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Abstract

Ab initio molecular dynamics (AIMD) simulations are increasingly useful in
modeling, optimizing and synthesizing materials in energy sciences. In solving
Schrödinger’s equation, they generate the electronic structure of the simulated atoms
as a scalar field. However, methods for analyzing these volume data are not yet
common in molecular visualization. The Morse-Smale complex is a proven, versa-
tile tool for topological analysis of scalar fields. In this paper, we apply the discrete
Morse-Smale complex to analysis of first-principles battery materials simulations.
We consider a carbon nanosphere structure used in battery materials research, and
employ Morse-Smale decomposition to determine the possible lithium ion diffusion
paths within that structure. Our approach is novel in that it uses the wavefunction
itself as opposed distance fields, and that we analyze the 1-skeleton of the Morse-
Smale complex to reconstruct our diffusion paths. Furthermore, it is the first appli-
cation where specific motifs in the graph structure of the complete 1-skeleton define
features, namely carbon rings with specific valence. We compare our analysis of
DFT data with that of a distance field approximation, and discuss implications on
larger classical molecular dynamics simulations.

1 Introduction

First principles (ab initio) simulations of molecular structures, employing density
functional theory (DFT) or Hartree-Fock (HF) methods, are increasingly common
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in materials science applications. Unlike classical dynamics simulations, they solve
the Schrödinger equation to more accurately determine molecular geometry. They
compute the wavefunction, the electronic structure of the molecules they simulate,
which consists of scalar fields of component molecular orbitals. Most analysis of
such simulations is carried out on the resulting molecular geometry as opposed to
the wavefunction. However, the wavefunction offers advantages: it is the closest
we can come to “ground truth” concerning the structure of the molecule, and its
volumetric representation can be used for topological analysis of scalar fields.

We consider an application in materials science: determining the charge capacity
of simulated battery anode structures. The material in question is a sphere of carbon
sculpted from a solid block of graphite, heated to a high temperature (2500 Kelvin)
via molecular dynamics, and then annealed. The resulting “nanosphere” resembles
ordinary graphitic soot, but possesses numerous channels that can accommodate
lithium ion electrolyte. These channels form as a result of defects in the graphite
structure, which in turn change the coordination number (valence) of their compo-
nent carbon atoms. Higher average coordination number indicates more defect sites,
and structures that are better-suited as battery anodes. While effective, simple statis-
tical analysis does not fully quantify the charge capacity of these structures. To do
that, we must understand the paths that lithium ions may diffuse through inside the
carbon nanosphere structure.

The goal of this work is to use Morse-Smale analysis to tackle this problem,
analyzing the scalar field of the wavefunction itself from DFT computation. We
compute a 1-skeleton of the Morse-Smale complex to determine likely ion diffu-
sion paths in the nanosphere, identifying defect sites in the carbon structure through
which lithium ions may pass. We present a model for these features, and exam-
ine statistical properties of the topology to establish a methodology to analyze such
data. We apply this technique to extract and compare results from the DFT-computed
wavefunction to those of a distance field.

2 Background

Our scientific goal is to examine the structure of carbon nanospheres throughout the
heating and annealing process, and analyze the suitability for the resulting structure
as a battery anode material. To do this at a relatively small scale (hundreds of atoms),
but ensure higher physical accuracy, we conduct an ab initio molecular dynamics
(AIMD) simulation, specifically DFT computation using the VASP code [18].

In experiments, the monodispersed carbon nanospheres that are used for a sus-
tainable lithium energy storage electrode can be synthesized effectively by auto-
genic reactions of hydrocarbon precursors (e.g. polyethylene from plastic waste,
etc.) at high temperature and pressure, enabling synthesis of a battery anode from
recycled materials [29]. From the reported studies, the unique carbon microstruc-
tures (i.e. layered graphitic motifs and sufficient carbon defects) are critical in pro-
moting lithium diffusion into and out from the interior of carbon nanospheres for a
practical lithium ion battery operations (i.e. capacity, voltages and charging rates).
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Fig. 1 Left: the symmetric feature of the energy barriers are due to the Li ion diffusion into and
out of the center of n-membered ring at a single graphene sheet. Right: The Li ion diffusion energy
barrier (in eV) obtained from DFT calculation.

