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Abstract

Feature space analysis is the main module in many com-
puter vision tasks. The most popular technique, k-means
clustering, however, has two inherent limitations: the clus-
ters are constrained to be spherically symmetric and their
number has to be known a priori. In nonparametric clus-
tering methods, like the one based on mean shift, these
limitations are eliminated but the amount of computation
becomes prohibitively large as the dimension of the space
increases. We exploit a recently proposed approximation
technique, locality-sensitive hashing (LSH), to reduce the
computational complexity of adaptive mean shift. In our
implementation of LSH the optimal parameters of the data
structure are determined by a pilot learning procedure, and
the partitions are data driven. As an application, the per-
formance of mode and k-means based textons are compared
in a texture classification study.

1. Introduction
Representation of visual information through feature space
analysis received renewed interest in recent years, moti-
vated by content based image retrieval applications. The
increase in the available computational power allows today
the handling of feature spaces which are high dimensional
and contain millions of data points.

The structure of high dimensional spaces, however, de-
fies our three dimensional geometric intuition. Such spaces
are extremely sparse with the data points far away from each
other [17, Sec.4.5.1]. Thus, to infer about the local struc-
ture of the space only a small number of data points may
be available, which can yield erroneous results. The phe-
nomenon is known in the statistical literature as the curse of
dimensionality, and its effect increases exponentially with
the dimension. The curse of dimensionality can be avoided
only by imposing a fully parametric model over the data [6,
p.203], an approach which is not feasible for a high dimen-
sional feature space with a complex structure.

The goal of feature space analysis is to reduce the data
to a few significant features through a procedure known un-

der many different names, clustering, unsupervised learn-
ing, or vector quantization. Most often different variants
of k-means clustering are employed, in which the feature
space is represented as a mixture of normal distributions [6,
Sec.10.4.3]. The number of mixture components � is usu-
ally set by the user.

The popularity of the k-means algorithm is due to its
low computational complexity of ��
���������� , where � is the
number of data points, � the dimension of the space, and �
the number of iterations which is always small relative to � .
However, since it imposes a rigid delineation over the fea-
ture space and requires a reasonable guess for the number
of clusters present, the k-means clustering can return erro-
neous results when the embedded assumptions are not satis-
fied. Moreover, the k-means algorithm is not robust, points
which do not belong to any of the � clusters can move the
estimated means away from the densest regions.

A robust clustering technique which does not require
prior knowledge of the number of clusters, and does not
constrain the shape of the clusters, is the mean shift based
clustering. This is also an iterative technique, but instead of
the means, it estimates the modes of the multivariate distri-
bution underlying the feature space. The number of clusters
is obtained automatically by finding the centers of the dens-
est regions in the space (the modes). See [1] for details. Un-
der its original implementation the mean shift based cluster-
ing cannot be used in high dimensional spaces. Already for
����� , in a video sequence segmentation application, a fine-
to-coarse hierarchical approach had to be introduced [5].

The most expensive operation of the mean shift method
is finding the closest neighbors of a point in the space. The
problem is known in computational geometry as multidi-
mensional range searching [4, Chap.5]. The goal of the
range searching algorithms is to represent the data in a
structure in which proximity relations can be determined
in less than ��
���� time. One of the most popular struc-
tures, the kD-tree, is built in ��
���� � �!��� operations, where
the proportionality constant increases with the dimension
of the space. A query selects the points within a rectangu-
lar region delimited by an interval on each coordinate axis,
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and the query time for kD-trees has complexity bounded by

�
�
����������
	�� , where 	 is the number of points found.

Thus, for high dimensions the complexity of a query is prac-
tically linear, yielding the computational curse of dimen-
sionality. Recently, several probabilistic algorithms have
been proposed for approximate nearest neighbor search.
The algorithms yield sublinear complexity with a speedup
which depends on the desired accuracy [7, 10, 11].

