Validating Simulation Pipelines With Potential Recordings

A PhD thesis defense for: Jess Tate

Advisor: Rob MacLeod

Pre-surgical Planning

https://brightside.me/wonder-curiosities/10-futuristic-medical-innovations-that-will-redefine-our-lives-407760/

Predictive Medicine

https://lifeboat.com/blog/2018/04/the-nanobots-and-ninja-polymers-transforming-medicine

З

Biomedical Computational Modeling

Virtual Physiological Human

Why aren't computational models used more?

Validation

Virtual EP Lab

nature biomedical engineering

ARTICLES https://doi.org/10.1038/s41551-018-0282-2

Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia

Adityo Prakosa^{1,7}, Hermenegild J. Arevalo^{1,2,7}, Dongdong Deng^{1,7}, Patrick M. Boyle^{1,7}, Plamen P. Nikolov¹, Hiroshi Ashikaga³, Joshua J. E. Blauer⁴, Elyar Ghafoori⁴, Carolyn J. Park¹, Robert C. Blake III¹, Frederick T. Han⁵, Rob S. MacLeod⁴, Henry R. Halperin³, David J. Callans⁶, Ravi Ranjan⁴, Jonathan Chrispin³, Saman Nazarian⁶ and Natalia A. Trayanova^{1,3*}

Hermenegild, et al. Nature Communications, volume 7, Article number: 11437 (2016)

ECG Forward Simulation

Defibrillation

http://www.defibrillatorinformation.com/

Mechanisms are not well know

Simulation has been key understanding

Defibrillation

Rodriguez, etal., Circ Res. 2005 Jul 22; 97(2): 168–175.

85ms

Simulation with experiments

С

Defibrillation

Still a Lack of Validation

0.79

0.90

Jolley, et al. Heart Rhythm. 2010 May ; 7(5): 692-698

0.94

Validation

Why is Validation Missing?

https://www.timeslifestyle.net/20180318/where-is-your-heart-located/

http://www.defibrillatorinformation.com/

Challenges of Validation

What Makes Validation Hard

https://www.army.mil/article/202490/ advancements_in_technology_change_the_way_health_care_is_delivered_at_the_tamc_cath_lab

Access

Experimental Complexity

Goal: Validate Two Pipelines

ECG Forward Simulation

Defibrillation Simulation

Specific Aims

1. Evaluate the effect of missing sources sampling on the ECG forward simulation

Specific Aims

2. Record potentials in a torso-tank preparation to validate the simulation pipeline

3. Record body-surface potentials on patients to validate the simulation pipeline

Tools for Clinicians

Cardiac Activity

Cardiac Activity

Ventricular Tachycardia

Ventricular Fibrillation

Arrhythmia Treatments

Anti-Arrhythmic Drugs

http://mvpresource.com

Ablation Procedures

Defibrillation

http://www.defibrillatorinformation.com/

Ventricular Fibrillation

Cardiac Activity

Automatic External Defibrillator- AED

http://www.wtamu.edu/

Defibrillation

Wearable Cardioverter Defibrillator- WCD

Implantable Cardioverter Defibrillator- ICD

http://www.buzzle.com/

http://www.fda.gov/

Defibrillation Threshold (DFT): Lowest Energy Needed for Effective Defibrillation

Bioelectric Fields

Stem from currents generated within the torso

Bioelectric Fields

Potential Fields

Potential Fields

Dissipate with Distance

Superimpose

Intrinsic or Extrinsic

Heterogeneous Conduction

Cardiac Sources

Time Varying

Spatially Varying

Electrogram

Qualitative Comparison

BSPM Electrode Placement

Defibrillator Source

https://en.wikipedia.org/wiki/Defibrillation

Waveform

http://www.cardiocases.com/en/pacingdefibrillation/specificities/icd-therapy/ medtronic/medtronic-therapies

Mathematical Description

$$\nabla \cdot \sigma \nabla \phi = I \qquad \qquad \nabla \cdot \sigma \nabla \phi = 0$$

$$\phi(x_h) = \phi_h$$

$$\frac{\partial \phi(x_t)}{\partial \hat{n}} = 0$$

Finite Element Method (FEM)

Boundary Element Method (BEM)

Modeling Bioelectric Fields

SC

Validation Approaches In Situ Animal Torso Tank

Bear, etal., Circ A & E. 2015;8:677-684.

Jorgenson, et al., IEEE Trans. Biomed. Eng., VOL. 42, NO. 6, JUNE 1995

Rodriguez, etal., Circ Res. 2005 Jul 22; 97(2): 168-175.

Oster, etal., Circulation, Volume 96, Issue 3, 1997

Clinical

Sapp, etal,. Circ. A & E., 2012; 5(5):1001-1009

Jolley, et al. Heart Rhythm J 2008;5(4):565--572

Specific Aim

1. Evaluate the effect of missing source sampling on the ECG forward simulation

Error in Forward Simulation

Bear, etal., CircArrhythmElectrophysiol.2015;8:677-684.

