and Y components as necessary.
We then proceed to compute the target child octant with binary &
and integer inequality operations. We &-mask this value with the
destination coordinates and bit-shift by constants corresponding to
the X,Y and Z components. This yields the 0-7 octant offset of the
child, and hence its index. We return the scalar value when we en-
counter a leaf; either a scalar leaf in an interior node, or a voxel
within a cap node. Details can be found in Appendix B.1.

Neighbor Finding. Given an origin node and a coordinate di-
rection to a desired destination node, neighbor-finding entails re-
cursion up the octree until we find a parent containing both nodes.
Frisken and Perry [5] propose using the aforementioned depth mask
with an exclusive “or” to determine immediately adjacent neigh-
bors. However, we find that this no cheaper than simply bitwise &-
masking both source and destination, and performing integer equal-
ity on the results. When a common parent is found, the neighbor-
finding function then relies on point location to find the leaf at the
given destination. The resulting algorithm lets us find potentially
non-adjacent neighbors. To minimize the memory footprint of the
octree, we chose to omit parent pointers from the nodes of our oc-
tree. Effectively, recursing up the octree requires knowledge of
parent indices. We provide this in the ray traversal algorithm it-
self, which fills a parent trace[] array containing the indices of all
parents nodes for a given cap. Pseudocode for neighbor-finding is
given in Appendix B.2.

Figure 7: Single ray traversing an octree node. The traversal algo-
rithm, finds the order of intersection of the X (yellow), Y (blue), and
Z (gray) mid-planes. As we already know the entry (black) and exit
(white) intersection points, we have the exact order of traversal of
child octants.

4.3 Ray-Octree Traversal

Finally, we approach the problem of adapting a ray traversal scheme
to our octree structure and its given hashing scheme. After experi-
menting with the methods of Sung [22] and Samet [19], the fastest
traversal that emerged most resembled the technique of Gargantini
and Atkinson [6]. The traversal is similar to that of a kd-tree, with
splits along the X,Y and Z mid-planes of each node. Gargantini
and Atkinson proposed fully sorting child octants by the order of
their traversal; this is the approach we take (Figure 7). We optimize
it to exploit binary arithmetic on integer octree-space coordinates,
similar to our neighbor-finding and point-location implementations.

Rays are generated in canonical octree space on [0,2dmax], so no
additional transform is required. We first perform a standard ray-
bounding box test to discard rays that never intersect the volume.
This test yields the entry and exit parameters (tenter, texit) for the
root node of the octree, which we pass to our recursive traversal
algorithm (Appendix C).

Interior nodes. The single-ray traversal first retrieves the oc-
tree node given by depth and node index. Then, it computes the
octree-space coordinates of the mid-planes (Figure 7) that divide
the child octants of this node. The computation-heavy section of the
traversal involves evaluating penter and sorting the tcenter inter-
section distances in a separate array axis isects[]. We use that array
to sequentially march across the child octants in the correct order
of their traversal. The algorithm has moderate initial cost associ-
ated with computing and sorting the mid-plane intersections; after-
wards traversing the child octants is trivial. The first child octant is
computed using the same constant shifting and binary-or as point
location; afterwards moving from one octant to the next merely re-
quires inversion of the bitmask (axisbit) along the corresponding
mid-plane axes traversed. Pseudocode is provided in Appendix C.

Our structure requires special traversal routines for scalar leaves
and cap nodes. Exact details are left as an exercise for the reader;
however, both are similar to interior node traversal in Appendix C.

Cap nodes. Cap intersection is identical to that of interior
nodes, except for the block of code checking the isovalue against
the min/max range and recursively calling the child traversal rou-
tine (Appendix C). In its place, we determine the values of the eight
voxels composing the cell (Figure 4). Before resorting to neighbor
finding, we observe that given a voxel of interest intersected by a
ray octree structure, anywhere from 1 to 8 voxels in this neigh-
borhood will lie within the same cap node. Specifically, given the
0-7 child octant child, and a 0-7 direction “dir” to a desired neigh-
bor, we simply check if (child & dir). If this evaluates false, the
neighbor is simply cap.scalars[dir]. If it is true, we proceed with
neighbor-finding to retrieve the value.