In order to understand how Li ion can be diffused into or from (or intercalated into
or de-intercalated from) carbon microstructures, the Li ion diffusion energy barriers
along the diffusion paths within the carbon microstructures of an electrode have to
be determined at atomistic level. To accurately quantify the Li ion diffusion dynam-
ics, DFT nevertheless remains the preferred choice in theoretical descriptions at the
atomistic level. In addition to computing physically accurate atom geometry, solv-
ing the Schrödinger equation explicitly generates the electronic structure (electron
or charge density cloud), volume data on which we can apply topological analysis.

From the reported studies [29], the interlayer Li diffusion paths are most probably
determined by the presence of large n-membered ring (e.g. n > 6) defect sites due
to the extensive thermal graphitization and significant carbon dislocations during
the high temperature synthesis of carbon. To model the anticipated Li ion diffusion
energy barrier through the n-membered rings, the atomistic simulation is carried out
based on DFT calculations with plane wave basis sets as implemented in the VASP
code [18]. All the DFT calculations were spin-polarized and carried out using the
gradient corrected exchange-correlation functional of Perdew, Burke and Ernzerhof
(PBE) [26] under the projector augmented wave (PAW) method, with plane wave
basis sets up to a kinetic energy cutoff of 400 eV. For a Li-ion diffusion barrier, as
the size of the n-membered ring increases, the barrier for a Li ion to diffuse through
decreases significantly, as confirmed by the DFT study in this work (Figure 1) and
previous studies [35]. For the larger 9-membered ring, the Li diffusion energy barrier
is even smaller, i.e. 0.15 eV, slightly smaller than the reported value (i.e. 0.5 eV) in
carbon nanotubes [24].

In addition to large n-membered rings of carbon defects, the Li diffusion is
also facilitated through the intra-layer in-plane diffusion within the layered graphite
present in carbon nanospheres [19]. From the computed free energy surface explored
by our CPMD metadynamics simulation, we found the Li in-plane diffusion barrier
at arbitrary direction in between the graphitic layers is comparatively small (i.e. 8
kcal/mol = 0.35 eV), which is consistent with the reported values (i.e. 0.26 – 0.50
eV) [30]. Thus, it is reasonable to assume that the diffusion dynamics of Li ions are
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driven by inter-layer diffusion through n-membered rings (referred to as defects in
the perfect C-6 carbon ring structure) as well as intra-layer movement.

We can pair these insights with topological analysis to identify Li-accessible tun-
nels inside the nanosphere, The approach of our work is to use the Morse-Smale
complex to define an initial skeleton of minima and 1-saddles, count the size of car-
bon rings (number of maxima) adjacent to that skeleton to determine which tunnels
an ion would likely pass through, and thus extract the diffusion path skeleton. More-
over, the 1-skeleton represents both inter and intra-layer diffusion paths, making it
well-suited for the analysis of this particular structure.

2.1 Morse-Smale Complex

The following provides a brief introduction to the Morse-Smale complex, which
we use to identify features in the DFT data, and topological simplification, used to
study the function at multiple scales and reason about the stability of the identified
features.

Morse functions and the Morse-Smale (MS) complex. Let f be a real-valued
smooth map f : M→ R defined over a compact d-manifold M. A point p ∈ M
is critical when |∇ f (p)| = 0, i.e. the gradient is zero, and is non-degenerate when
its Hessian (matrix of second partial derivatives) is non-singular. The function f
is a Morse function if all its critical points are non-degenerate and no two critical
points have the same function value. In this case the Morse Lemma states that there
exists local coordinates around p such that f has the following standard form: fp =
±x2

1± x2
2 · · · ± x2

d . The number of minus signs in this equation gives the index of
critical point p. In three-dimensional functions, minima are index-0, 1-saddles are
index-1, 2-saddles are index-2, and maxima are index-3.

An integral line in f is a path in M whose tangent vector agrees with the gradient
of f at each point along the path. The integral line passing through a point p is the
solution to ∂

∂ t L(t) = ∇ f (L(t)),∀t ∈ R, with initial value L(0) = p. Each integral
line has an origin and destination at critical points of f , at t = ±∞. Ascending and
descending manifolds are obtained as clusters of integral lines having common ori-
gin and destination respectively. The descending manifolds of f form a cell complex
that partitions M; this partition is called the Morse complex. Similarly, the ascending
manifolds also partition M in a cell complex. A Morse function f is a Morse-Smale
function if ascending and descending manifolds of its critical points only intersect
transversally. An index-i critical point has an i-dimensional descending manifold
and a (d− i)-dimensional ascending manifold. The simply-connected cells formed
by the intersections of ascending and descending manifolds form the cells of the
Morse-Smale (MS) complex. A three-dimensional MS complex is a cell complex
where cells of dimension zero through three are called nodes, arcs, quads, and crys-
tals, respectively. Each arc is a 1-manifold bounded by two nodes, 0-manifolds, each
quad is a 2-manifold bounded by arcs, and finally, each crystal of the MS complex
is bounded by quads. Cells of the MS complex satisfy several combinatorial proper-
ties: end points of arcs are critical points whose indices differ exactly by one; quads
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contain exactly four arcs on their boundary (although some might be repeated); and
the closure of the boundary of a crystal contains a collection of quads, arcs, saddles
and exactly one minimum and one maximum. The 1-skeleton of the MS complex is
formed by the nodes and arcs, representing much of the connectivity information of
the complex.