Error in Forward Simulation

Source Recording

Epicardial Sock (Ventricle Only)

Test sampling strategies of the atrial region to reduce error in forward simulation

Varied Sampling

AV plane to A. roof

ECG Forward Simulation

Effect of No Atrial Sampling

Effect of Missing Ventricle Sampling

Reduced Ventricle Sampling

Progressive Sampling

Possible Sampling

More electrodes are better

Sparse placement can reduce error

Missing ventricular sampling increases error further

Specific Aims

2. Record potentials in a torso-tank preparation to validate the simulation pipeline

3. Measure body-surface potentials in patients to validate the simulation pipeline

Defibrillation Simulation

Jorgenson, et al., IEEE Trans. Biomed. Eng., VOL. 42, NO. 6, JUNE 1995

Claydon, etal., IEEE EMBS 10Th Ann. Int. Conference 1988

Sparse or Local Recordings No Validation in Patients

Measure high spatial resolution volumetric potentials within a torso-tank to validate the defibrillation simulation

Measure body-surface potentials during ICD testing for validation purposes

Simulation Pipeline

Two Validation Environments

https://www.army.mil/article/202490/ advancements_in_technology_change_the_way_health_care_is_delivered_at_the_tamc_cath_lab

Access

Experimental Complexity

Tank Experiment

Record ICD potentials within heart and on torso tank surface

ICD coil

Registration Pipeline

ICD Testing During Implantation

https://www.army.mil/article/202490/ advancements_in_technology_change_the_way_health_care_is_delivered_at_the_tamc_cath_lab

Limited Lead Selection and Body-Surface Estimation

Final Leadset

Front

Record ICD Surface Potentials During Device Implantation and Testing

Error Metrics

Potential Field Comparison

Compare DFTs

Subject age	Empirical DFT	Predicted DFT
6 years	0 - 3 J	2.7 J
8 years	10 - 15 J	8.31 J
9 years	10 - 15 J	14.5 J
15 years	3 - 5 J	5.2 J
16 years	$14.6 - 20.7 \; \mathrm{J}$	20 J
17 years	5 – 10 J	19.9 J
17 years	20 – 25 J	26.8 J
29 years	15 - 20 J	18 J
32 years	10 – 12 J	12.9 J

LLS and BS Estimation can be effectively applied to defibrillator potentials

Simulation accurately predicts BSPM

Simulation accurately predicts DFTs in most cases

Error Metrics

Potential Comparison

SC

Proof of concept for measuring within myocardium for validation of simulation

Low variation over multiple shocks shows stability of the preparation

Adequate needle sampling remains a challenge

Improved Validation of Two Pipelines

ECG Forward Simulation

Defibrillation Simulation

What did we learn?

ECG Forward Simulation

Better Source Representation More Accurate Predictions

Improve ECGImaging

Defibrillation

Pioneered new validation approaches

Showed accuracy: potentials and DFTs

Improved confidence in its use

Pediatric Defibrillation

ICD leads

Gasparini, JCE, 2005

Stephenson, JCE, 2006

Children's Hospital Boston

Guide ICD Placements in Children

Predictive Medicine

Acknowledgements

Advisor: Rob MacLeod Lab Members: Jeroen Stinstra **Darrell Swenson** Josh Blauer Kedar Aras **Brett Burton** Moritz Dannhauer Wilson Good Karli Gillette Brian Zenger **Jake Bergquist**

Committee: Chris Johnson Ed Hsu Frank Sachse Thomas Pilcher

Developer Staff: Ayla Khan Dan White Jonathan Bronson Ally Warner Mark Dewey Collaborators: Dana Brooks Jaume Coll-Font Matt Jolley John Triedman

CVRTI: Bruce Steadmen Phil Ershler Jayne Davis Nancy Allen Alicja Booth

All the Staff at the SCI Institute, CVRTI, and Primary Childrens'; and Family and Friends

80

List of Publications

- Measuring Defibrillator Surface Potentials: The Validation of Predictive Defibrillation Computer Model Jess Tate, Jeroen Stinstra, Thomas Pilcher, Ahrash Poursaid, Matthew Jolley, Elizabeth Saarel, John Triedman, and Rob MacLeod. Computers in Biology and Medicine, Symposium on Quantitative Cardiology. In press
- <u>Reducing Error in ECG Forward Simulations with Improved Source Sampling</u> Jess D. Tate, Karli K. Gillette, Brett M. Burton, Wilson W. Good, Jaume Coll-Font, Dana H. Brooks, and Rob S. MacLeod. Frontiers in Physiology - Electrocardiographic Imaging research topic. In press

