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Tate et al. Reducing Error in ECG Forward Simulations with Improved Source Sampling

Figure 2. Effects of removing atrial and some ventricular sampling over time on the sinus or septal
activation profile for each dataset. Each row presents the error for each dataset. Each column corresponds
to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (⇢). Each plot shows a tracing of
the error over the ventricular activation in four case: ground truth (RMS voltage only), using ventricle-only
sources, full pericardial sources, and when some ventricular sources are removed.
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Low Resolution Sources
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Source Smoothing

Spatial Downsampling of Surface Sources in the ECG Forward Problem 7

squares (LS) sense with respect toM can be expressed asX = (MT
M)�1

M

T
X

o

,

where X is the downsampled and X

o

the original signal. The method “LS lin
interp” uses linear and “LS Lap interp” uses Laplacian interpolation.

Fig. 8 depicts TMVs before and after downsampling to resolution 1. Direct
downsampling leads to a very poor representation of the wavefront’s original
shape, whereas it is rendered much better with the other methods. While least-
squares downsampling retains more sharpness than Laplacian blurring, it also
produces more ringing artifacts, which are most severe for LS Lap interp.
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Fig. 6. Direct vs. Laplacian blur downsampling with �S determined using Eq. (6).

Fig. 7. RMSE of BSPs (top) and objective function (bottom) of Eq. (6) across �S .

Fig. 8. TMVs before and after downsampling to resolution 1 using di↵erent methods.
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Other Source Models?

EDL
Can we reduce the error with interpolation?
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ECG Imaging Relies on Accurate Forward Models

ECG Imaging
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Evaluate the effect of source sampling and 
interpolation strategies on EDL forward simulations
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Uniform Dipole Layer

of the computed parameters: the individual multi-
pole components.

Sources on Surfaces

At least 3 alternative types of source description
exist in which the sources are assumed to be
distributed over surfaces. The first one is the UDL
that for years has been used to describe (explain)
the genesis of the electric signals during depolariza-
tion. The second one is the potential distribution on
a surface closely encompassing the heart. This sur-
face is usually referred to as the epicardium. In
theory, a unique one to one relationship exists
between the potentials on the body surface and
those on the inner surface (23-29), provided that
the inner surface is closed and that no primary
sources are situated in between these surfaces. This
model can be used throughout the cardiac cycle.
The third is the EDL a generalization of the UDL
model, also applicable to the entire cardiac cycle.

The inverse computation (the estimation of their
parameters) for these models is of the same order of
difficulty. The methods involved in treating sources
on surfaces have been recently referred to as
“source imaging” methods (30-33). The inverse
problem can, accordingly, be classed as a “deblur-
ring” method. Unfortunately, rephrasing the prob-
lem does not solve it. However, clear progress in the
application of these methods can be seen in the
cited reports.

In all three models the solid angle plays an
essential role: in computing the secondary sources
of the volume conduction effects by means of the
BEM, as well as in evaluating the forward transfer
of the primary sources (34-36).

The Uniform Double Layer

For the normal activation sequence in healthy
myocardium the UDL model has proved to be
useful while reflecting on the nature of different
wave forms of the QRS complexes. This source
model relates to the fact that the dominant part of
the primary sources, the local transmembrane gra-
dients, are confined to the depolarization wave
front, a surface which progresses in a more or less
regular fashion (37,38) through the myocardium.

Its Theory

At the depolarization wave front Sd a dipole
layer, also called double layer (39), may be used to

model the primary sources. Here each element dS !
dS(r!) of the wave front is assumed to carry an
elementary current dipole J!idS, with J!i the im-
pressed current density as introduced in Eq. 1. We
denote its magnitude as Ji. Note that J!idS has the
dimension of a current: A.m"2.m2 ! A. This source
type is a double layer, not a dipole. The dipole
notion only reappears by multiplying the double
layer strength by some measure of the width of the
wavefront.

In the double layer, J!idS is directed along the
local surface normal of Sd. In general Ji ! Ji(r!) and
the infinite medium potential generated by this
source is

#3$

!%#r!&$ "
1

4#$ !
Sd

Ji#r!$R! ! dS!

R3

"
1

4#$ !
Sd

Ji#r!$d%,

with R! ! r!& " r! and d% the solid angle subtended by
the surface element dS at observation point r!&.

When crossing the surface carrying the sources
the potential is discontinuous, showing a jump of
VD(r!) ! Ji(r!)/$ (unit: V) which may be used to
specify local double layer strength. If Ji(r!) is uniform
over the surface considered, Eq. 3 reduces to

(4) !%#r!&$ "
Ji

4#$
' "

VD

4#
',

with ' the solid angle at r!& subtended by the entire
wave front Sd.

As a final step we combine Eq. 3 with Eq. 2 which
leads to

(5) !%#r!&$ "
1

4#$ !
Sd

$i(!m#r!$d%.

This formulation clearly brings out the nature of
the assumptions leading to the UDL model it as-
sumes $ i(!m(r!) to be uniform at the wave front
during depolarization. Note that this involves both
the gradient of the transmembrane potential and
the intracellular conductivity.

