
CS 354
Project 4 - object viewer

Due Friday, March 29, 5:00 pm

Overview
For this assignment you will implement a viewer for mesh files in Wavefront obj format. The Wavefront obj file format
is described here: http://en.wikipedia.org/wiki/Wavefront_.obj_file. It contains meshes along
with material properties. Note: most, but not all features of obj files will be implemented.

The purposes of this assignment are:

1. Deepen understanding of transformations
2. Understand lighting and texturing

There are four major components to this assignment:

1. Implement arc ball-style mouse rotation and also zoom
2. Render obj files with proper lighting and material properties, including texturing
3. Create a custom obj file
4. Create a scene using multiple obj files

Specifications
1. This project must be done in groups of 2 or 3. List members of your group along with UT EIDs and UTCS IDs

in README.txt.
2. The initial view shows the entire mesh.
3. Material properties are determined by the obj file.
4. At least one light source is in a reasonable position.
5. Dragging the left mouse button rotates using an arc ball.
6. Dragging the right mouse button up and down zooms in and out.
7. Create a custom obj file called original.obj/mtl. You can use existing jpg files for your textures, but the

obj and material file must be original.
8. A screen shot of a custom scene called original.png. Do NOT submit additional obj files used to create

this scene. The custom scene is different from the custom obj file! You can you any obj files you wish for your
custom scene.

9. Creativity points are based on the custom obj file and on the custom scene.
10. If you added special features to your viewer, list them in README.txt. Also, list all obj files used in your

custom scene and where you got them. Also describe how you created your custom obj file.
11. Submit and verify your submission as follows:

turnin --submit vkeshari project4 .
mkdir test
cd test
turnin --verify vkeshari project4

12. Do NOT submit any of the sample data. The only data you should submit is the obj/mtl/jpg files you create. If you include
any of the sample data you will lose points. You are responsible to ensure that what is submitted is correct. A helpful tool is
turnin --verify. Type man turnin at the command-line for details.

1



Suggested approach
1. Mac OS X users: you may need to download the jpeg library using MacPorts (http://www.macports.org/). To

download the jpeg library: sudo port install jpeg
2. Implement rotation. See arc ball instructions. This is a major component of the project and will take some time

to get right.
3. Implement zoom.
4. Get familiar with code presented in class on lighting and textures.
5. Add data structures to store vertices and polygons as they are read in from the obj file. This will be done by

adding code to mesh.cpp/h. Look for TODO comments. Sample obj data can be downloaded from the syllabus
web page.

6. Render the obj polygons without lighting.
7. Compute the vertex normals. Polygon normals are computed using the cross product of two vectors in the plane.

Vertex normals are computed using the sum of normals of each incident polygon.
8. Render the normals to make sure you have them right. This can be done using GL LINES.
9. Enable default lighting and make sure polygons render correctly.

10. Add material properties to your meshes.
11. If the variable scene lighting is true, then any light sources should remain fixed with respect to the world

frame. If it is false, then keep the light source(s) fixed with respect to the camera. scene lighting is set by
using the command-line option -l.

12. Create custom obj and mtl files. Call them original.obj/mtl. You can use any jpg texture you wish. Vertices in
the obj file can be entered by hand or you can write a program to do something more sophisticated.

13. Create a custom scene. When viewer is run with the -s option you should render your scene.
14. Use turnin to submit your work. DO NOT submit any data files other than original.obj with any associated mtl

and jpg files. We may request data files you use for your scene, but do not submit them.

Arc ball
To implement rotation with the mouse we’ll take the approach of an arc ball. Imagine there’s a ball in the world
centered at the origin.

1. When the user clicks on the screen, compute the location of the click normalized to a square of length 2 centered
at the origin. For example, xn = 2 · x/window width−1. Remember to account for the upside-down coordinate
system in y.

2. Now intersect the ray parallel to the z axis that passes through the point with the unit sphere centered at the
origin. Call the intersection point p′. p′ will have a positive z value. If the clicked point lies outside of the unit
sphere just move it to the closest point.

3. As the user drags the mouse, use the same approach to compute a point q′. The axis of rotation for your world
will be a vector normal to the plane defined by the points O, p′ and q′, where O is the origin. The angle of
rotation will be the angle between vectors p′−O and q′−O.

4. To account for multiple rotation mouse gestures, you’ll need to maintain all previous rotations in a matrix. The
OpenGL functions glLoadMatrixf and glGetFloatv will be useful in doing this. You can either write
your own matrix multiply or piggyback on the implicit matrix multiply when you call glRotatef. It is best if the
code to update this rotation matrix is not in your display function.

Scoring
1. 25% - Arc ball rotation
2. 10% - Zoom
3. 25% - Mesh renders with correct normals and lighting; -l option works as specified
4. 20% - Mesh renders with correct material properties
5. 5% - Custom obj file
6. 5% - Custom scene

2



7. 10% - Coding quality and style given by report from check-code and visual inspection.

Notes
1. Mac OS X users: you may need to download the jpeg library using MacPorts (http://www.macports.org/). To

download the jpeg library: sudo port install jpeg
2. You may use the standard C++ library (e.g. vector). You may not use any other third-party libraries.
3. ./check-code is run automatically when you build.
4. You can submit your work as frequently as you like – only the most recent submission will be retained. Sug-

gestion: submit first thing to get familiar with how it works and submit occasionally during development. This
way there won’t be any surprises when you’re up against the deadline.

3


