
1

Isosurfacing in Higher Dimensions

Praveen Bhaniramka Rephael Wenger Roger Crawfis

Computer & Information Science
The Ohio State University

Columbus, Ohio

Abstract

Visualization algorithms have seen substantial
improvements in the past several years. However, very
few algorithms have been developed for directly studying
data in dimensions higher than three. Most algorithms
require a sampling in three-dimensions before applying
any visualization algorithms. This sampling typically
ignores vital features that may be present when
examined in oblique cross-sections, and places an undo
burden on system resources when animation through
additional dimensions is desired. For time-varying data
of large data sets, smooth animation is desired at
interactive rates. This paper provides a fast marching-
Cubes like algorithm for hypercubes of any dimension.
To support this, we have developed a new algorithm to
automatically generate the isosurface and triangulation
tables for any dimension. This allows the efficient
calculation of 4D isosurfaces, which can be interactively
sliced to provide smooth animation or slicing through
oblique hyper-planes. The former allows for smooth
animation in a very compressed format. The latter
provide better tools to study time-evolving features as
they move downstream. We also provide examples in
using this technique to show interval volumes or the
sensitivity of a particular iso-value threshold. A formal
proof on the correctness of our algorithm and a
comparison to the Modified Marching Cubes is also
included.

1. Introduction

Given a continuous scalar field, i.e., a scalar function on
Rd, an isosurface is the set of points with identical scalar
values. The marching cubes algorithm by Lorensen and
Cline is a popular, simple, and efficient algorithm for
constructing a piecewise linear isosurface from scalar
values in a three dimensional regular grid [10]. The
regular grid divides the volume into cubes whose
vertices are the grid vertices and the isosurface is
constructed piecewise within each cube. Each grid vertex
is labeled positive, ‘+’ , or negative, ‘ -‘ , depending upon
whether its value is greater than or less than the value of
the isosurface. The structure of the isosurface in the cube
depends only on the positive and negative labels of its
eight vertices. Thus there are 28 ways in which the
isosurface can intersect a cube. Most implementations of

the marching cubes algorithm first build a table of these
28 cases and then use this table to determine the structure
of the intersection of the surface with each cube. The
actual location of the surface within the cube depends
upon linear interpolations of the values of the cube
vertices along the edges intersected by the isosurface.

By exploiting symmetry, Lorensen and Cline reduced the
28 cases to fourteen. They analyzed these fourteen cases
by hand, constructing a triangulated surface for each
case. Montani, Scateni and Scopigno added more cases
to resolve certain ambiguities and inconsistencies in
Lorensen and Cline's original algorithm [12]. This
algorithm is commonly known as the Modified Marching
Cubes algorithm.

A hypercube in four dimensions has sixteen vertices and
216 possible vertex labelings. Even after exploiting
symmetry, we found that we were left with 222 cases.
Analyzing all these cases by hand, would have been a
tedious and error prone exercise. Higher dimensions are
even more problematic. Therefore, we first looked for a
systematic way of generating the surface and its
triangulation for each case.

Weigle and Banks generalized a variation of the
marching cubes algorithm by replacing the cubes with
simplices [18, 19]. Using barycentric subdivision, they
broke each cube into simplices and then constructed the
isosurface in each simplex. They triangulated the
isosurface by recursively triangulating the various
dimensional faces of the polyhedra composing the
isosurface. Because of the simple structure and
symmetry of a d-simplex, there are only d + 2 cases, each
case corresponding to a different number of vertices with
positive orientation. However, a d-cube breaks into
between d! and 2d-1d! simplices, depending upon the
decomposition used [18]. The time and space used by
their algorithm also increases by a corresponding factor
making it impractical for real problems.

Many techniques have been proposed for visualization of
higher dimensions, but most of the work has dealt with
the aspect of rendering higher dimensional data. Hanson
et.al. in [6][7][8][9] use 4D lighting, shading,
projections, rotations and plane-tracing (a generalization
of ray tracing to 4D) among others, as techniques for

2

visualizing higher dimensional data. Bajaj et.al. in [2]
generalize splatting to higher dimensions. We will apply
some of these techniques to our resulting higher
dimensional surface and refer the reader to the references
for visualization techniques in higher dimensions.

Specifically, we make the following contributions in this
paper –

1. We present a new algorithm for automatically
generating a lookup table of the isosurface and its
triangulation for all the possible 22d

 labelings of the
hypercube in a d-dimensional regular grid. To the
best of our knowledge this has not been done before.

2. We prove the correctness of our algorithm and also
show that it generates a valid triangulation of the
isosurface, such that, the triangulation of the (d-1)-
facets of the cube match with that of the adjacent
cubes.

3. We apply our algorithm and discuss its advantages
to the following applications
• Compact representation and smooth animation

of time-varying isosurfaces.
• Interval volumes and contour sensitivity.
• Arbitrary slicing of higher dimensional data.

In section 2, we describe the algorithm in detail giving 2
and 3 dimensional examples and in section 3, we prove
the correctness of the algorithm. In section 4, we analyze
the results obtained for the 3-dimensional case. Then in
sections 5 through 8, we discuss the different
applications and show how our approach is superior to
those currently used.

2. Isosurfacing Algorithm in Rd

The isosurfacing algorithm can be divided into two
primary steps. First, we generate the lookup table for a
given dimension d. We do this for all possible 22d

 cases
and store the resulting table for step 2. Secondly, using
this lookup table, we contour the grid by locating the d-
cubes which are intersected by the isosurface.

