
CS 354
Project 5 - shader

Due Wednesday, November 21, 11:59 pm

Overview

In this project, you’ll gain experience writing programmable shaders. You’ll write a vertex shader
that bends a flat 2D grid into a torus. You’ll also write several fragment shaders. Each fragment
shader will implement an increasingly sophisticated lighting model. All the shader code you’ll
write will be written with OpenGL Shading Language, otherwise known as GLSL. In order to
give your torus a bump appearance, you’ll also write a small amount of C++ code to convert
texels in a height map texture into normal vectors to be stored in a normal map. Your fragment
shaders implementing bumpy lighting models will then be able to sample the resulting normal map
textures.

The purposes of this assignment are:

1. Understand vertex and fragment shaders
2. Deepen understanding of texture mapping

Note: cpplint (check-code) will not be used on this assignment since you will be writing
only shader code. But you are still expected to write well-structured code.

Within the project 4 directory, you’ll find four subdirectories:

1. cg4cpp - a C++ template library implementing Cg/HLSL-style vector, matrix, and other data
types with accompanying standard library routines.

2. glew - the OpenGL Extension Wrangler library assists in resolving OpenGL extension entry
points.

3. stb - public domain code for loading various types of image file formats.
4. shader scene - the project’s C/C++ executable code.

Consult the ReadMe.txt file in the shader scene subdirectory.

The project is intended to build on the CS Ubuntu Linux machines. These machines have NVIDIA
Quadro GPUs so can easily execute the project code and this is the platform upon which the project
case is tested.

1



You can build this project code with Visual Studio 2008 for Windows operating system and that
should work ok. Make sure you have OpenGL 2.0 or better for your PC.

You might be able to make the GNUmakefile build for Mac OS X but that’s an unsupported con-
figuration.

Building the Project

Use the GNUmakefile in the shader scene subdirectory to build the project code. Simply type
make and the debug version of shader scene will be built in the bin.release64 subdirectory.

Driving the Project

Run the program from the shader scene directory by typing

bin.debug64/shader_scene

or similar. Running the program for the first time you’ll see a red square with a “cloudy hills”
backdrop.

Mouse Controls

When you click the right mouse button, you’ll get a pop-up menu that includes several sub-menus.
With these sub-menus, you can select between various decals, normal maps, environment maps,
light colors, and fragment shaders. (There’s just a single vertex shader all the fragment shaders
use.)

Clicking and dragging the left mouse button moves the viewer (or camera) location. Moving left-
right rotates the viewer around a circle. Up and down moves the viewer up and down but always
looking at the object. Essentially the viewer is constrained to move on a cylinder surrounding the
object-soon-to-be-torus.

Clicking and dragging the middle mouse button (that is, clicking the track wheel) moves the light
position. The light source is visualized as a sphere. The light source too is constrained to a virtual
cylinder.

Holding down Ctrl and then clicking and dragging the left mouse button can spin the object-soon-
to-be-torus. The object spins as if connected to a trackball and keeps spinning when you release.
Ctrl-Left-Clicking and releasing without motion will stop the spinning. (There is also a menu
option explicitly to stop the spinning motion.)

2



Keyboard Controls

There are a few keys supported. Pressing ’w’ toggles the wireframe mode. This might be helpful
to debug your modifications to torus.vert.

Pressing ’0’ through ’9’ switches between shaders which are numbered 00 through 09 in the
shader scene/glsl directory.

Modifying the GLSL Shaders

You’ll be modifying the GLSL shaders in the shader scene/glsl subdirectory. You’ll find ten frag-
ment shaders with the .frag suffix and a single vertex shader with the .vert suffix.

Tasks

Task 0: Rolling up the Square into a Torus

Modify the torus.vert vertex shader implementation so that the square patch with vertex positions
ranging from [0..1] in both the x and y (or u and v) components is rolled up into a torus.

Research the torus to find a parametric function F(u,v) = (x,y,z) for a torus. Hint: Wikipedia is a
fine place to look.

Be sure to adjust u and v if their range is not the [0..1] range of the square patch vertex components.
This figure visualizes what the vertex shader’s job:

The incoming (u,v) attribute to torus.vert is named parametric.

Get the outer and inner radius of the torus from the respective x and y components of the torusInfo
uniform variable. Notice that the existing code for torus.vert declares several attribute, uniform,
and varying variables that are used to communicate with the C++ application and the downstream
vertex shader.

When you compute your (x,y,z) position for the vertex on the torus in object-space, then transform
this vertex position by the current modelview-projection matrix. Hint: GLSL provides built-in

3



variables prefixed with gl that track current OpenGL fixed-function state such as the modelview-
projection matrix.