Topological simplification. A function f is simplified by repeated cancellation of
pairs of critical points connected by an arc in the MS complex. The local change in
the MS complex indicates a smoothing of the gradient vector field and hence of the
function f . Forman [9] showed how a cancellation could be achieved in a discrete
gradient field by reversing the gradient path between two critical cells. Gyulassy
et al. [12] provided a full characterization of cancellation operations in terms of
how they affect the connectivity of the complex and the geometry of the ascend-
ing/descending manifolds, operating solely on the combinatorial structure of the
complex. Each cancellation operation removes a pair of critical points, reconnects
arcs of the complex, and merges their ascending and descending manifolds with
their neighbors geometry. Repeated application of cancellations in order of persis-
tence, the absolute difference in function value of the canceled critical points, results
in a hierarchy of MS complexes and a multi-resolution representation of features.
Gyulassy et al. [13] described data structures and search algorithms to reconstruct
the ascending and descending manifolds of any critical point at any stage of simpli-
fication, allowing rapid browsing of the extracted features at multiple scales.

3 Related Work

We review works that are most relevant to our proposed techniques. Most of the
geometric and topological methods discussed here originate from molecular shape
analysis, in particular, in the detection of protein cavities. A cavity is an empty space
enclosed by the molecule, and it includes voids (without openings that allow access
to the surrounding solvent), pockets and tunnels (with openings). A tunnel connects
multiple surface sites through pathways; while a pocket connects a site in the inte-
rior with a surface site. We refer the reader to Lidow et al. [23, 22] for illustrations
of these scenarios. In our case diffusion paths correspond to the pockets and tun-
nels of a given molecule. Most of the geometry-based cavity detection algorithms
rely on the computation of Voronoi diagram, its dual graph Delaunay triangulation,
weighted Delaunay triangulation or its close relative alpha shapes. Because of the
large number of work in the field, we include a few significant ones.

Voronoi diagram-based techniques that have a special focus on the analysis and
visualization of tunnels include works in [23, 22], tools MOLE [27] and CAVER
[28], where the work in [22] detects structures from a molecular dynamics trajectory.

Alpha shapes are closely related to alpha complexes which are subcomplexes
of the Delaunay triangulation of the point set. Alpha shape theory [6, 8] has been
used for the detection of protein cavities [7, 20, 21] and has been featured in tools
such as CAST [20, 5], Proshape [17], CAVER [28] and MolAxis [34]. A related
concept that is similar to Alpha shape, but better in terms of remaining connected
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for all resolutions, called Beta shape [15], has been proposed to define cavities [16]
in molecules.

A few works exist that employ Morse complex or Morse-Smale complex in shape
analysis. Sousbie used Morse complexes to compute filamentary structures in of the
cosmic web [31]. Topological spines [4], used as visual representations that pre-
serve the topological and geometric structure of a scalar field, have been developed
based on the extraction of sparse subsets of the Morse-Smale complex. The works
in [3, 25] decompose the protein surfaces into segmented features for the analysis
of protein-protein interactions. However these works are restricted to study surface
geometry of the proteins, while our proposed technique focuses on both surface and
interior structures. On the other hand, Bajaj et. al. [2] model structural features of
molecules by computing stable and unstable manifolds of the critical points of the
distance function induced by the iso-surface. Their work is most relevant to our
algorithm in a sense that both algorithms rely on properties associated with sta-
ble and unstable manifolds of critical points of distance functions to the surface of
the molecule; and both detect pockets and tunnels simultaneously. The work in [2]
forms pockets and tunnels by clustering and merging adjacent stable manifolds of
critical points based on their scalar value; such an approach is not applicable to diffu-
sion in carbon nanospheres, since, as we show in section 6, there is no scalar thresh-
old (either of the DFT field or distance field) that distinguishes between ring struc-
tures of different valences. The full MS complex has been used to identify atomic
structures on volume data, identifying the atoms and bonds in a C4H4 molecule and
orbitals of a hydrogen atom [14]. Günther et al. [10] refined topological analysis of
electron density, by using a derived gradient for identification of both covalent and
non-covalent bonds.