Scalar leaves. A scalar leaf is traversed recursively to the
same depth as caps, even though it has no children and homoge-
neous value. When the traversal reaches cap depth, if the traversal
encounters a neighborhood of identical voxels within the scalar leaf,
we know that no isosurface is encountered. Otherwise, at the bor-
ders of the scalar leaf node, we perform neighbor-finding as we do
for cap nodes.

Once we have the eight voxel values, we check that our isovalue
lies within their minimum and maximum. If it does, we perform the
isosurface intersection with the 8 voxels as corners of the cell.

4.4 Isosurface Intersection

To compute the ray-isosurface intersection, we seek a surface inside
a three-dimensional cell with given corner values (Figure 4), such
that trilinear interpolation of the corners yields our desired isovalue.
We can find where a ray instersects this surface by solving a cubic
polynomial. Specifically, the hit position is given by evaluating the
ray at the first positive root of that ray’s polynomial. While the
same recipe is generally used to generate the four coefficients of
the polynomial, various techniques exist for finding the root.

Our implementation uses the same approach as the Neubauer it-
erative root finder proposed by Marmitt et al. [15]. Here, a ray
is iteratively re-parameterized into sub-intervals within the cell in
question, until a sign change is detected within the sub-interval and
a root is found. Compared to the analytical root finder based on
Schwarze’s cubic solver [21] used by Parker et al. [17], it is slightly
faster and yields single-precision, numerically stable results.

4.5 Shading and Filling the Frame Buffer

While ray tracing delivers great flexibility in per-pixel shading
methods, we are mostly interested in fast ray casting of the isosur-
face. Thus, our results show Lambertian shading with no shadows.

The traversal itself does not employ packets; however we use a
packet architecture for ray generation and shading [1]. We do not
defer normal computation due to the prohibitive cost of storing each
cell per ray, or repeating the neighbor-finding process. However,
the packet architecture allows diffuse shading to be performed in
batch, which likely delivers some speedup over a more conventional
single-ray tracer.

5 RESULTS

5.1 Data Compression

Lossless octree compression by consolidating voxels with zero vari-
ance commonly yields a compression factor of 3 to 5, depending on
the spread of isovalues within the data. In general, sparser data yield
higher compression benefit (Table 1). Additional compression can
be achieved by segmenting the data into iso-ranges of interest. For
example, if we are mostly interested in isovalues from 64 to 127
in the Richtmyer Meshkov data, we can clamp scalars outside that
range to those limiting values. As we see in Table 1, this allows
us to compress a complex timestep of the LLNL data into under 2
GB, with full original quality for a sizeable isovalue range. Further-
more, if lossy compression is acceptable, one can more aggressively
consolidate inter-voxel variance. This could be desirable for large
data that varies gradually in space. The effect would be to further
quantize isovalues, and deliver extra compression.

The compression achieved by the octree depends entirely on the
inter-voxel variance of the volume at large. When large regions
of a volume are uniform in value, and “interesting” isosurfaces lie
within a relatively narrow spatial region, octree compression deliv-
ers impressive results. Conversely, volumes with uniformly high
variance yield little consolidation; due to the overhead of the oc-
tree hierarchy they could potentially occupy greater space than the

DATA ISO- TIME SIZE %
RANGE STEP original grid octree volume

heptane full 70 27.5M 3.96M 14
heptane full 152 27.5M 9.5M 33
heptane full 0-152 4.11G 678M 16
llnl full 50 8.0G 687M 8.5
llnl full 150 8.0G 1.89G 25
llnl full 270 8.0G 2.48G 30
llnl 64-127 270 8.0G 1.81G 22
CThead full 14.8M 12.4M 84

Table 1: Compression achieved for various structured data when con-
verted to octree volumes. The second column represents iso-ranges.
Clamping all values outside a given range delivers additional octree
compression, and preserves lossless compression for values within
that range. “Full” indicates the full 0-255 range for 8-bit quan-
tized scalars. Data sizes are in bytes, and include all features of the
octree, including overhead of the embedded min/max tree.

original 3D array. The latter is the case with the UNC CTHead data,
which has inherent measuring noise. Fortunately, large volume data
from fluid or mechanical simulations behave more like the former,
thus benefit greatly from octree volume compression (Table 1).

