Correcting Undersampled Cardiac Sources in Equivalent Double Layer Forward Simulations

Jess D. Tate, Steffen Schuler, Olaf Dössel, Rob S. MacLeod, and Thom F. Oostendorp

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA Institute of Biomed. Eng., KIT, Karlsruhe, Germany, Donders Centre for Neuroscience, Radboud University, Nijmegen, Netherlands

Atrial Sampling

Tat, etal., Front. in Physiol, vol 9 p. 1304, 2018

Jess Tate

Effect of No Atrial Sampling

3

Low Resolution Sources

FEM

BEM

Reduced error with interpolation

Source Smoothing

Jess Tate

Other Source Models?

EDL

Can we reduce the error with interpolation?

ECG Imaging

ECG Imaging Relies on Accurate Forward Models

Evaluate the effect of source sampling and interpolation strategies on EDL forward simulations

Jess Tate

Uniform Dipole Layer

$$\varphi_{\infty}(\vec{r}') = \frac{1}{4\pi\sigma} \int_{S_{d}} \frac{\sigma_{i} \nabla \varphi_{m}(\vec{r}) d\omega}{\int_{S_{d}} \frac{\sigma_{i} \nabla \varphi_{m}(\vec{r}) d\omega}{\int_{$$

van Oosterom, j. Electrocardiol., vol 35 suppl, pp 185-192, 2002

Equivalent Dipole Layer (EDL)

$$\varphi_{\infty}(\vec{r}') = \frac{1}{4\pi\sigma} \int_{S_{d}} \frac{\sigma_{i} \nabla \varphi_{m}(\vec{r}) d\omega}{\int_{S_{d}} \frac{\sigma_{i} \nabla \varphi_{m}(\vec{r}) d\omega}{\int_{$$

van Oosterom, j. Electrocardiol., vol 35 suppl, pp 185-192, 2002

Interpolating EDL

Constant (None)

Interpolating EDL

Triangle Weighting

Interpolating EDL

Triangle Splitting

Sampling Resolutions

Res 0 (578 nodes)

Res 4 (147,458)

Jess Tate

SCI 18

Effect of Interpolation

Spatial interpolation can eliminate temporal oscillations, even with low source resolution

Ground Truth

Res 0

Difference

24

Ground Truth

Res 1

Difference

Ground Truth

Res 2

Difference

Effect of Interpolation

SC

Mean +/- Std Dev of Metrics

Spatial interpolation can reduce temporal and spatial error

Triangle weighting and triangle splitting performed similarly

EDL inverse is based on optimization of the parameters

Jess Tate

Improve ECGI (GCE)

With better source representation

Acknowledgements

People

Rob MacLeod Thom Oostendorp Steffen Schuler Olaf Dössel Dana Brooks

Support Center for Integrative Biomedical Computing NIGMS NIH P41 GM103545-18

Jess Tate

University Medical Centre Mannheim and the Karlsruhe Institute of Technology (KIT)