For subsequent tasks, you’ll need to compute additional varying quantities in torus.vert for use by
the down stream fragment shader. The first fragment shader is 00 red.frag that unconditionally
outputs red as the fragment color so initially you can simply out gl Position for the torus (x,y,z)
position in clip-space.

When you complete this task, your program should render a result like:

Task 1: Applying a Texture Decal

Once you can roll the red square into a torus, your next task is to shader the torus with a decal.
This will require generating texture coordinates as a function of the parametric attributes. Output
from your vertex shader to the normalMapTexCoord varying 2-component vector (s,t).

Then in the 01 decal.frag fragment shader, use this texture coordinate set to access the decal sam-
pler.

Make sure the decal tiles 2 times in the inner (smaller) radius and 6 times in the outer (larger) ra-
dius. Assuming there are more fragments generated than vertexes transformed, would this scaling
be more efficiently performed in the vertex or fragment shader?

When you complete this task, your program should render a result like:

4



Try picking other decals from the Decal texture menu.

Task 2: Diffuse Illumination

In this task, you’ll shade the torus with a per-fragment ambient + diffuse illumination term by
modifying the 02 diffuse.frag GLSL shader.

To compute diffuse illumination, you’ll need a surface normal vector and a light vector. Both of
these vectors should be normalized. (GLSL has a normalize standard library function to normal-
izing vectors is easy in GLSL.) The dot product of these two normalized vector (clamp to zero if
negative) models the diffuse lighting contribution.

You must make sure the light and surface normal vectors are in the same coordinate system (or
sometimes stated “in the same coordinate frame”). This could be object space, eye space, or surface
space. For efficiency reasons (and to facilitate normal mapping, particular environment mapping
of normal mapping), it makes sense to choose surface space. In surface space, the (unperturbed)
surface normal is always in the direction (0,0,1)pointing straight up in the direction of the positive
Z axis.

The uniform vector lightPosition provides the position of the light in object space. The (un-
normalized) light direction vector is the vector from the vertex position to the light position.

To transform an object-space direction into a surface-space, version you must construct a orthonor-
mal basis (a rotation matrix) that can rotate directions from object space to surface space.

First compute the gradients of F(u,v) in terms of u and v. You want:

∂F(u,v)
∂u

,
∂F(u,v)

∂v
Don’t trust yourself to differentiate a complicated function involving trigonometric
functions? http://www.wolframalpha.com can differentiate for you! As a simple ex-
ample, try “diff(cos(u),u)”.

5



We call the normalized gradient of F in terms of u the tangent T . The cross product of these two
normalized gradients is the (normalized) normal to the surface in object space as a function of
(u,v).

In general, the cross product of the normal and tangent vector is a normalized vector mutually
orthogonal to both the normal and the tangent called the binormal. These three normalized vectors
T , B, and N are the tanget, binormal, and normal, respectively, and can be used as column vectors
of a 3x3 matrix M useful for converting directions and positions to and from object and surface
space. So

M = [T BN]

When this matrix M is multiplied by a surface-space vector, the result is an object-space vector.
Because M is orthogonal, the inverse of M is the transpose of M so

M−1 =

 T T

BT

NT


So multiplying M−1 by a vector in object space is the same as pre-multiplying that vector by M to
convert that vector into surface space.

In GLSL, you can construct a 3x3 matrix with the mat3 constructor with three vec3 (3-component
vector) treated as column vectors.

With this approach, the vertex shader can compute the object-space light vector (simply the light
position minus the surface position, with both in object-space), and the transform this light vector
into surface space. There is no need to normalize this vector in the vertex shaderindeed, it is better
to normalize it in the fragment shader after interpolation. The vertex and fragment shaders have a
lightDirection varying vector intended to interpolate the surface-space light vector.

Computing the diffuse contribution in surface space is easy. The (unperturbed) surface normal is
always (0,0,1) so the Z component of the interpolated and normalized lightDirection is the diffuse
lighting coefficient.

(Later for some of the bumpy shaders using normal mapping, the shader will substitute a perturbed
normal obtained from a normal map texture to use instead of the unperturbed (0,0,1) surface space
normal.)

In the accompanying diffuse fragment shader for this task, we need to normalize the interpolated
lightDirection and use the Z component as the diffuse contribution. Because the diffuse coefficient
is a magnitude and should not be negative, the fragment shader should clamp the coefficient to
zero with the GLSL max standard library function.

The LMa, LMd, and LMs uniform variables provide an RGB color that is the light color (hence
the L) and the material color (hence the M; with a, d, and s indicating the ambient, diffuse, and
specular material color) modulated on a per-component basis. See the Torus::draw method to see
where these uniforms are set.

6



In order for the diffuse shading to reflect the light and material colors, you should modulate LMd
by the diffuse coefficient and add LMa to output a final fragment color for this task.