In existing works, uncompressed 3D array data is often padded
to fit cache lines and exploit memory coherency. In addition, over-
head is required for the separate acceleration structure. The Parker
et al. [17] macrocells entail a modest 4.5% for a macrocell depth of
5: around 400 MB for the LLNL data. The Wald et al. [24] kd-tree
is more demanding, requiring up to 3x the footprint of the uncom-
pressed data. In extreme cases, our octree volume may occupy less
space than simply the acceleration structure of another method.

The process of converting a volume into an octree is demanding.
With a single thread on a 2.16 GHz Opteron, conversion requires
8 seconds for one timestep of 3023 heptane data; and 45 minutes
for an 8 GB LLNL timestep. More prohibitively, our current ap-
proach occupies approximately four times the memory footprint of
the input volume. This necessitates prodigious quantities of RAM,
or physical time using OS virtual memory, to process data such
as the Richtmyer-Meshkov. Implementing a technique that is both
memory and thread efficient remains as future work.

5.2 LLNL Richtmyer Meshkov

We consider the frame-rate performance across several timesteps of
the LLNL Richtmyer-Meshkov instability field, a 2048x2048x1920
fluid dynamics dataset. Using octree compression we are able to
render this volume at multiple frames per second on a 32-bit laptop;
however for an indicator of performance on future multicore CPUs
we benchmark fully interactive rates on a 16-node non-uniform
memory access (NUMA) workstation of 8 dual-core 2.4 GHz AMD
Opterons. For volumes as complex as the LLNL data, it is perhaps
preferable to render a 10242 frame.

SCENE CORE DUO-5122 NUMA-5122 NUMA-10242

50, far 3.6 25.8 7.4
150, far 2.8 20.0 5.7
270, far 2.4 17.5 4.7
50, close 2.1 15.4 4.3
150, close 1.8 14.2 3.6
270, close 1.7 13.6 3.5

Table 2: Frame rates of various time steps of the LLNL Richtmyer
Meshkov data, on an Intel Core Duo 2.16 GHz laptop (2 GB RAM)
and a 16-core NUMA 2.4 GHz Opteron workstation (64 GB RAM).
Refer to Figure 8 for images.

The results on the LLNL data are competitive: even on the Core
Duo laptop, frame rates remain above 2 fps for most camera po-
sitions. Results on the Core Duo at timestep 270 actually exceed

Figure 8: The LLNL Richtmyer-Meshkov data. Various scenes with
an isovalue of 20. Top row, from left to right: timesteps 50, 150,
and 270. Bottom: same timesteps, with a closer camera.

those achieved by DeMarle et al. [4] on a cluster of 32 PC’s, albeit
with a distributed shared memory system. They also perform on par
with the Wald et al. [24] coherent kd-tree system, which reported
around 1 fps on a dual 1.8 GHz Opteron at 640x480 for scenes sim-
ilar to our far camera image.

5.3 Comparison to Hierarchical Grid

To gauge the performance of our octree traversal algorithm, we
compare it to the performance of the Parker et al. [17] hierarchi-
cal grid on the same data. We first consider the performance of
each as an acceleration structure only, with both methods retrieving
their data directly from the uncompressed original 3D array. The
octree performs fairly well, albeit not as fast as the grid. Next, we
compare grid and octree performance when looking up octree data
via neighbor-finding. The octree surprisingly performs better than
it did on array data, likely due to cache behavior on large data. The
grid performs top-down point location for the first lookup, and sub-
sequently uses neighbor-finding; its results on octree data are no-
ticeably slower. The results demonstrate that for rendering octree
data, traversing the same min/max octree encapsulating that data
yields a distinct advantage.

DATA FPS
macrocell grid octree

3D array 18.9 15.7
octree volume 8.0 17.5

Table 3: Octree-grid comparison. Frame-rates for the same scene,
traversed by our octree or a 5-deep hierarchical macrocell grid; using
either uncompressed 3D array data or compressed octree data. Tests
performed on the LLNL data at timestep 270, on a 16-core NUMA
2.4 GHz Opteron workstation. The octree traversal with octree data
performs nearly as fast as the hierarchical grid with uncompressed
array data.