2.1 Lookup table generation

An edge of the hypercube intersects the isosurface if one
endpoint has a positive label and one endpoint has a
negative label (by the intermediate value theorem). For a
given configuration of the vertices of the hypercube h,
we find the midpoint of each such edge. Let W+(h) be the
set of all such midpoints together with all hypercube
vertices with a positive label. The convex hull of W+(h)
is a d-polytope lying in the hypercube and approximating
the set of points in the d-cube with positive isovalues. In
order to extract the desired isosurface, we remove any
(d-1)-dimensional facets of this polyhedron which lie on

Figure 1a. Two-dimensional example of the algorithm.

Input vertices Convex Hull

Coplanar Faces Resulting Isosurface

Figure 1b. Three-dimensional example of the algorithm.
the boundary of the hypercube. This causes the removal
of any facets, which share a vertex with the hypercube.
The remaining (d-1) facets comprise the isosurface in the
hypercube and are written into the lookup table. To
generate the complete table, we repeat the above for each
of the 22d

possible cases.

Figure 1a illustrates the algorithm in 2 dimensions. The
black vertices of the square (2-cube) correspond to
positive labels while the white vertices correspond to the
negative labels. The cross signs represent mid points of
the edges with zero crossings. We start with the set
W+(h), which is the union of the black vertices along
with the crosses, i.e. the set of edge-isosurface
intersection points, along with the positive labeled
vertices. The black edges show the facets (1-simplices)
of the convex hull of W+(h). Finally, removing facets on
the boundary of the 2-cube gives the final triangulation
of the isosurface. Figure 1b shows the steps for a 3
dimensional example. It can be seen from the figure that
all the triangles not on the isosurface lie on the cube
boundary.

The resulting d-polytope, which is the convex hull of
W+(h), is not necessarily simplicial. In fact, in many
instances it will contain (d-1)-facets which are not
simplices, e.g. for the 3-dimensional case, there might
exist 2D polygons with more than 3 vertices. These
facets can be triangulated in more than one way. This is
not so much of a problem in 3D as in 4D where, the
isosurface is comprised of tetrahedra. If a facet of the
hypercube shares a common quadrilateral with another
hypercube, and for the triangulation, one diagonal is
chosen for one hypercube and another for the other
hypercube, the resulting tetrahedralization will not be

3

global. This mismatch manifests itself as visible artifacts
when the 4D isosurface is sliced along a given axis.
Also, this makes it impossible to construct any face
adjacency graphs, which might be needed for many
algorithms. This is essentially the problem identified by
Albertelli et. al. in [1] while constructing 3D tetrahedral
grids by subdividing unstructured finite-element meshes.

We now describe how to construct a canonical
triangulation of those facets in order to match
triangulations of adjacent cubes. Prior to computing the
convex hull of the initial vertex set W+(h), we
lexicographically sort W+(h), as described in [13]. Then
we construct the convex hull incrementally by adding
one vertex at a time to the hull [3]. This approach assures
a canonical triangulation of the (d-1)-facets such that
triangulations match along the hypercube boundary. For
the 4-dimensional case, we verified our results by
computing all the 224 possible triangulations of the
isosurface for two adjacent 4-cubes and found that the
triangulations on the boundary match.

Instead of using the vertices with positive labels, we
could have used the vertices with negative labels in the
construction of the set W+(h). Doing so gives a different,
although equally valid, isosurface. However, using
positive labels for some cases and negative labels for
others can result in mismatches on the boundaries of the
hypercubes. This was essentially the problem discovered
by Durst in the original marching cubes algorithm [4].

2.2 Alternative construction

An alternative method for constructing the isosurface
would be to compute the convex hull of just the
midpoints of the edges with zero crossings. If this
convex hull is d-dimensional, then the boundary of this
convex hull is a (d-1)-dimensional surface. Removing all
the points lying on the boundary of the hypercube breaks
this surface into two or more components. One set of
components corresponds to the positive isosurface and
the other set corresponds to the complementary
‘negative’ configuration. For instance in figure 2,
removing the points on the boundary of the cube
(coplanar facets), gives four components. Two of these
components correspond to the desired positive isosurface
and the remaining two to the isosurface for the
complementary negative configuration. Finding the
components corresponding to the desired positive
isosurface would be more difficult compared to our
approach. If the convex hull of the midpoints is (d-1)-
dimensional, then this (d-1)-dimensional surface is the
isosurface for both the positive and negative cases.

In our algorithm, by adding the positive vertices, we
‘cover’ the simplices in the negative components. This

Convex Hull Coplanar facets

Complementary Isosurface Desired Isosurface

Figure 2. Alternative isosurface construction using only
the mid points of edges with zero crossings

allows us to easily extract the desired ‘positive’
isosurface by removing the simplices lying on the
boundary of the hypercube. If we had added the negative
vertices to the set of midpoints, we would have obtained
the isosurface corresponding to the complementary
configuration. Note also that the convex hull of the
midpoints and the positive vertices is always d-
dimensional (see lemma 1 in Appendix II), while the
convex hull of just the midpoints may not be. This
slightly simplifies the convex hull construction.