In this paper we have adapted the algorithm in [7] for
mean shift based clustering in high dimensions. Work-
ing with data in high dimensions also required that we ex-
tend the adaptive mean shift procedure introduced in [2].
All computer vision applications of mean shift until now,
such as image segmentation, object recognition and track-
ing, were in relatively low-dimensional spaces. Our imple-
mentation opens the door to use mean shift in tasks based
on high-dimensional features.

In Section 2 we present a short review of the adaptive
mean-shift technique. Locality-sensitive hashing, the tech-
nique for approximate nearest neighbor search is described
in Section 3, where we have also introduced refinements to
handle data with complex structure. In Section 4 the per-
formance of adaptive mean shift (AMS) in high dimensions
is investigated, and in Section 5 AMS is used for texture
classification based on textons.

2. Adaptive Mean Shift
Here we only review some of the results described in [2]
which should be consulted for the details.

Assume that each data point 
�������� , � ������������� � is
associated with a bandwidth value ��� �"! . The sample
point estimator#$&% 
'
 � � �� () � *,+ �� �� �.-0//// 
�12
3��4� ////�5�6 (1)

based on a spherically symmetric kernel 7 with bounded
support satisfying7 
'
�� �98�:<; � � 
�=>
?= 5 �0�@! =>
?=BAC� (2)

is an adaptive nonparametric estimator of the density at lo-
cation 
 in the feature space. The function � 
'D � , !EA�D.AF� ,
is called the profile of the kernel, and the normalization con-
stant 8�:<; � assures that 7 
'
�� integrates to one. The functionG 
'D � �H1 �JI�
'D � can always be defined when the derivative
of the kernel profile � 
'D � exists. Using G 
'D � as the profile,
the kernel K 
'
 � is defined as K 
'
 �!�L8�M<; � G 
�=>
?= 5 � .By taking the gradient of (1) the following property can
be proven NPO


'
 � �CQ #R $&% 
'
 �#$ O 
'
 � (3)

where Q is a positive constant andN
O

'
 � �TS (� *,+ +U �WV�XY 
3� G�Z /// 
\[�
 Y�4� /// 5�]S (� *,+ +U �WV�XY G�Z /// 
\[�
 Y�4� /// 5�] 12
 (4)

is called the mean shift vector. The expression (3) shows
that at location 
 the weighted mean of the data points se-
lected with kernel K is proportional to the normalized den-
sity gradient estimate obtained with kernel 7 . The mean
shift vector thus points toward the direction of maximum
increase in the density. The implication of the mean shift
property is that the iterative procedure^`_�a + �HS (� *,+ 
 YU �WV�XY G�Z /// ^�b [�
 Y�4� /// 5�]S (� *,+ +U �WV�XY G�Z /// ^ b [�
 Y�4� /// 5�] c �d���feJ������� (5)

is a hill climbing technique to the nearest stationary point
of the density, i.e., a point in which the density gradient
vanishes. The initial position of the kernel, the starting point
of the procedure ^ + can be chosen as one of the data points
3� . Most often the points of convergence of the iterative
procedure are the modes (local maxima) of the density.

There are numerous methods described in the statisti-
cal literature to define ��� , the bandwidth values associated
with the data points, most of which use a pilot density es-
timate [17, Sec.5.3.1]. The simplest way to obtain the pilot
density estimate is by nearest neighbors [6, Sec.4.5]. Let
3�'; : be the � -nearest neighbor of the point 
�� . Then, we
take �4���g=>
3�h12
��'; :i=<+ (6)

where jk+ norm is used since it is the most suitable for the
data structure to be introduced in the next section. The
choice of the norm does not have a major effect on the per-
formance. The number of neighbors � should be chosen
large enough to assure that there is an increase in density
within the support of most kernels having bandwidths �`� .
While the value of � should increase with � the dimension
of the feature space, the dependence is not critical for the
performance of the mean shift procedure, as will be seen
in Section 4. When all ��� �l� , i.e., a single global band-
width value is used, the adaptive mean shift (AMS) pro-
cedure becomes the fixed bandwidth mean shift (MS) dis-
cussed in [1].