Second Author Journal Papers

- Finite element modeling of subcutaneous implantable defibrillator electrodes in an adult torso Matthew Jolley, Jeroen Stinstra, Jess Tate, Steve Pieper, Rob MacLeod, Larry Chu, Paul Wang, John K. Triedman. Heart Rythm 7(5):692-698, 2010
- Experimental Data and Geometric Analysis Repository—EDGAR Kedar Aras, Wilson Good, Jess Tate, Brett Burton, Dana Brooks, Jaume Coll-Font, Olaf Doessel, Walther Schulze, Danila Potyagaylo, Linwei Wang, Peter van Dam, Rob MacLeod. Journal of Electrocardiology. doi:10.1016/j.jelectrocard.2015.08.008. 2015
- PFEIFER: Preprocessing Framework for Electrograms Intermittently Fiducialized from Experimental Recordings Anton Rodenhauser, Wilson W Good, Brian Zenger, Jess Tate, Kedar Aras, Brett Burton, Rob S MacLeod. The Journal of Open Source Software 2015.
- <u>A Framework for Image-Based Modeling of Acute Myocardial Ischemia Using</u> <u>Intramurally Recorded Extracellular Potentials</u> Brett M Burton, Kedar K Aras, Wilson W Good, Jess D Tate, Brian Zenger, Rob S MacLeod. Annals of biomedical engineering 2018
- Image-Based Modeling of Acute Myocardial Ischemia Using Experimentally Derived Ischemic Zone Source Representations BM Burton, KK Aras, WW Good, JD Tate, B Zenger, RS MacLeod. Journal of Electrocardiology 2018

First Author Conference Papers

- <u>Measuring Implantable Cardioverter Defibrillators (ICDs) during Implantation Surgery:</u> <u>Verification of a Simulation</u> JD Tate, JG Stinstra, TA Pilcher, RS MacLeod. Computers in Cardiology 2009.
- <u>Measurement of Defibrillator Surface Potentials for Simulation Verification</u> Jess Tate, Jeroen Stinstra, Thomas Pilcher, Rob MacLeod. Computers in Cardiology 2010.
- <u>Measuring Defibrillator Surface Potentials for Simulation Verification</u> Jess Tate, Jeroen Stinstra, Thomas Pilcher, Ahrash Poursaid, Elizabeth Saarel, and Rob MacLeod. Conference of the IEEE EMBS 2011.
- <u>Verification of a Defibrillation Simulation Using Internal Electric Fields in a Human</u> <u>Shaped Phantom</u> Jess Tate, Thomas Pilcher, Kedar Aras, Brett Burton, Rob MacLeod. Computers in Cardiology 2014.
- <u>Analyzing Source Sampling to Reduce Error in ECG Forward Simulations</u> Jess Tate, Karli Gillette, Brett Burton, Wilson Good, Jaume Coll-Font, Dana Brooks, Rob MacLeod. Computers in Cardiology 2017

Second Author Conference Papers

- <u>The Role of Volume Conductivities in Simulation of Implantable Defibrillators</u> JG Stinstra, MA Jolley, JD Tate, DH Brooks, JK Triedman, and RS MacLeod. Computers in Cardiology 2008.
- <u>The Effect of Non-Conformal Finite Element Boundaries on Electrical Monodomain and Bidomain</u> <u>Simulations</u>Darrell Swenson, Joshua Levine, Zhisong Fu, Jess Tate, Rob MacLeod. Computers in Cardiology 2010.
- <u>A Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun Problem Solving</u> <u>Environment</u>Brett Burton, Jess Tate, Burak Erem, Darrell Swenson, Dafang Wang, Michael Steffen, Dana Brooks, Peter van Dam, Rob Macleod. Conference of the IEEE EMBS 2011.
- <u>New Additions to the Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun</u> <u>Problem Solving Environment</u> Jaume Coll-Font, Brett Burton, Jess Tate, Burak Erem, Darrel Swenson, Dafang Wang, Dana H Brooks, Peter van Dam, Rob S Macleod. Computing in Cardiology 2014.
- <u>Generation of combined-modality tetrahedral meshes</u> Karli Gillette, Jess Tate, Brianna Kindall, Peter Van Dam, Eugene Kholmovski, Rob S MacLeod. Computers in Cardiology 2015.
- <u>Temporal dilation of animal cardiac recordings registered to human torso geometries</u> Karli Gillette, Jess Tate, Brianna Kindall, Wilson Good, Jeff Wilkinson, Narendra Simha, Rob MacLeod. Computers in Cardiology 2016
- <u>The consortium for electrocardiographic imaging</u> Jaume Coll-Font, Jwala Dhamala, Danila Potyagaylo, Walther HW Schulze, Jess D Tate, Maria S Guillem, Peter Van Dam, Olaf Dossel, Dana H Brooks, Rob S Macleod. Computers in Cardiology 2016.
- Overcoming Barriers to Quantification and Comparison of Electrocardiographic Imaging Methods: A Community-Based Approach Sandesh Ghimire, Jwala Dhamala, Jaume Coll-Font, Jess D Tate, Maria S Guillem, Dana H Brooks, Rob S MacLeod, Linwei Wang. Computers in Cardiology 2017.