2.3 Isosurface construction

This step is primarily an extension of the original
Marching Cubes algorithm to higher dimensions, where
the isosurface is constructed piecewise within each cell
in the grid. For each logical d-cube, with 2d voxels as its
vertices, we use the lookup table generated in step 1 to
construct the isosurface within the cube. The index for
the d-cube depends on the labelings of the vertices of the
d-cube and is given by,

 2d – 1

Σ 2
i * color(i)

i = 0

where, color(i) is one, if vertex i has a ‘+’ label, and
zero, if it has a ‘ -‘ label. A value of either zero or 22d

 –1
for the index implies that the isosurface does not
intersect this d-cube.

The actual surface-edge intersections are computed by
linearly interpolating between the field values at the
vertices of the intersected edges. Since, the algorithm
computes the above for each d-cube in the grid, it is
linear in the number of d-cubes. This can be improved
by using techniques, which exploit spatial and temporal
coherence, to locate the cells which are actually
intersected by the isosurface [15][16][20][21].

4

3. Algorithm Correctness

We claim and prove that our algorithm correctly
constructs a (d−1)-dimensional surface in Rd. More
specifically, it constructs a triangulated (d−1)-manifold
with boundary in Rd.

Let T be the set of simplices returned by our algorithm.
The set of points contained in all the simplices of T is
called the underlying point set of T and denoted |T|.

A set of points M in Rd is a (d−1)-dimensional manifold
with boundary if the neighborhood of each point in M is
homeomorphic to either Rd-1 or a closed half-space of
Rd−1. Intuitively, a manifold with boundary is a set of
points that behave locally like a portion of (d−1)-
dimensional Euclidean space or the boundary of a (d−1)-
dimensional Euclidean half-space.

For our proof that |T| is a (d−1)-dimensional manifold
with boundary, we need to first show that the simplices
of T fit together nicely in their partitioning of |T|. A set
T of simplices defines a simplicial complex if the non-
empty intersection of any two or more simplices of T is a
face of each of these simplices. For instance, the non-
empty intersection of any two tetrahedra is either a
(triangular) face, or an edge or a vertex of the two
tetrahedra and the non-empty intersection of any three
tetrahedra is an edge or a vertex of all three.

We prove:
1. The set T of simplices defines a simplicial complex;
2. |T| is a (d−1)-dimensional manifold with boundary.

In the appendix, we give a full formal proof of these two
statements. In this section, we give only an outline of the
main ideas behind the proof.

Let h be a d-dimensional hypercube whose vertices are
labeled positive or negative. As in the previous section,
let W+(h) be the set of positive vertices of h and the
midpoints of edges of h with one positive and one
negative endpoint. Our algorithm forms the convex hull
of W+(h), removes any faces of the convex hull which
also lie on the boundary of h, and returns the remaining
faces (or a triangulation of those faces.) Let S+(h) be the
set of points contained in those remaining faces.
Equivalently, (and more precisely,) set S+(h) is the
boundary of the convex hull of W+(h), minus any points
which lie on the boundary of h, plus any points which are
in the closure of the remaining points. Formally, S+(h)
equals cl(∂conv(W+(h)) – ∂h), where cl, ∂ and conv are
the closure, boundary and convex operators, respectively.

For instance, in Figure 1a, set S+(h) contains the two
open line segments in the interior of h connecting the

midpoints marked 0. It also contains the endpoints of
these line segments, which lie on the boundary of h.
These endpoints are in the closure of the open line
segments. Similarly, in Figure 1b, set S+(h) contains the
two open rectangles in the interior of h, but it also
contains the rectangular boundary of these rectangles
which lies on the boundary of h. Again, this rectangular
boundary is the closure of these rectangles.

Let G be a regular grid whose vertices are labeled
positive or negative. Our algorithm returns S+(h) for
every hypercube h in G. Actually, it returns a set of
(d−1)-dimensional simplices whose underlying point set
is S+(h).

The interior of S+(h) is identical with the boundary of a
d-dimensional convex set and so clearly forms a surface.
It is much less clear that the surfaces defined by S+(h1)
and S+(h2) for two adjacent grid hypercubes h1 and h2 fit
together properly at their boundaries. The key point to
note is that, for any k-face f of a hypercube h, the
intersection of S+(h) and f is completely determined by
the labels of the vertices of f. Thus, if f is a common face
of h1 and h2, then S+(h1) and S+(h2) are identical on f. A
proof is contained in Lemma 2 in the appendix.

We claim and must prove not only that S+(h1) and S+(h2)
are identical on their common faces, but that the
triangulations of S+(h1) and S+(h2) match. The convex
hull algorithm described in the previous section
incrementally builds the convex hull, conv(W+(h)), by
adding points in lexicograph order. It simultaneously
builds a triangulation of the facets of conv(W+(h)) since
the addition of each point creates simplices that are new
facets of the convex hull and/or adds simplices to
existing facets of the convex hull. This “canonical”
triangulation of the facets of the convex hull is
completely determined by the lexicographic order of the
points. Since S+(h) is composed of the facets of
conv(W+(h)), this is also a canonical triangulation of
S+(h). The appendix contains a formal, precise definition
of canonical triangulations.

The simplices in the canonical triangulations of S+(h)
over all hypercubes h form the set T. If h1 and h2 are two
adjacent hypercubes, then the canonical triangulations of
S+(h1) and S+(h2) agree on the boundaries of h1 and h2.
Thus the simplices in T fit together to define a simplicial
complex. (Theorem 1 in the appendix.)

Since T defines a simplicial complex, we need only
check neighborhoods of the vertices of T to prove that |T|
is a manifold with boundary. (Lemma 3 in the
appendix.) We construct an explicit mapping from the
neighborhood of each vertex to Rd-1 or a closed half-
space in Rd-1. This completes our proof.