A robust nonparametric clustering of the data is achieved
by applying the mean shift procedure to a representative
subset of the data points. After convergence, the detected
modes are the cluster centers, and the shape of the clusters
is determined by the basins of attraction. See [1] for details.
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3. Locality-Sensitive Hashing
The bottleneck of mean shift in high dimensions is the need
for a fast algorithm to perform neighborhood queries when
computing (5). The problem has been addressed before in
the vision community by sorting the data according to each
of the � coordinates [13], but a significant speedup was
achieved only when the data is close to a low-dimensional
manifold.

Recently new algorithms using tools from probabilistic
approximation theory were suggested for performing ap-
proximate nearest neighbor search in high dimensions for
general datasets [10, 11] and for clustering data [9, 14]. We
use the approximate nearest neighbor algorithm based on
locality-sensitive hashing (LSH) [7] and adapted it to han-
dle the complex data met in computer vision applications.
In a task of estimating the pose of articulated objects, de-
scribed in these proceedings [16], the LSH technique was
extended to accommodate distances in the parameter space.

3.1. High Dimensional Neighborhood Queries
Given � points in ��� the mean shift iterations (5) require
a neighborhood query around the current location ^ _ . The
naive method is to scan the whole dataset and test whether
the kernel of the point 
,� covers ^h_ . Thus, for each mean
computation the complexity is ��
�� ��� . Assuming that for
every point in the dataset this operation is performed �
times (a value which depends on the ��� ’s and the distribu-
tion of the data), the complexity of the mean shift algorithm
is ��
�� 5 � � � .

To improve the efficiency of the neighborhood queries
the following data structure is constructed. The data is tes-
sellated j times with random partitions, each defined by 7
inequalities (Figure 1). In each partition 7 pairs of random
numbers, ��: and � : are used. First �J: , an integer between 1
and � is chosen, followed by � : , a value within the range of
the data along the �J: -th coordinate.

The pair 
���:�� � : � partitions the data according to the in-
equality D��'; � � A � : � � ����������� � (7)

where D��'; � � is the selected coordinate for the data point
3� . Thus, for each point 
�� each partition yields a 7 -
dimensional boolean vector (inequality true/false). Points
which have the same vector lie in the same cell of the parti-
tion. Using a hash function, all the points belonging to the
same cell are placed in the same bucket of a hash table. As
we have j such partitions, each point belongs simultane-
ously to j cells (hash table buckets).

To find the neighborhood of radius � around a query
point � , j boolean vectors are computed using (7). These
vectors index j cells Q�� , � � ������������j in the hash table.

The points in their union Q�� �
�	
� *,+ Q
� are the ones returned

by the query (Figure 1). Note that any � in the intersectionQ�� �
�

� *,+ Q
� will return the same result. Thus Q�� deter-

mines the resolution of the data structure, whereas Q�� de-
termines the set of the points returned by the query. The de-
scribed technique is called locality-sensitive hashing (LSH)
and was introduced in [10].

Points close in ��� have a higher probability for collision
in the hash table. Since Q�� lies close to the center of Q�� ,
the query will return most of the nearest neighbors of � . The
example in Figure 1 illustrates the approximate nature of the
query. Parts of an j + neighborhood centered on � are not
covered by Q�� which has a different shape. The approxima-
tion errors can be reduced by building data structures with
larger Q�� ’s, however, this will increase the running time of
a query.

L

Figure 1: The locality-sensitive hashing data structure. For
the query point � the overlap of j cells yields the region Q��
which approximates the desired neighborhood.

3.2. Optimal Selection of � and �
The values for 7 and j determine the expected volumes ofQ�� and Q�� . The average number of inequalities used for
each coordinate is 7�� � , partitioning the data into 7�� � � �
regions. The average number of points ����� in a cell Q
� and
����� in their union Q�� is

������� � 
'7�� � � � � [ � �������Lj �����3� (8)

Note that in estimating ����� we disregard that the points
belong to several Q�� ’s.