In the chemistry literature, relatively little analysis is carried out on the wave-
function field itself, as opposed to atom geometry. Bader analysis [1] decomposes
charge density into regions of uniform gradient each associated with one atom, for
example using Voronoi partitioning. It is similar to Morse theory in that it uses gra-
dient descent to partition the scalar field, but would not help in identifying tunnels
between 1-saddles and minima.

Our proposed technique uses persistence simplification to separate noise from
features, and similar simplification algorithms have been employed to simplify sur-
face features based on MSCs [3, 25, 4, 33] or alpha shapes [32].

4 Li Diffusion Paths in DFT Data

In this section, we first discuss our approach to handling DFT data, then present
the model for identifying features in such data, defining features according to the
structure of the MS complex. Next, we present justification and validation for the
model, analysing the stability of the extracted features. Finally, we discuss details
of the methodology, corner cases, and remaining ambiguities.
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Fig. 2 Modification of DFT data to restore maxima at the nuclei. Left: original DFT data F . Center:
RDF impulses G. Right: Augmented F ′ = sup{F,G}.

4.1 Preparation of DFT Data

DFT simulations employ a variety of different functionals and strategies to maxi-
mize accuracy and reduce computation time. As interior orbitals (1s, 2s) typically
remain static throughout a simulation, it is common to ignore their computation en-
tirely. A side-effect of this optimization is that electron density is ill-defined at the
nuclei: whereas the true wavefunction (e.g., obtained through x-ray crystallography
or computation of all orbitals) would exhibit maxima at the atomic nuclei, our data
instead show empty space (minima) at the nuclei.

As our analysis relies entirely on pre-existing connections within the MS com-
plex to define the skeleton, it is challenging to correct this phenomenon post facto.
We found it simplest to modify the scalar field itself to restore maxima at the carbon
nuclei. To do this, we created a field of summed radial distance functions G = ∑gi,
gi(d) = Z exp(−(d/r)2), where Z=6 is the atomic number (maximum possible
electron density) and r = .36 Ȧngstrom is half the covalent radius of sp2 carbon
(graphite). Then, given our DFT all-electron density field F , our augmented field is
F ′ = sup{F,G}. This allows us to correctly identify maxima at the nuclei in the MS
complex, and is shown in Figure 2.

We use standard techniques from discrete Morse theory to compute an initial MS
complex [11]. Our analysis entails every component of the MS complex taken to-
gether, necessitating coherent simplification to remove low-persistence features and
artifacts due to discretizing a function onto a mesh. One challenge in using DFT
data is the exponential nature of the electron density as a function of distance from
an atom. For instance, the features of the 732-atom nanosphere dataset we use in our
results span 9 orders of magnitude; the difference between minima and 1-saddles,
and 2-saddles and maxima occurs on the scales of 10−4 and 102, respectively. To
obtain a coherent view of the structure, we apply a straightforward strategy of com-
puting the MS complex on the DFT field, but then rescaling critical points using the
log function before applying persistence simplification.
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4.2 Theoretical Model for Analyzing Electron Density

We follow a standard model relating the critical points of electron density to various
features of the carbon nanosphere. For each of the following features, we identify
the component of the MS complex that corresponds to it, and illustrate the features
in figure 3.

Fig. 3 The full MS com-
plex (a) of the 732-atom
nanosphere provides the
structure for identifying
features. Carbon atoms
(red spheres) and covalent
bonds (yellow arcs) are
identified as maxima,
high-valued 2-saddles,
and the arcs between
them (b). Rings are the
boundary of ascending
2-manifolds emanating
from 1-saddles (c), and
rings with valence > 6
are identified as defect
sites (d). Free Li ion
diffusion paths (e) are
the 1-skeleton connecting
voids (blue spheres) with
low density value.