5

Our proof only holds when the isosurface vertices are
located at the midpoints of edges. In Section 2.3 we
propose computing the locations of isosurface vertices by
linearly interpolating between the field values at the
endpoints of intersected edges. It may be possible that
replacing the midpoints by interpolants causes the
isosurface to intersect itself. This cannot happen in three
dimensions, but we do not know if it can happen in
higher dimensions. The simplices will still fit together
properly to form an abstract simplicial complex and a
manifold with boundary, but the embedding of that
manifold given by the values of the interpolated points
may intersect itself within a given hypercube.

Instead of using a lookup table, we could construct
conv(W+(h)) and S+(h) for each hypercube separately.
We could then replace the midpoints in each W+(h) by
the linear interpolants and form the convex hull of these
interpolants. The proof of correctness outlined above
holds for this modified algorithm. The only difference is
that the set W+(h) has changed.

A more practical approach might be a hybrid scheme in
which we sometimes use table lookup and sometimes
construct S+(h) from interpolated values. However, it is
not clear how such a scheme would guarantee that
surfaces and triangulations from adjacent hypercubes
would fit together properly.

4. Comparison to the Modified Marching
Cubes

Our algorithm generates topologically the same lookup
table as proposed in the Modified Marching Cubes
algorithm [12], except for one case where we get a
different, but an equally valid, isosurface (Figure 3).
When two negative vertices are diagonally opposite to
each other, our algorithm generates a tunnel-like surface,
while the Marching Cubes algorithm gives two
disconnected surfaces. One drawback of this approach is
that it increases the number of triangles from two to six
for this particular case. It is curious to note that this is not
one of the ambiguous cases pointed out in the Nielson
and Hamann’s Asymptotic Decider [14]. Our method has
a tendency to keep the ‘+’ vertices together, preserving
pathways when possible. This property can also be seen
in the first two cases in Appendix I, which shows the
ambiguous cases given in [12] and the respective
complementary cases generated by our algorithm.

5. Time Varying Isosurfaces

A number of different techniques have been introduced
for fast isosurface extraction and compressed
representation of time-varying fields [15][16][20][21].
Our algorithm provides another approach to compact
representation of time varying isosurfaces, similar to that
of Weigle and Banks [19]. The drawback of their method

Marching Cubes Our Algorithm

Figure 3. Different triangulations generated by our
algorithm as compared to Marching Cubes.

is that they decompose each 4-cell into 192 4-simplices
and then recursively contour each of the simplices. This
approach results in a very large number of tetrahedra
compared to our method.

We output our tetrahedral grid sorted in time, hence, we
need only compute the intersection for a given interval of
the time constraint. This approach makes the slicing
independent of the total number of time steps and speeds
up the slicing considerably. On an SGI Octane,
computing a time slice is interactive for an isosurface
already generated from a 40x40x40x36 size data set.
This is much faster compared to 2 minutes in [19] and
can be attributed to the large number of tetrahedra
generated due to simplicial decomposition of each 4-cell.
Constructing the isosurface in R4 allows slicing at non-
integral time steps, effectively merging the steps of
interpolation and isosurface extraction into one, allowing
us to generate smooth animations of the time-varying
isosurface very efficiently.

For 10 time steps of the Jet Shockwave data set, an
isovalue of 37 generated an isosurface with 8,021,739
tetrahedra and 1,394,104 vertices in 1109 seconds. The
isosurface intersected 1,317,975 hypercubes, giving an
average of around 6 tetrahedra per hypercube. The total
number of triangles generated for the same 10 time steps
by Marching Cubes was 1,796,350.

Time-varying isosurfaces can also used as a compressed
representation in volume morphing applications. Figure 7
shows a sequence of frames generated using a time
varying function. This function is radial at time 0,
migrates to a toroidal function at time 1, and then to a
union of two radial functions at time 2. The movie file,
morph.mpv, (in the reviewers directory) shows an
animation of this function. Note how easily this
technique can handle topology changes.

6. Interval Volumes and Contour Sensitivity

For a trivariate function f(x,y,z) sampled on a 3D
rectilinear grid, the interval volume [12] is defined by
I f(α,β) = { (x,y,z): α ≤ f(x,y,z) ≤ β } . Fujishuro [5] discuss
applications of interval volumes and propose a solid
fitting algorithm for tetrahedralizing the interval volume
by extending Marching Cubes. Max et.al. [11] and

6

Interval Volume Wireframe Slice along the w-axis Slice along the x-axis

Figure 4. Interval volume for the sphere function Figure 5. Slices of F along different coordinate axes

Nielson et.al. [13] compute the tetrahedralization by
decomposing each cube in the grid to five tetrahedra.
Nielson then uses an efficient lookup table to compute
the interval volume within each simplex and decompose
it into tetrahedra. Since they do this for simplices rather
than cubes, the number of tetrahedra generated is very
large. We project the problem of interval volume
tetrahedralization as a 4-dimensional problem as follows.