Qualitatively, the larger the value for 7 , the number of
cuts in a partition, the smaller the average volume of the
cells Q
� . Similarly, as the number of partitions j increases,
the volume of Q�� decreases and of Q�� increases. For a
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given 7 , only values of j below a certain bound are of
interest. Indeed, once j exceeds this bound all the neigh-
borhood of radius � around � has been already covered byQ�� . Thus, larger values of j will only increase the query
time with no improvement in the quality of the results.

The optimal values of 7 and j can be derived from the
data. A subset of data points 
 _ � c � ��� ����� � 	 � � , is
selected by random sampling. For each of these data points,
the jk+ distance � _ (6) to its k-nearest neighbor is deter-
mined accurately by the traditional linear algorithm.

In the approximate nearest neighbor algorithm based on
LSH, for any pair of 7 and j , we define for each of the	 points � � % ; ���_ , the distance to the k-nearest neighbor re-
turned by the query. When the query does not return the
correct k-nearest neighbors � � % ; ���_ �L� _ . The total running
time of the 	 queries is ��
 7 ��j � . The optimal 
 7 ��j � is
then chosen such that


 7 ��j � ���
	�����
 �% ; � ��
 7 ��j � (9)

subject to:
�	 �)_ *,+ � � % ; ���_ � _ A�
W� � � �

where � is the LSH approximation threshold set by the user.
The optimization is performed as a numerical search pro-

cedure. For a given 7 we compute, as a function of j , the
approximation error of the 	 queries. This is shown in Fig-
ure 2a for a thirteen-dimensional real data set. By thresh-
olding the family of graphs at � �F!i� !�� , the function j 
 7 �
is obtained (Figure 2b). The running time can now be ex-
pressed as ��� 7 ��j 
 7 ��� , i.e., a one-dimensional function in7 , the number of employed cuts (Figure 2c). Its minimum
is 7 � � ( which together with j 
 7 � � ( � are the optimal pa-
rameters of the LSH data structure.
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Figure 2: Determining the optimal 7 and j . (a) Depen-
dence of the approximation error on j for 7 � �<!i�fe !i����! .
The curves are thresholded at � ��!i� !�� , dashed line. (b)
Dependence of j on 7 for � � !i� !�� . (c) The running time
��� 7 ��j 
 7 � ��� . The minimum is marked ‘ � ’.

The family of error curves can be efficiently generated.
The number of partitions j is bounded by the available
computer memory. Let j ����� be that bound. Similarly,
we can set a maximum on the number of cuts, 7 ����� .
Next, the LSH data structure is built with 
 7 ����� ��j ����� � .

Then, the approximation error is computed incrementally
for j � ��� ����� ��j ����� by adding one partition at a time.
This yields j 
 7 ����� � which is subsequently used as j �����
for 7 ����� 1�� , etc.

3.3. Data Driven Partitions
The strategy of generating the j random tessellations has an
important influence on the performance of locality-sensitive
hashing. In [7] the coordinates �J: have equal chance to be
selected and the values � : are uniformly distributed over
the range of the corresponding coordinate. This partitioning
strategy works well only when the density of the data is ap-
proximately uniform in the entire space. However, feature
spaces associated with vision applications are often multi-
modal. In [10, 11] the problem of nonuniformly distributed
data was dealt with by building several data structures with
different values of 7 and j to accommodate the different
local densities. The query is performed first under the as-
sumption of a high density, and when it fails it is repeated
for lower densities. The process terminates when the near-
est neighbors are found.

Our approach is to sample according to the marginal dis-
tributions along each coordinate. We use a few points 
 �
chosen at random from the data set. For each point one of
its coordinates is selected at random to define a cut. Using
more than one coordinate from a point would imply sam-
pling from partial joint densities, but does not seem to be
more advantageous. Our adaptive, data driven strategy as-
sures that in denser regions more cuts will be made yielding
smaller cells, while in sparser regions there will be less cuts.
On average all cells will contain a similar number of points.