5.4 Scalability

While ray tracing is inherently parallel, complicated memory ac-
cess could potentially compromise scalability on a shared memory
or NUMA architecture. Thus, it is worth demonstrating that our
technique scales well to multiple processors. Figure 9 demonstrates
an efficiency of 91% with 16 processors, which behaves similarly
to uncompressed 3D array volumes using the macrocell grid. Once
again, the macrocell grid performs slightly faster, but without the
benefit of compressed data. We use the parallelization mechanism
of the underlying Manta ray tracing architecture [1], which employs
a dynamically load-balanced, tile-based parallelization scheme.

Figure 9: Scalability. Scalability of our technique on 1,2,4,8,12 and
16 threads, on a 2.4 GHz Opteron NUMA workstation with the LLNL
270 far scene at 5122. The slight change in slope at 8 threads cor-
responds to the use of local NUMA memory by two cores instead of
one. This demonstrates that our octree technique scales as well as
the hierarchical grid with uncompressed data.

5.5 Time-Variant Volumes

One limitation of GPU volume rendering is that, for time-variant
volumes, GPU memory restricts the number of timesteps that can
be stored and rendered in-core. Bus bandwidth prevents a GPU
from streaming textures as effectively as geometry from the CPU.
With octree volumes, we can compress full sequences of medium-
sized time variant data to fit within main memory of a commodity
laptop. The dataset in Figure 10 contains 153 timesteps, each of
which would occupy 27.5 MB for a total of 4.11 GB. With octree
compression, we compress the entire dataset in 678 MB, and render
at multiple frames per second on a Core Duo 2.16 GHz (Table 4).

Octree volumes are useful in that they allow data such as the
LLNL to be visualized on machines with limited main memory.
However, even in a workstation with 64 GB RAM, memory is a pre-
cious commodity. Compression would permit multiple timesteps of
the LLNL data to be stored and rendered interactively in sequence.

TIME STEP CORE DUO-5122 NUMA-5122 NUMA-10242

25 17.0 87.1 29.2
50 11.1 60.3 18.0
75 5.7 36.7 9.6
100 4.1 26.6 6.6
125 3.5 28.0 7.1
150 3.2 23.1 6.3

Table 4: Frame rates for the CSAFE heptane data, on an Intel Core
Duo 2.16 GHz laptop (2 GB RAM) and a 16-core NUMA 2.4 GHz
Opteron workstation (64 GB RAM). Refer to Figure 10 for images.

6 CONCLUSION AND FUTURE WORK

We have presented an octree volume format and traversal technique
that allows for accelerated ray tracing of compressed data. Our
method allows for interactive exploration of large structured data on
multicore computers using a fraction of the original memory foot-
print. Compressing volumes into octrees allows us to visualize data
locally with the same quality as uncompressed arrays. While other
spatial structures could deliver greater compression or faster traver-
sal, the octree strikes a particularly good balance of these goals.

Our traversal is highly dependent on a fast octree hashing
scheme. Our contributions in ray traversal and min/max tree con-
struction are designed for this application alone; however, the point
location and neighbor-finding implementations extend to general
use of a binary hash tree. While benchmarking other applications
of octree hashing falls outside the scope of this paper, our routines
showed speedups over the code proposed by Frisken and Perry [5].

Figure 10: Time-variant volume data. Utah CSAFE heptane simula-
tion, a 3023 volume. The full sequence of 153 timesteps is stored in
678 MB as opposed to 4.1 GB uncompressed, permitting residency
in main memory. We illustrate six timesteps from this sequence, at
an isovalue of 42.

Octree ray tracing is not necessarily the ideal solution for
general-purpose volume rendering. For smaller volume data with
uniformly high isovalue variance, an octree can actually occupy
more space than a 3D array; moreover, the uniform grid and co-
herent kd-trees would likely outperform the octree for such scenes.
However, in these cases a GPU volume renderer would generally be
preferable to an interactive ray tracing solution. Thus, our method
is primarily useful for large volumes, or medium volumes with nu-
merous timesteps. Moreover, as large data is often the impetus for
ray tracing volumes in the first place, this method is highly appro-
priate for its particular application.