From f(x,y,z), construct a 4D function F(x,y,z,t) given by,
 f(x,y,z) - α for t = 0

 F(x,y,z,t) = {
 f(x,y,z) - β for t = 1

The interval volume I f is then given by the isosurface
F(x,y,z,t) = 0. We use our algorithm to compute the
isosurface for F = 0 and then use parallel projection to
project the resulting isosurface to 3D to give the
tetrahedralization of I f. In order to compare our
technique to that of Nielson’s, we show the results
obtained for the following function sampled on a
14x14x14 grid for α = 0.35, β = 0.37 (Figure 4).

f(x,y,z) = (x - 0.5)2 + (y - 0.5)2 + (z - 0.5)2

The resulting tetrahedralization consists of 4204
tetrahedra and 1496 vertices as compared to 8500
tetrahedra and 3224 vertices in [13]. Furthermore, the 3D
isosurface can be animated to show the contour
sensitivity by slicing the 4D isosurface. Slicing allows
the user to quickly move back and forth between
different isovalues to see the contour sensitivity. Sections
of the isosurface, which are more sensitive to the
isovalue can be seen to change more rapidly compared to
other sections.

In order to visualize a larger range of isovalues (α1,
α2,α3, ...,αn) this idea can be extended to tetrahedralize
the volume using n steps along the t axis. Thus, the
function F(x,y,z,t), is given by

F(x,y,z,ti) = f(x,y,z) – αi for 1 ≤ i ≤ n

Using 5 steps, we generated the interval volume for
timestep 60 of Jet Shockwave for isovalues of 17 through
57. The resulting interval volume consisted of 2,563,331
tetrahedra and 501,110 vertices compared to over 7 same
million triangles generated by Marching Cubes for the

range of values. The movie file, interval.mpv, shows the
slices for the interval at intermediate isovalues.

7. Arbitrary Slicing of higher dimensions

The higher dimensional isosurfaces can be sliced along
arbitrary axes or hyperplanes in R4. For example, slicing
along the z-axis allows one to see the various trends in
the isosurface at a given z value in the grid. Animating
the slice allows one to see the isosurface changing along
the z-axis. This can be useful to follow a time-evolving
structure, by taking a slice in the structures direction of
movement.

Figure 5 shows slices of the following function along
different axes. The function gives a sphere along the w-
axis, while along the x-axis a paraboloid is generated.

F(x,y,z,w) = (x - 0.5)2 + (y - 0.5)2 + (z - 0.5)2 - cw - d

where, c and d are constants.

Figure 6 shows slices of the Jet Shockwave isosurface
along different axes. Interesting features can be seen
from the slices, e.g. the y-slice shows features developing
with time in the cross section of the isosurface along the
x-z plane. The movie file, zSlice.mpv, shows an
animation of the z-slice for increasing z values. Patterns
can be seen as the time evolving ‘ tube’ is sampled at
different z-values.

8. Results

In this paper, we have shown an efficient algorithm for
constructing isosurfaces in d-dimensional grids and also
discussed a few applications of the algorithm. The
lookup table for 4-dimensional contours has 216 entries
with a maximum of 26 tetrahedra in a given case. The
average was approximately 13 tetrahedra for the
complete table. In practice, the average is much less then
13. For the Jet Shock Wave data set, the average number
of tetrahedra per hypercube was approximately 6.

We also generated a five-dimensional isosurface by
combining the interval volume and time varying

7

techniques together. Rather than precompute the lookup
table, we used a lazy evaluation method with our
algorithm to generate the entries as needed. The interval
hypervolume for the Jet Shockwave having isovalues 27
and 37 for timesteps 56 and 57, consisted of 3.3 million
hypertetrahedra and 2.2 million vertices for the
256x256x256x2x2 size data set. The average number of
hypertetrahedra per intersected 5-cube was
approximately 24.

9. Future Work

For four-dimensional isosurfaces, tetrahedral mesh
compression techniques can be employed to reduce the
memory and processing overhead for the rendering
system, also allowing level-of-detail rendering of the
time evolving isosurface. We plan to extend current
tetrahedral mesh simplification techniques [17] to allow
compression in four dimensions.

A future direction of research would be to integrate time-
varying isosurfaces with a volume morphing application.
This would allow the user to interactively slice back and
forth to animate the volume as well as interactively
manipulate the model in three dimensions.

Further, fast isosurface extraction algorithms
[15][16][20][21] can be used to replace the linear search
for the cells intersected by the isosurface to speed up the
isosurface construction. A lookup table for a five
dimensional isosurface, will have 232 entries. We are
currently working on ways to generate entries on the fly
and then caching the more frequently used ones.

10. Acknowledgements

This work was supported by NSF career grant #ACI-
9876022. We would like to thank Zhi Yao, Donglin
Liang and Hoseok Kang for contributing to the
introductory ideas for this work. We would also like to
thank Zbigniew Fiedorowicz for helpful consultations on
topology. The Jet Shockwave data is part of the
Advanced Visualization Technology Center’s data
repository and appears courtesy of the University of
Chicago.

11. References

[1] ALBERTELLI, G. AND CRAWFIS, R.A. Efficient
subdivision of finite-element datasets into consistent
tetrahedra. In Proceedings of Visualization ’97
(1997). pp. 213-219

[2] BAJAJ, C.L., PASCUCCI, V. AND RABBIOLO, G.
Hypervolume Visualization: A challenge in
simplicity. In Proceedings of the 1998 Symposium
on Volume Visualization (1998), pp. 95-102.

[3] CLARKSON, K.L., MEHLHORN, K. AND SEIDEL, R.
Four results on randomized incremental
constructions. Comp. Geom.: Theory and
Applications (1993).

[4] DURST, M. Additional reference to Marching Cubes.
Computer Graphics 22, 4 (1988), pp. 72-73.