Carbon atoms: It is well-understood in chemistry that the electron density reaches
a maximum at atom locations, and in our model, we use maxima of the electron
density field as a proxy for carbon atoms.
Covalent bonds: The covalent bonds between carbon atoms also appear as rela-
tively high values, and typically a high-valued 2-saddle connecting two maxima in
the 1-skeleton of the MS complex indicates a bond.
Voids: Voids are minima of the electron density field, and represent locally minimal
energy configurations. In our model we identify voids as low-valued minima in the
MS complex.
Free Li diffusion path: The intra-layer in-plane regions are characterized by re-
gions where Li ions have a comparatively small energy barrier to diffusion, corre-
sponding to low electron density values. We model this as the network connecting
voids in the 1-skeleton corresponding to very low electron densities.
N-member rings: The bonds and atoms in a Carbon ring form a circular ridge-line
in space, that forms the boundary of a disk. The disk itself separates low-valued
voids, and corresponds to the ascending 2-manifold emanating from a 1-saddle in
the MS complex. To account for possible pinching of the boundary of a disk, we
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compute the valence of a ring as the number of carbon atoms in the largest simple
cycle on the boundary.
Defect sites: Defect sites, allowing Li to diffuse across layers, are a carbon rings
with valence > 6, and are identified as 1-saddles that are not part of free Li diffusion
paths and are also connected to > 6 bond 2-saddles in the MS complex.

4.3 Model Validation: Feature Stability

The model presented in section 4.2 is missing some key information needed for
practical feature extraction: the MS complex must first be simplified to a user-
supplied threshold, a second threshold is needed to identify the 2-saddles corre-
sponding to covalent bonds, and finally, a third threshold determines free Li ion
diffusion paths. Ideally, one can arrive at stable thresholds for each of these without
a priori knowledge, by simply examining the distribution and persistence of fea-
tures of the computed MS complex. The goal is to be able to identify such features
and then relate them back to what we know about the data, as a strong validation of
the approach. In the following, we describe this methodology as it is applied to the
732-atom DFT data.

We begin with identification of Carbon atoms; in our model, they are maxima
of the MS complex. Figure 4(a) shows the count of critical points of the MS com-
plex as a function of persistence simplification threshold. A large stable threshold
is identified in the range [0.03 : 0.6]. In our example data, we find exactly 732 high-
valued maxima in this threshold range, corresponding exactly to the carbon atoms
in the atomistic simulation. For simplification thresholds less than 0.03, low-valued
maxima appear on some of the covalent bonds, and for thresholds greater than 0.6,
high-valued maxima begin to merge together.

Next, we validate our model for high-valued 2-saddles representing covalent
bonds by finding a stable threshold that distinguishes between 2-saddle-maximum
arcs of the complex. In figure 4(b), we show each arc of the MS complex as a
point, with coordinates given by the lower and upper critical points of the arc. A
clear structure is apparent from this figure, notably the separation of high-valued
2-saddle-maximum arcs from the other arcs in the dataset. Selecting the 2-saddle-
maximum arcs in the box 2-saddle= [−0.05 : 2.0] provides a stable threshold, that
corresponds to the covalent bonds in the data. This is furthermore shown in fig-
ure 4(c) to be stable for the same simplification threshold range as the carbon atoms,
yielding exactly 1110 covalent bonds in these threshold ranges.

The rings that do not allow Li ions to diffuse, those with valence ≤ 6, can be
identified by the count of 2-saddles corresponding to covalent bonds. Intuitively,
these are given by 1-saddles at some simplification threshold. The count of barrier
rings as a function of persistence is shown in figure 4(d). This plot indicates that
a smaller stable threshold, as 1-saddles are lost after a persistence simplification
threshold of 0.11.
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Fig. 4 Analysis of the feature set encoded by the MS complex leads to insights about the loca-
tion and stability of features. Counting critical points as a function of persistence simplification
threshold (a) shows that carbon atoms can be extracted in a stable manner. Plotting each arc of
the complex with a point whose coordinates are the values of the critical points (b) reveals that the
2-saddle-maximum connections corresponding to covalent bonds are well separated from other fea-
tures, and furthermore stable with respect to simplification (c). Counting the number of n-valence
rings reveals that barrier 1-saddles are stable in a smaller range of simplification (d). Finally, we
identify a conservative estimate for threshold free diffusion paths by identifying flatter regions in
the cumulative density function of critical points (e) while avoiding any barrier rings.