Future work will involve exploiting the multiresolution nature
of the octree to provide a dynamic, view-adaptive level of detail
scheme. Such a system would reduce the complexity and variance
of the overall scene. In conjunction with coherent packet traver-
sal, this could deliver dramatic speedups, as coherent methods have
shown order-of-magnitude better performance than single-ray on
low-variance scenes. Rather than isosurfacing, we might experi-
ment with simplified direct volume rendering techniques to achieve
smoother results.

Overall, hardware trends favor ray tracing large volumes using
methods similar to this. Doubling each dimension of a 3D grid
entails a factor of eight increase in memory footprint; this all but
guarantees that main memory will continue to be a scarce resource
in large volume rendering. Moreover, as multicore CPUs become
increasingly prevalent, the degree of interactivity on mobile ma-
chines will rise to the levels delivered by today’s shared-memory
workstations.

7 ACKNOWLEDGMENTS

The authors would like to thank Mark Duchaineau of Lawrence
Livermore National Laboratory for the Richtmyer-Meshkov data,
and the University of Utah Center for Simulation of Accidental
Fires and Explosions (CSAFE) for the heptane simulation data. We
also thank the Center of Excellence for Interactive Ray Tracing and
Photo Realistic Vision, for use of the Manta software architecture.
Special thanks go to James Bigler and Abe Stevens, as Manta con-
tributors who have facilitated the integration of this work into the
software. Also, we thank Andrew Kensler, Thiago Ize, Vincent
Pegoraro, Guo-Shi Li, and other members of SCI who have con-
tributed thoughts to the project. This work has been supported by
DOE VIEWS.

REFERENCES

[1] James Bigler, Abe Stephens, and Steven G. Parker. Design for Parallel
Interactive Ray Tracing Systems. Technical Report UUSCI-2006-027,
Scientific Computing and Imaging Institute, University of Utah, 2006.

[2] Imma Boada, Isable Navazo, and Roberto Scopigno. Multiresolution
Volume Visualization with a Texture-Based Octree. The Visual Com-
puter, 17(3), 2001.

[3] Herve Bronnimann and Marc Glisse. Cost-optimal trees for ray shoot-
ing. In Proceedings of the Latin American Symposium on Theoretical
Informatics, 2004.

[4] David E. DeMarle, Steve Parker, Mark Hartner, Christiaan Gribble,
and Charles Hansen. Distributed Interactive Ray Tracing for Large
Volume Visualization. In Proceedings of the IEEE Symposium on Par-
allel and Large-Data Visualization and Graphics (PVG), pages 87–94,
2003.

[5] Sarah F. Frisken and Ronald N. Perry. Simple and Efficient Traversal
Methods for Quadtrees and Octrees. Journal of Graphics Tools, 7(3),
2002.

[6] Irene Gargantini and H.H. Atkinson. Ray Tracing an Octree: Numer-
ical Evaluation of the First Interaction . Computer Graphics Forum,
12(4):199–210, 1993.

[7] Andrew S. Glassner. Space Subdivision For Fast Ray Tracing. IEEE
Computer Graphics and Applications, 4(10):15–22, 1984.

[8] Vlastimil Havran. A Summary of Octree Ray Traversal Algorithms.
Ray Tracing News, 12(2), 1999.

[9] Ben Hutchison, Eric Haines, Hanan Samet, and Erik Jansen. Octree
Traversal and the Best Efficiency Scheme. Ray Tracing News, 12(1),
1999.

[10] Joe M. Kniss, Aaron Lefohn, Robert Strzodka, Shubhabrata Sengupta,
and John D. Owens. Octree Textures on Graphics Hardware. In Pro-
ceedings of ACM SIGGRAPH 2005 Conference Abstracts and Appli-
cations, August 2005.

[11] Marc Levoy. Efficient Ray Tracing for Volume Data. ACM Transac-
tions on Graphics, 9(3):245–261, July 1990.

[12] Zhiyan Liu, Adam Finkelstein, and Kai Li. Progressive View-
Dependent Isosurface Propagation. In Proceedings of the Joint
Eurographics-IEEE TVCG Symposium on Visualization (VisSym 01),
pages 223–232, 2001.