For simple shapes of Sd and “easy” observation
points, the solid angle can be expressed in analytical
form. An early example of this is the expression for
the solid angle subtended by a disc at points on the
central axis of the disc, as shown by Wilson et al. in
1933 (40). For arbitrarily shaped surfaces and arbi-
trary observation points the solid angle can be
computed easily by placing a triangular grid over
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Equivalent Dipole Layer (EDL)

of the computed parameters: the individual multi-
pole components.

Sources on Surfaces

At least 3 alternative types of source description
exist in which the sources are assumed to be
distributed over surfaces. The first one is the UDL
that for years has been used to describe (explain)
the genesis of the electric signals during depolariza-
tion. The second one is the potential distribution on
a surface closely encompassing the heart. This sur-
face is usually referred to as the epicardium. In
theory, a unique one to one relationship exists
between the potentials on the body surface and
those on the inner surface (23-29), provided that
the inner surface is closed and that no primary
sources are situated in between these surfaces. This
model can be used throughout the cardiac cycle.
The third is the EDL a generalization of the UDL
model, also applicable to the entire cardiac cycle.

The inverse computation (the estimation of their
parameters) for these models is of the same order of
difficulty. The methods involved in treating sources
on surfaces have been recently referred to as
“source imaging” methods (30-33). The inverse
problem can, accordingly, be classed as a “deblur-
ring” method. Unfortunately, rephrasing the prob-
lem does not solve it. However, clear progress in the
application of these methods can be seen in the
cited reports.

In all three models the solid angle plays an
essential role: in computing the secondary sources
of the volume conduction effects by means of the
BEM, as well as in evaluating the forward transfer
of the primary sources (34-36).

The Uniform Double Layer

For the normal activation sequence in healthy
myocardium the UDL model has proved to be
useful while reflecting on the nature of different
wave forms of the QRS complexes. This source
model relates to the fact that the dominant part of
the primary sources, the local transmembrane gra-
dients, are confined to the depolarization wave
front, a surface which progresses in a more or less
regular fashion (37,38) through the myocardium.

Its Theory

At the depolarization wave front Sd a dipole
layer, also called double layer (39), may be used to

model the primary sources. Here each element dS !
dS(r!) of the wave front is assumed to carry an
elementary current dipole J!idS, with J!i the im-
pressed current density as introduced in Eq. 1. We
denote its magnitude as Ji. Note that J!idS has the
dimension of a current: A.m"2.m2 ! A. This source
type is a double layer, not a dipole. The dipole
notion only reappears by multiplying the double
layer strength by some measure of the width of the
wavefront.

In the double layer, J!idS is directed along the
local surface normal of Sd. In general Ji ! Ji(r!) and
the infinite medium potential generated by this
source is

#3$

!%#r!&$ "
1

4#$ !
Sd

Ji#r!$R! ! dS!

R3

"
1

4#$ !
Sd

Ji#r!$d%,

with R! ! r!& " r! and d% the solid angle subtended by
the surface element dS at observation point r!&.

When crossing the surface carrying the sources
the potential is discontinuous, showing a jump of
VD(r!) ! Ji(r!)/$ (unit: V) which may be used to
specify local double layer strength. If Ji(r!) is uniform
over the surface considered, Eq. 3 reduces to

(4) !%#r!&$ "
Ji

4#$
' "

VD

4#
',

with ' the solid angle at r!& subtended by the entire
wave front Sd.

As a final step we combine Eq. 3 with Eq. 2 which
leads to

(5) !%#r!&$ "
1

4#$ !
Sd

$i(!m#r!$d%.

This formulation clearly brings out the nature of
the assumptions leading to the UDL model it as-
sumes $ i(!m(r!) to be uniform at the wave front
during depolarization. Note that this involves both
the gradient of the transmembrane potential and
the intracellular conductivity.

For simple shapes of Sd and “easy” observation
points, the solid angle can be expressed in analytical
form. An early example of this is the expression for
the solid angle subtended by a disc at points on the
central axis of the disc, as shown by Wilson et al. in
1933 (40). For arbitrarily shaped surfaces and arbi-
trary observation points the solid angle can be
computed easily by placing a triangular grid over
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Calculating EDL

Compute solid angle
For each face:

Apply dipole strength
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Interpolating EDL
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Interpolating EDL
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Interpolating EDL
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Sampling Resolutions

Res 0 (578 nodes)

Res 1 (2,306) Res 2 (9,218)

Res 3 (36,866) Res 4 (147,458)
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Ground Truth
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Effect of Undersampling
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Effect of Undersampling
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Effect of Undersampling
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Effect of Interpolation
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Spatial interpolation can eliminate temporal 
oscillations, even with low source resolution
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Effect of Undersampling
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Spatial interpolation can reduce temporal 
and spatial error

Triangle weighting and triangle splitting 
performed similarly

EDL inverse is based on optimization 
of the parameters
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Improve ECGI (GCE)

Fo
rw

ard Simulation
φ t = A φh

Inverse Calculatio

nφ
h = A-1  φ t

Heart Potentials (φh) Torso Potentials (φt)

With better source representation
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