So far, we have established that carbon atoms, covalent bonds, and barrier rings
can be extracted in a very stable manner, with simplification threshold of 0.06±
0.03. This stability aligns with expectation, due to the regular structure imposed by
the chemistry and physics of the annealed nanosphere. We make the logical step that
any 2-saddles that are not covalent bonds must be part of an intra-layer region, where
Li ions can diffuse relatively easily. Furthermore, since the ascending 2-manifolds of
1-saddles form topological disks that fill in the interior of covalently bonded carbon
rings, any 1-saddle adjacent to a non-bond 2-saddle (and any minimum attached to
that) must also be part of the free diffusion region. Finally, we consider the case
where based on the electron density value alone we can determine if the Li ions
may diffuse. In figure 4(e) we show cumulative density functions of minima and 1-
saddles, categorized by whether they are ring, non-ring, defect, or non-defect points.
To pick the threshold that guarantees that Li may diffuse freely, we must pick a
threshold below the lowest ring saddle values with≤ 6 bonds, which occurs at value
-3.7. The most permissive, yet relatively stable threshold occurs around -4.



Morse-Smale Analysis of Ion Diffusion in Ab Initio Battery Materials Simulations 11

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 A visual comparison of features of the DFT data (top row) with features of the distance
field (bottom row). The exact same set of carbon atoms and bonds are found in each (a,e). While
the majority of rings are the same, the DFT data classifies some defect rings as intra-layer free
diffusion paths. For instance (f) displays a ring (yellow arrow) not present in (b). This difference
can be accounted for with (c,d,g,h), where (g) shows a defect detected in the distance field , whereas
(d) shows the same site as part of an intra-layer free path. Other defects sites match (c,g), and the
free paths in both (d) and (g) completely connect every void in the interior.

5 Comparison with Distance Field

Production-scale nanosphere simulations are expected to produce results on the or-
der of one million atoms, making DFT data impossibly expensive to compute. One
alternative we explore in this section is to use the atom positions to create a distance
field. In particular, we generate a signed distance field, that is the negative of the
minimum distance from a grid vertex to a Carbon atom, preserving the convention
of identifying carbon atoms as maxima. The same data-driven approach is applied
from section 4.3 to obtain stable threshold of 0.1 for persistence simplification, -0.9
for identification of covalent bonds, and -5.0 to identify free paths. Figure 5 shows
a direct comparison of features extracted from the DFT data and the distance field.
There is a one-to-one correspondence between Carbon atoms and covalent bonds,
between the two fields (a,e). The first differences appear in the identification of ring
saddles (b,f), where certain 1-saddles appear as free paths in the DFT field, and
instead appear as defect sites in the distance field. This difference can be noted in
(c,g), where a defect present in the distance field (g) is instead identified as a free
path connecting the exterior to the interior of the nanosphere (d). In both fields, ev-
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Fig. 6 In the DFT field, free paths were identified between all layers of the nanosphere (a). A
corner case illustrates the need to compute the length of simple cycles when counting the valence
of a ring (b). The distribution of values for rings of varying valence shows that there are no scalar
thresholds that separate features (c).

ery void in the interior of the nanosphere is completely connected by free diffusion
paths.

6 Discussions

We apply our data-driven approach to the 732-atom DFT field, and found a stable
persistence simplification threshold of 0.06, a stable selection threshold for bonds
of > -0.05, and a conservative estimate of free paths with value lower than -4. With
these thresholds, we found that the entire interior of the 732-atom DFT field is ac-
cessible to Li ion diffusion. Figure 6(a) illustrates that according to the definitions
we presented the free paths directly connect the exterior of the nanosphere with ev-
ery layer. Figure 6(b) demonstrates a scenario where the ascending 2-manifold of a
1-saddle does not have a simple circle as its boundary. To avoid incorrectly classi-
fying this as a fault, we perform an additional check on the ring, only counting the
atoms that form a simple cycle. Such configurations arise when carbon atoms are
bonded in the third dimension outside of the plane of the carbon ring. Finally, we
justify using the ring valence as opposed to selecting a threshold for diffusion (as
was done in [2]). Figure 6(c) shows the function values for various valence rings.
Even for large simplification thresholds, rings identified as valence 5 or 6 may have
lower function value than higher valence rings.

7 Conclusion/Future Work

We have presented a new technique for analyzing Li ion diffusion paths in car-
bon nanospheres that utilizes identifying motifs (rings) in the 1-skeleton of the MS
complex. We have further shown that feature analysis is stable, and appropriate
thresholds can be identified from the topology of the data itself without a priori
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knowledge. Finally, we compared the analysis of the DFT data to a distance field,
showing similarities, but also differences in the classification of free path vs. defect
sites. Further study is needed to understand the implications on qualitative measure-
ments of Li storage capacity of nanospheres. We plan to use this methodology to
understand the energy storage properties of large-scale nanospheres.
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