[5] FUJISHIRO, I., MAEDA, Y., SATO, H. AND

TAKESHIMA, Y. Volumetric data exploration using
interval volume. In IEEE Transactions On
Visualization and Computer Graphics 2, 2 (1996),
pp. 144 –155.

[6] HANSON, A.J. Rotations for n-dimensional Graphics.
Graphics Gems V. pp. 55-64. Academic Press,
Cambridge, MA, 1995.

[7] HANSON, A.J. AND HENG, P.A. Visualizing the
Fourth Dimension using Geometry and Light. In
Proceedings of Visualization ’91 (1991), pp. 321-
328.

[8] HANSON, A.J. AND CROSS, R.A. Interactive
visualization methods for four dimensions. In
Proceedings of Visualization ’93 (1993), pp. 196-
203.

[9] HANSON, A.J. AND HENG, P.A. Four-dimensional
views of 3D scalar fields. In Proceedings of
Visualization ’92 (1992), pp. 84-91.

[10] LORENSEN, W. AND CLINE, H. Marching Cubes: A
high resolution 3d surface construction algorithm.
Computer Graphics 21, 4 (1987), pp. 163-170.

[11] MAX, N, HANRAHAN, P. AND CRAWFIS, R. Area and
volume coherence for efficient visualization of 3D
scalar functions. Computer Graphics 24, 5 (1990),
pp. 27-33.

[12] MONTANI, C., SCATENI, R. AND SCOPIGNO, R. A
modified look-up table for implicit disambiguation
of Marching Cubes. Visual Computer 10 (1994), pp.
353-355.

[13] NIELSON, G.M. AND SUNG, J. Interval Volume
Tetrahedralization. In Proceedings of Visualization
’97 (1997).

[14] NIELSON, G.M. AND HAMANN, B. The Asymptotic
Decider: Resolving the ambiguity in Marching
Cubes. In Proceedings of Visualization ’91 (1991).
pp. 83-91.

[15] SHEN, H.W. Isosurface extraction in time-varying
fields using a temporal hierarchical index tree. In

8

Proceedings of Visualization ’98 (1998), pp. 159 –
164.

[16] SUTTON, P. AND HANSEN, C.D. Isosurface extraction
in time-varying fields using a temporal branch-on-
need tree (T-BON). In Proceedings of Visualization
’99 (1999), pp. 147 – 154.

[17] TROTTS, I.J., HAMANN, B., JOY, K.I. AND WILEY,
D.F. Simplification of tetrahedral meshes. In
Proceedings of Visualization ’98 (1998). pp. 287-
295.

[18] WEIGLE, C. AND BANKS, D. Complex-valued
contour meshing. In Proceedings of
Visualization’96 (1996) pp. 173-180.

[19] WEIGLE, C. AND BANKS, D. Extracting isovalued
features in 4-dimensional scalar fields. In
Proceedings of the 1998 Symposium on Volume
Visualization (1998), pp. 103-110.

[20] WILHEMS, J. AND GELDER, A.V. Octrees for faster
isosurface generation. In ACM Transactions on
Graphics 11, 3(1992), pp 201-227.

[21] WILHEMS, J. AND GELDER, A.V. Multi-dimensional
trees for controlled volume rendering and
compression. In Proceedings of the 1994
Symposium on Volume Visualization (1994), pp.
27- 34.

Appendix I: Comparison between Modified Marching Cubes and Our Algorithm

The top row shows the ambiguous cases shown in the Modified Marching Cubes algorithm while, the bottom row
shows the corresponding complementary cases generated by our algorithm. All the cases can be seen to be topologically
the same as suggested in Modified Marching Cubes.

Appendix II: Proof of Correctness

Let h be a k-dimensional hypercube in Rd whose vertices
are labeled positive or negative. Let W+(h) be the set of
positive vertices of h and the midpoints of edges of h
with one positive and one negative endpoint. Form the
set S+(h) by taking the boundary of the convex hull of
W+(h), removing any points on the boundary of h, and
taking the closure of the remaining set. Formally, S+(h)
equals cl(∂conv(W+(h)) – ∂h), where cl, ∂ and conv are
the closure, boundary and convex operators, respectively.

Note that W+(h) and S+(h) are defined for any dimension
k, not only full dimensional ones where k equals d. If h is
a d-dimensional hypercube in Rd, then its facets are
(d−1)-dimensional hypercubes, and its (proper) faces are
k-dimensional hypercubes where d > k ≥ 0. For instance,
the faces of a four dimensional hypercube are three
dimensional cubes, two dimensional squares, one
dimensional edges and zero dimensional vertices. For
each face f of a labeled d-dimensional hypercube h, the
sets W+(f) and S+(f) are defined.

We first show that conv(W+(h)) is full dimensional, i.e.,
if h has dimension k, then so does conv(W+(h)).

Lemma 1: If h is a k-dimensional hypercube whose
vertices are labeled positive or negative, then
conv(W+(h)) is either the empty set or has dimension k.

Proof: If W+(h) is not the empty set, then h has some
vertex v with a positive label. For every edge (v,v’) in h,
either v’ is in W+(h) or the midpoint of (v,v’) is in W+(h).
In either case, the midpoint of (v,v’) lies in conv(W+(h)).
Vertex v and the midpoints of its incident edges form a
k-dimensional simplex contain in conv(W+(h)).
Q.E.D.

As a corollary to Lemma 1, we get an alternative
characterization of S+(h).

Corollary 1: Point p ∈ conv(W+(h)) is in S+(h) if and
only if every neighborhood of p in h contains a point,
which is not in conv(W+(h)).