[13] Yarden Livnat and Charles D. Hansen. View Dependent Isosurface
Extraction. In Proceedings of IEEE Visualization ’98, pages 175–180.
IEEE Computer Society, October 1998.

[14] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm. Computer Graphics
(Proceedings of ACM SIGGRAPH), 21(4):163–169, 1987.

[15] Gerd Marmitt, Heiko Friedrich, Andreas Kleer, Ingo Wald, and
Philipp Slusallek. Fast and Accurate Ray-Voxel Intersection Tech-
niques for Iso-Surface Ray Tracing. In Proceedings of Vision, Model-
ing, and Visualization (VMV), pages 429–435, 2004.

[16] Ajith Mascarenhas, Martin Isenburg, Valerio Pascucci, and Jack
Snoeyink. Encoding Volumetric Grids For Streaming Isosurface Ex-
traction. In 3D Data Processing, Visualization and Transmission,
pages 665–672, September 2004.

[17] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and
Peter-Pike Sloan. Interactive Ray Tracing for Isosurface Rendering.
In IEEE Visualization, pages 233–238, October 1998.

[18] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-Level
Ray Tracing Algorithm. ACM Transaction of Graphics, 24(3):1176–
1185, 2005. (Proceedings of ACM SIGGRAPH).

[19] Hanan Samet. Implementing ray tracing with octrees and neighbor
finding. Computers and Graphics, 13(4):445–60, 1989.

[20] Hanan Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley Publishing Company, 1990.

[21] Jochen Schwarze. Cubic and Quartic Roots. In Andres Glassner,
editor, Graphics Gems, pages 404–407. Academic Press, 1990.

[22] Kelvin Sung. A DDA octree traversal algorithm for ray tracing. In
Werner Purgathofer, editor, Eurographics ’91, pages 73–85. North-
Holland, September 1991.

[23] Francisco Velasco and Juan Carlos Torres. Cell Octree: A New Data
Structure for Volume Modeling and Visualization. VI Fall Workshop

on Vision, Modeling and Visualization, pages 665–672, 2001.
[24] Ingo Wald, Heiko Friedrich, Gerd Marmitt, Philipp Slusallek, and

Hans-Peter Seidel. Faster Isosurface Ray Tracing using Implicit KD-
Trees. IEEE Transactions on Visualization and Computer Graphics,
11(5):562–573, 2005.

[25] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner.
Interactive Rendering with Coherent Ray Tracing. Computer Graph-
ics Forum, 20(3):153–164, 2001. (Proceedings of Eurographics).

[26] Rüdiger Westermann, Leif Kobbelt, and Tom Ertl. Real-time Explo-
ration of Regular Volume Data by Adaptive Reconstruction of Iso-
Surfaces. The Visual Computer, 15(2):100–111, 1999.

[27] Jane Wilhelms and Allen Van Gelder. Octrees For Faster Isosurface
Generation. ACM Transactions on Graphics, 11(3):201–227, July
1992.

.

A OCTREE VOLUME STRUCTURE

An octree volume consists of the following structure: interior nodes
are stored in an array indexed by depth, from root depth 0 to depth
dmax − 2. “Cap” nodes exist at dmax − 1. For the hashing scheme,
we cache an array, child bit depth[d] = 1 << max depth - d - 1.

struct OctreeData

{

OctNode* nodes[max_depth];

OctCap* caps;

int child_bit_depth[max_depth];

};

struct OctNode

{

T child_scalars[8]; //scalar leaves

T child_mins[8]; //min/max tree

T child_maxs[8];

unsigned int child_start; //base pointer to children

char child_offset[8]; //offset from base

};

struct OctCap

{

T scalars[8];

};

B OCTREE HASHING

Our octree hash scheme consists of accelerated routines for point
location and neighbor finding in canonical octree coordinates,
[0,dmax]. While binary arithmetic on integers is not a new hash-
ing scheme [7, 5], we propose caching the depth masks to avoid
costly arbitrary left shifts, and then shifting by constants. The fol-
lowing functions may be considered as members of OctreeData in
Appendix A above.