The two-dimensional data in Figure 3b and 3b comprised
of four clusters and uniformly distributed background, is
used to demonstrate the two sampling strategies. In both
cases the same number of cuts were used but the data driven
method places most of the cuts over the clusters (Figure 3b).
For a quantitative performance assessment a data set of
ten normal distributions with arbitrary shapes (5000 points
each) were defined in 50 dimensions. When the data driven
strategy is used, the distribution of the number of points
in a cell is much more compact and their average value is
much lower (Figure 3c). As a consequence, the data driven
strategy yields more efficient k-nearest neighbor queries for
complex data sets.

4. Mean Shift in High Dimensions
Given ^h_ , the current location in the iterations, an LSH
based query retrieves the approximate set of neighbors
needed to compute the next location (5). The resolution
of the data analysis is controlled by the user. In the fixed
bandwidth MS method the user provides the bandwidth pa-
rameter � . In the AMS method, the user sets the number
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Figure 3: Uniform vs. data driven partitions. Typical re-
sult for two-dimensional data obtained with (a) uniform; (b)
data driven strategy. (c) Distribution of points-per-cell for a
50-dimensional data set.

of neighbors � used in the pilot density procedure. The pa-
rameters 7 and j of the LSH data structure are selected em-
ploying the technique discussed in Section 3.2. The band-
widths �4� associated with the data points are obtained by
performing � neighborhood queries. Once the bandwidths
are set, the adaptive mean shift procedure runs at approx-
imately the same cost as the fixed bandwidth mean shift.
Thus, the difference between MS and AMS is only one ad-
ditional query per point.

An ad-hoc procedure provides further speedup. Since
the resolution of the data structure is Q�� , with high prob-
ability one can assume that all the points within Q�� will
converge to the same mode. Thus, once any point from aQ�� is associated with a mode, the subsequent queries to Q��
automatically return this mode and the mean shift iterations
stop. The modes are stored in a separate hash table whose
keys are the j boolean vectors associated with Q�� .

4.1. Adaptive vs. Fixed Bandwidth Mean Shift
To illustrate the advantage of adaptive mean shift, a data
set containing 125,000 points in a 50-dimensional cube was
generated. From these �<! � e , � !�! points belonged to ten
spherical normal distributions (clusters) whose means were
positioned on a line through the origin. The standard devi-
ation increases as the mean becomes more distant from the
origin. For an adjacent pair of clusters, the ratio of the sum
of standard deviations to the distance between the means
was kept constant. The remaining 100,000 points were uni-
formly distributed in the 50-dimensional cube. Plotting the

distances of the data points from the origin yields a graph
very similar to the one in Figure 4a. Note that the points
farther from the origin have a larger spread.

The performance of the fixed bandwidth (MS) and the
adaptive mean shift (AMS) procedures is compared for var-
ious parameter values in Figure 4. The experiments were
performed for 500 points chosen at random from each clus-
ter, a total of 5000 points. The location associated with each
selected point after the mean shift procedure, is the em-
ployed performance measure. Ideally this location should
be near the center of the cluster to which the point belongs.

In the MS strategy, when the bandwidth � is small, due
to the sparseness of the high-dimensional space very few
points have neighbors within distance � . The mean shift
procedure does not start and the allocation of the points is to
themselves (Figure 4a). On the other hand as � increases the
windows become too large for some of the local structures
and points may converge incorrectly to the center (mode) of
an adjacent cluster (Figures 4b to 4d).

The pilot density estimation in the AMS strategy auto-
matically adapts the bandwidth to the local structure. The
parameter � , the number of neighbors used for the pilot es-
timation does not have a strong influence. The data is pro-
cessed correctly for � � �<!�! to 500, except for a few points
(Figures 4e to 4g), and even for � � �&!�! only some of the
points in the cluster with the largest spread converge to the
adjacent mode (Figure 4h). The superiority of the adaptive
mean shift in high dimensions is clearly visible. Due to the
sparseness of the 50-dimensional space, the 100,000 points
in the background did not interfere with the mean shift pro-
cesses under either strategy, proving its robustness.