9

Lemma 1 and Corollary 1 apply to all k-dimensional
hypercubes in Rd, not only d-dimensional ones.

By Lemma 1, the interior of S+(h) is identical to the
boundary of a d-dimensional convex set and so clearly
forms a surface. We next show that the intersection of
S+(h) and any k-face f of h is completely determined by
the labels on the vertices of f. This implies that the
surfaces defined by S+(h1) and S+(h2) for two adjacent
grid hypercubes h1 and h2 fit together properly at their
boundaries.

Lemma 2: If h is a d-dimensional hypercube whose
vertices are labeled positive or negative and f is a k-
dimensional face of h, then S+(h) ∩ f = S+(f).

Proof:
Since f is a facet of h,

conv(W+(h)) ∩ f = conv(W+(h) ∩ f).
Since W+(h) ∩ f = W+(f),

conv(W+(h)) ∩ f = conv(W+(f)).

Consider a point p ∈ S+(f). By definition, point p is in
conv(W+(f)), and thus point p is also in conv(W+(h)) ∩ f.
By Corollary 1, point p is in S+(f) if and only if every
neighborhood of p in f contains some point not in
conv(W+(f)). Since f is a subset of h and the set of points
not in conv(W+(h)) is open, the neighborhood of p in h
must also contain some point not in conv(W+(h)). Thus,
if p is an element of S+(f), then p is also an element of
S+(h).

Now consider a point p ∈ conv(W+(h)) ∩ f. Since p is in
conv(W+(h)) ∩ f, point p is also in conv(W+(f)). By
Corollary 1, point p is in S+(h) if and only if every
neighborhood of p in h contains some point not in
conv(W+(h)). Thus there must be some hyperplane Γ
tangent to conv(W+(h)) at p and separating conv(W+(h))
from some point in the interior of h.

Let g be the smallest face of the hypercube h containing
p. Since p lies on f, the face g is also a face of f. (Note f
is a face of itself.) By the argument given above,

conv(W+(h)) ∩ g = conv(W+(g)).

Since p is in conv(W+(h)) ∩ g, set W+(g) is not empty
and must contain some vertex v with positive label. For
every edge (v,v’) in h, either v’ is in W+(h) or the
midpoint of (v,v’) is in W+(h). In either case, the
midpoint of (v,v’) lies in conv(W+(h)).

If Γ contains g, then Γ must separate conv(W+(h)) from
some edge (v,v’) incident on h. But the midpoint of
every such edge lies in conv(W+(h)). Therefore, Γ does
not contain g. Since Γ does not contain g, but contains a
point p in the interior of g, the subspace Γ ∩ g must
separate conv(W+(h)) ∩ g from some points in the

interior of g. Thus, every neighborhood of p in g contains
some points which are not in conv(W+(h)) ∩ g. Since g is
a subset of f and the set of points not in conv(W+(f)) is
open, the neighborhood of p in f must also contain some
point not in conv(W+(f)). Thus if p is an element of S+(h)
∩ f, then p is also an element of S+(f).
Q.E.D.

The following corollary follows immediately:

Corollary 2: Let G be a regular grid whose vertices are
labeled positive or negative. If h1 and h2 are two adjacent
grid hypercubes in R and f = h1 ∩ h2, then S+(h1) ∩ f =
S+(f) = S+(h2) ∩ f.

A simplicial complex T is a finite collection of simplices
in Rd such that:
• If t is a simplex in T and t’ is a face of t, then t’ is

also a simplex in T;
• If t1 and t2 are simplices in T, then t1 ∩ t2 are also

simplices in T.

Note that a simplex can have any dimension and a face of
a simplex is also a simplex (of lower dimension.) If T is
simplicial complex, then |T| is the underlying point set,
i.e., the union of all the simplices in T and T is called a
triangulation of |T|.

Let p1,…,pn be points in convex position in Rd. We call a
triangulation T’ of conv(p1,…,pn) canonical if T’−pn, the
simplicial complex T’ with all the simplices incident on
pn removed, is a canonical triangulation of
conv(p1,…,pn−1). A single simplex is a canonical
triangulation. Intuitively, a canonical triangulation is
built by adding points and their incident simplices in the
specified order. This is exactly what the convex hull
algorithm described in the text does. Thus the simplices
reported by that algorithm form a canonical triangulation
of the facets of the convex hull.

The definition of canonical triangulation still holds if
conv(p1,…,pn) and its triangulation T’ are not d
dimensional. A canonical triangulation of conv(p1,…,pn)
induces a canonical triangulation of every face of
conv(p1,…,pn).

We call a triangulation of S+(h) canonical if it is a
canonical triangulation of all the facets of S+(h). If f is a
face of h, then S+(f) is a subset of S+(h) by Lemma 2 and
the canonical triangulation of S+(h) induces a canonical
triangulation of S+(f).

 For each hypercube h, let T+(h) be the canonical
triangulation of S+(h) where the vertices are sorted in
lexicographic order. Our algorithm returns T =

).(hT
Gh

�
∈

+

10

Theorem 1: If G is a regular grid whose vertices are

labeled positive or negative, then set T =)(hT
Gh

�
∈

+ is a

simplicial complex.

Proof: Let t1 and t2 be simplices in T. We must show that
t1 ∩ t2 is also a simplex in T. Note that t1 and t2 may have
any dimension between 0 and d−1.