B.1 Point Location

Point location algorithm. We use the precomputed array,
child bit depth[] (Appendix A), to avoid arbitrary left-shift oper-
ations.

T point_locate(Vec3i dest, int depth, int index)

{

for(;;)

{

OctNode& node = nodes[depth][index];

int child_bit = child_bit_depth[depth];

int child = (dest.x & child_bit!=0) << 2

|| (dest.y & child_bit!=0) << 1

|| (dest.z & child_bit!=0);

if (node.child_offset[child] == -1)

{

return node.child_scalars[child];

}

else if (depth == max_depth - 2)

{

index = node.child_start + node.child_offset[child];

child = (dest.x & 1)<<2 |

(dest.y & 1)<<1 |

(dest.z & 1);

return caps[index].child_scalars[child];

}

index = node.child_start + node.child_offset[child];

depth++;

}

return 0;

}

B.2 Neighbor-Finding

Neighbor finding algorithm. Given start coordinates, destination
coordinates, and the octree depth of the start coordinates, we back-
trace up the octree and then perform point location to retrieve a
neighbor. parent trace contains pointers to nodes, so we only need
store 1-way pointers in our tree.

T neighbor_find(Vec3i start, Vec3i dest, int depth,

int parent_trace[])

{

for(int up=depth; up >= 0; up--)

{

int child_bit = child_bit_depth[up];

if ((dest.x & child_bit) == (start.x & child_bit)

&& (dest.y & child_bit) == (start.y & child_bit)

&& (dest.z & child_bit) == (start.z & child_bit)

return point_locate(dest, up, parent_trace[up]);

}

//root node

if ((dest.x & child_bit) == (start.x & child_bit)

&& (dest.y & child_bit) == (start.y & child_bit)

&& (dest.z & child_bit) == (start.z & child_bit)

return point_locate(dest, 0, 0);

return 0;

}

C RAY-OCTREE TRAVERSAL

Pseudocode for a ray traversal through an interior node of an octree
volume. For brevity, some operations are omitted; those are brack-
eted with a brief description. Traversals of scalar leaf nodes and
cap nodes operate similarly.

bool traverse(Ray ray,

int depth, uint node_index,

int parent_trace[], Vec3f cell,

float tenter, float texit)

{

OctNode& node = nodes[depth][node_index];

parent_trace[depth] = node_index;

int child_bit = child_bit_depth[depth];

Vec3f center = Vec3f(cell | Vec3i(child_bit));

Vec3f tcenter = (center ray.orig) / ray.dir;

Vec3f penter = ray.orig + ray.dir * tenter;

Vec3i child_cell = cell;

Vec3i tc;

tc.x = (penter.x >= center.x);

tc.y = (penter.y >= center.y);

tc.z = (penter.z >= center.z);

int child = tc.x << 2 | tc.y << 1 | tc.z;

child_cell.x |= tc.x ? child_bit : 0;

child_cell.y |= tc.y ? child_bit : 0;

child_cell.z |= tc.z ? child_bit : 0;

Vec3i axis_isects;

{perform 3-way minimum of tcenter such that axis_isects

contains the sorted intersection with the X,Y,Z

octant mid-planes}

const int axis_table[] = {4,2,1};

float child_tenter = tenter;

float child_texit;

for({all valid axis_isects[i] while tcenter < texit} ; i++)

{

child_texit = min(tcenter[axis_isects[i]], texit);

if (isovalue >= node.child_mins[child] ||

isovalue <= node.child_maxs[child]){

//traverse scalar leaf, cap or node

if (node.child_offset == -1)

if (traverse_scalar_leaf(...)) return true;

else if (depth == max_depth -- 2)

if (traverse_cap(...)) return true;

else

if (traverse(ray,depth+1,parent_trace,

child_cell, child_tenter, child_texit))

return true;

}

if (child_texit == texit)

return false;

child_tenter = child_texit;

axisbit = axis_table[axis_isects[i]];

if (child & axisbit){

child &= ~axisbit;

child_cell[axis_isects[i]] &= ~child_bit;

}

else{

child |= axisbit;

child_cell[axis_isects[i]] |= child_bit;

}

}

return false;

}