The use of the LSH data structure in the mean shift pro-
cedure assures a significant speedup. We have derived four
different features spaces from a texture image with the filter
banks discussed in the next section. The spaces had dimen-
sion � � � ���i��� � and 48, and contained � ����� �
��� points.
An AMS procedure was run both with linear and approxi-
mate queries for 1638 points. The number of neighbors in
the pilot density estimation was � � �<!�! . The approxima-
tion error of the LSH was � �d!i� !�� . The running times (in
seconds) in Table 1 show the achieved speedups.

Table 1: Running Times of AMS Implementations
� Traditional LSH Speedup

4 1,507 80 18.8
8 1,888 206 9.2

13 2,546 110 23.1
48 5,877 276 21.3

The speedup will increase with the number of data points
� , and will decrease with the number of neighbors � . There-
fore in the mean shift procedure the speedup is not as high
as in applications in which only a small number of neigh-
bors are required.
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Figure 4: Distance from the origin of 5000 points from ten 50-dimensional clusters after fixed bandwidth mean shift (MS):
(a) to (d); and adaptive mean shift (AMS) : (e) to (h). The parameters: MS – bandwidth � ; AMS – number of neighbors � .

5. Texture Classification
Efficient methods exist for texture classification under vary-
ing illumination and viewing direction [3],[12], [15], [18].
In the state-of-the-art approaches a texture is characterized
through textons, which are cluster centers in a feature space
derived from the input. Following [12] this feature space is
built from the output of a filter bank applied at every pixel.
However, as was shown recently [19], neighborhood infor-
mation in the spatial domain may also suffice.

The approaches differ in the employed filter bank.
– LM: A combination of 48 anisotropic and isotropic fil-

ters were used by Leung and Malik [12] and Cula and
Dana [3]. The filters are Gaussian masks, their first
derivative and Laplacian, defined at three scales. Be-
cause of the oriented filters, the representation is sen-
sitive to texture rotations. The feature space is 48 di-
mensional.

– S: A set of 13 circular symmetric filters was used by
Schmid [15] to obtain a rotationally invariant feature
set. The feature space is 13 dimensional.

– M4, M8: Both representations were proposed by
Varma and Zissermann [18]. The first one (M4) is
based on 2 rotationally symmetric and 12 oriented fil-
ters. The second set is an extension of the first one at
3 different scales. The feature vector is computed by
retaining only the maximum response for the oriented
filters (2 out of 12 for M4 and 6 out of 36 for M8), thus
reducing the dependence on the global texture orienta-
tion. The feature space is 4 respectively 8 dimensional.

To find the textons, usually the standard k-means clus-
tering algorithm is used, which as was discussed in Sec-

tion 1 has several limitations. The shape of the clusters is
restricted to be spherical and their number has to be set prior
to the processing.

The most significant textons are aggregated into the tex-
ton library. This serves as a dictionary of representative
local structural features and must be general enough to char-
acterize a large variety of texture classes. A texture is then
modeled through its texton histogram. The histogram is
computed by defining at every pixel a feature vector, re-
placing it with the closest texton from the library (vector
quantization) and accumulating the results over the entire
image.

Let two textures � and
c

be characterized by the his-
tograms

� � and
� _ built from � textons. As in [12] the

� 5 distance between these two texton distributions

� 5 
 � � � � _ � � �)
� *,+ � � � 
 � � 1 � _ 
 � ��� 5� ��
 � � � � _ 
 � � (10)

is used to measure similarity, although note the absence of
the factor � � e to take into account that the comparison is be-
tween two histograms derived from data. In a texture clas-
sification task the training image with the smallest distance
from the test image determines the class of the latter.

In our experiments we substituted the k-means based
clustering module with the adaptive mean shift (AMS)
based robust nonparametric clustering. Thus, the textons
instead of being mean based are now mode based, and the
number of the significant ones is determined automatically.