Simplex t1 is an element of the canonical triangulation of
S+(h1) for some hypercube h1. Similarly, simplex t2 is an
element of the canonical triangulation of S+(h2) for some
hypercube h2. Let f = h1 ∩ h2. The canonical
triangulation T+(h1) of S+(h1) induces the canonical
triangulation T+(f) of S+(f). Since f is a face of h1, set t1
∩ f is a simplex in T+(f). Similarly, set t2 ∩ f is a
simplex in T+(f). Since t1 ∩ f and t2 ∩ f are both
simplices in T+(f), the set t1 ∩ t2 = t1 ∩ t2 ∩ f is also a
simplex in T+(f). Since T+(f) is a subset of T+(h1), the
simplex t1 ∩ t2 is an element of T.
Q.E.D.

A set of points M in Rd is a (d−1)-dimensional manifold
with boundary if the neighborhood of each point in M is

homeomorphic to either Rd-1 or 1dR −
+ , the closed half-

space of Rd−1 given by the equation xd = 0. We claim that
to show a simplicial complex is a manifold with
boundary, we need only check its vertices.

Lemma 3: Let T’ be a simplicial complex. If the
neighborhood of each vertex of T’ is homeomorphic to
Rd−1 or a closed half-space of Rd−1, then |T’ | is a manifold
with boundary.

Proof: Let t be any simplex of T’ , not necessarily full
dimensional. The neighborhood of every point in the
interior of t is topologically identical, so if the
neighborhood of some point in the interior of t is

homeomorphic to Rd−1 or 1−
+
dR , then every point has such

a neighborhood. Simplex t has a vertex v whose

neighborhood is homeomorphic to Rd−1 or 1−
+
dR . Some

point p in the interior of t lies in this neighborhood and

so p has a neighborhood homeomorphic to Rd−1 or 1−
+
dR .

Since some point in the interior of t has such a
neighborhood, every point in the interior of t has such a
neighborhood. Since every point in |T’ | lies in the
interior of some simplex of T’ , every point has a

neighborhood homeomorphic to Rd−1 or 1−
+
dR . Thus, |T’ |

is a manifold.
Q.E.D.

Finally, we show that)(hS
Gh

�
∈

+ is a manifold with

boundary.

Theorem 2: If G is a regular grid whose vertices are

labeled positive or negative, then set)(hS
Gh

�
∈

+ is a

manifold with boundary.

Proof: By Theorem 1,)(hS
Gh

�
∈

+ has a triangulation T =

)(hT
Gh

�
∈

+ . By the previous lemma, we need only show

that every vertex of T has a neighborhood homeomorphic
to Rd-1 or a closed half-space of Rd-1. Note that the
vertices of T are all midpoints of hypercube edges. While
W+(h) contains hypercube vertices, their neighborhood in
h is always contained in conv(W+(h)) and so by Corollary
1 they are never included in S+(h).

Let v be a vertex of T in the interior of the regular grid G.
Vertex v is the midpoint of some edge (u1,u2), where u1

has a positive label and u2 has a negative one. Let Γ be the
hyperplane through v which is perpendicular to (u1,u2).
For each point p on Γ, let lp be the line p + α(u1−u2)
parameterized by α. Let r’ be the minimum distance from
v to any simplex in T not containing v. Let r1 and r2 be the
minimum distances from u1 and u2, respectively, to any
simplex in T. Note that neither u1 nor u2 are on any
simplex of T. Let r be the minimum of r’ , r1 and r2. Let Nv

be a ball in Γ of radius r around v.

Each line lp for p ∈ Nv intersects at least one hypercube h
containing edge (u1,u2). Since line lp is parallel to edge
(u1,u2), line lp intersects conv(W+(h)) in a line segment.
One endpoint of this line segment is in the neighborhood
of v while the other is in the neighborhood of u1. The
point in the neighborhood of v is on S+(h) while the other
is not. Map the point on S+(h) to p.

Restricted to each hypercube h, this mapping is 1-1 and
onto. We must show that this mapping agrees on points
in the intersection of two hypercubes. Let h1 and h2 be two
hypercubes containing (u1,u2). Let h equal h1 ∩ h2, a
lower dimensional hypercube that is the intersection of h1

and h2. By Corollary 2, S+(h1) ∩ h = S+(h2) ∩ h. Thus, lp
∩ S+(h1) = lp ∩ S+(h2) for any point p ∈ h ∩ Γ. Since the
mapping agrees wherever two hypercubes intersect, it is
1-1 and onto. We can restrict any convergent sequence of
points to a convergent sequence lying in a single
hypercube. Since the map is continuous within each
hypercube, it is continuous everywhere.

If v lies on an edge (u1,u2) on the boundary of G instead
of in the interior, then we can map points of |T| in the
neighborhood of v to Γ+, a closed half-space of Rd-1

perpendicular to (u1,u2).

The argument is essentially the same as the previous one.
Since the neighborhood of each vertex of v is
homeomorphic to Rd-1 or a closed half-space in Rd-1, |T| is
a manifold with boundary.
Q.E.D.

11

Color Plates

Slice along X-axis Slice along Y-axis Slice along Z-axis

 Figure 6. Slices of a time-varying isosurface for the Jet Shockwave data set along different axes. Isovalue = 37, Timesteps = 56-65

 Figure 7. Sequence of 10 frames showing slices of a time varying function.

Isosurfacing in Higher Dimensions
Praveen Bhaniramka, Rephael Wenger, Roger Crawfis