The complete Brodatz database containing 112 textures
with varying degrees of complexity was used in the experi-
ments. Classification of the Brodatz database is challenging
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because it contains many nonhomogeneous textures. The
�J� e � �J� e images were divided into four e � � � e � � subim-
ages with half of the subimages being used for training (224
models) and the other half for testing (224 queries). The
normalizations recommended in [18] (both in the image and
filter domains) were also performed.

The number of significant textons detected with the AMS
procedure depends on the texture. We have limited the num-
ber of mode textons extracted from a texture class to five.
The same number was used for the mean textons. Thus, by
adding the textons to the library, a texton histogram has at
most � ��� ��! bins.

Table 2: Classification Results for the Brodatz Database
Filter M4 M8 S LM

RND 84.82% 88.39% 89.73% 92.41%
k-means 85.71% 94.64% 93.30% 97.32%
AMS 85.27% 93.75% 93.30% 98.66%

The classification results using the different filter banks
are presented in Table 2. The best result was obtained with
the LM mode textons, an additional three correct classifica-
tions out of the six errors with the mean textons. However,
there is no clear advantage in using the mode textons with
the other filter banks.

The classification performance is close to its upper
bound defined by the texture inhomogeneity, due to which
the test and training images of a class can be very different.
This observation is supported by the performance degrada-
tion obtained when the database images were divided into
sixteen � e � � � e � subimages and the same half/half partition
yielded 896 models and 896 queries. The recognition rate
decreased for all the filter banks. The best result of 94%,
was again obtained with the LM filters for both the mean
and mode textons. In [8], with the same setup but employ-
ing a different texture representation, and using only 109
textures from the Brodatz database the recognition rate was
��!i� � �

.
A texture class is characterized by the histogram of the

textons, an approximation of the feature space distribution.
The histogram is constructed from a Voronoi diagram with
� cells. The vertices of the diagram are the textons, and
each histogram bin contains the number of feature points in
a cell. Thus, variations in textons translate in approximat-
ing the distribution by a different diagram, but it appears
to have a weak influence on the classification performance.
When by uniform sampling five random vectors were cho-
sen as textons, the classification performance (RND) de-
creased only between 1% to 6%.

The k-means clustering imposes rigidly a given number
of identical spherical clusters over the feature space. Thus,
it is expected that when this structure is not adequate, the
mode based textons will provide a more meaningful decom-
position of the texture image. This is proven in the follow-
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Figure 5: Mode ( � ) vs. mean ( � ) based textons. The lo-
cal structure is better captured by the mode textons. D001
texture, LM filter bank.

ing two examples.

In Figure 5 the LM filter bank was applied to a regular
texture. The AMS procedure extracted 21 textons, the num-
ber also used in the k-means clustering. However, when
ordered by size, the first few mode textons are associated
with more pixels in the image than the mean textons, which
always account for a similar number of pixels. The differ-
ence between the mode and mean textons can be seen by
marking the pixels associated with textons of the same lo-
cal structure (Figure 5, bottom). The advantage of the mode
based representation is more evident for the nonregular tex-
ture in Figure 6, where the cumulative distribution of the
mode textons classified pixels is has a sharper increase.

Since textons capture local spatial configurations, we be-
lieve that combining the mode textons with the representa-
tion proposed in [19] can offer more insight into why the
texton approach is superior to previous techniques.
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Figure 6: Mode ( � ) vs. mean ( � ) based textons. The lo-
cal structure is better captured by the mode textons. D040
texture, S filter bank.

6. Conclusion
We have introduced a computationally efficient method that
makes possible in high dimensional spaces the detection of
the modes of distributions. By employing a data structure
based on locality-sensitive hashing, a significant decrease in
the running time was obtained while maintaining the qual-
ity of the results. The new implementation of the mean shift
procedure opens the door to the development of vision algo-
rithms exploiting feature space analysis – including learning
techniques – in high dimensions. The C++ source code of
this implememtation of mean shift can be downloaded from

http://www.caip.rutgers.edu/riul
.
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