When you complete this task, your program should render a result like:

Try changing the “Material...” and “Light color...” settings to verify this shader is operating cor-
rectly. Move the light or spin the object. The region of the torus most facing the light surface
should be brightest.

Task 3: Bumpy Diffuse

For this task, you should modify the 03 bump diffuse.frag shader so it operates in the same manner
as the shader in Task 2, except rather than using an unperturbed surface normal, a perturbed normal
sampled from a normal map is used instead.

Instead of sampling the decal sampler as in Task 1, sample the normalMap sampler to fetch an RGB
value that represents a perturbed surface normal, based on a height map converted to a normal map.

Normals are stored as signed components but RGB textures store [0..1] values. For this reason,
the fragment shader in this task needs to expand the [0..1] RGB values to be [−1..+ 1] normal
components.

Once the normalMap is sampled properly in the shader, the shader needs to compute the dot prod-
uct of the sampled perturbed normal and the interpolated and normalized lightDirection vector.
This dot product result becomes your diffuse coefficient once clamped to zero avoid negative val-
ues.

When you complete this task, your program should render a result like:

7



Try varying the Bump texture setting. Make sure when the normal map is Outward bumps that the
bumps appear to bump outward consistently over the entire torus. Make sure the bump lighting on
the torus responds to changes in Material and Light color menus.

Task 4: Specular

For this task, you should modify the 04 specular.frag shader so the shading just shows a specular
contribution.

Compute a Blinn specular contribution. For this you need to compute the dot product between the
(unpeturbed) surface normal and the normalized half-angle vector.

The half-angle vector is the average of the light vector and view vector.

Whereas Tasks 2 and 3 computed the object-space light vector and transformed it into surface
space, Task 4 requires doing the same for the half-angle vector.

You have two choices: A: Compute the half-space vector at each vertex and interpolate at each
fragment, or (more expensively) B: Interpolate the view vector and light vector and compute the
half-angle vector at every fragment.

Choice B is fairly expensive so the shader scene examples have a halfAngle varying to interpolate
the half-angle vector, but the view vector is also available so you can choose either approach.

Use the shininess uniform to control the specular exponent. You will use the GLSL pow function.
See section 5.3.4 of the textbook for information on how to use the half-angle vector. In our
implementation, shininess corresponds to e′ in the text.

Also remember to force the specular coefficient to zero when it is negative (you can use the GLSL
max function for this).

Modulate the specular color result by the LMs uniform value.

Note: The initial “Material...” has zero specular color so you should switch to a different mate-
rial to see the specular highly properly. Otherwise you won’t see a specular highlight if you are
modulating by LMs.

8



When you complete this task, your program should render a result like (using the green rubber
material):

Task 5: Specular + Diffuse + Ambient

For this task, you should modify the 05 diffspec.frag shader to include the ambient, diffuse, and
specular lighting contributionsassuming an unperturbed normal.

When you complete this task, your program should render a result like:

With this task, the lighting should change as the Material and Light color selections change but
should not depend on the Environment map, Bump texture, or Decal texture choices.

Task 6: Bumped and Lit

For this task, you should modify the 06 bump lit.frag shader to include the ambient, diffuse, and
specular lighting contributions with a perturbed normal from the normalMap sampler and with a
decal color from the decal sampler.

Think of this task as combining Tasks 1, 3, and 4.

9



When you complete this task, your program should render a result like:

Task 7: Environment Reflections

For this task, you should modify the 07 reflection.frag shader to reflect the object’s surroundings
based on the envmap environment map and the surface’s unperturbed normal. First, find the
reflection of eyeDirection off the surface. This will require the surface normal, but recall
from task 2 that you can simply use (0,0,1).

The reflected view vector is in surface coordinates. Convert it to world coordinates. This will
use the objectToWorld uniform matrix and also M that you computed in the vertex shader. Use
variables c0, c1, and c2 to pass the tangent, binormal and normal vectors to the fragment shader
and you can then reconstruct M. Remember, to convert a vector v from object to surface coordinates
you premultiply v by M. To convert back, simply postmultiply.

Use the reflectGLSL standard library call to compute a reflection vector. Use the textureCube
GLSL call to compute the color.

10



Task 8: Bumpy Environment Reflections

For this task, you should modify the 08 bump reflection.frag shader to reflect the object’s sur-
roundings based on the envmap environment map and the surface’s perturbed expanded normal
from the normalMap sampler.

Task 9: Everything

For this task, you should modify the 09 combo.frag shader to combine bumpy ambient, diffuse,
and specular with bumpy reflections too. To avoid oversaturation, combine 50% of the ambi-
ent+diffuse, 50% of the specular, and 60% of the bumpy reflection.

11



Scoring

Task 0 20%
Task 1 10%
Task 2 15%
Task 3 10%
Task 4 10%
Task 5 5%
Task 6 5%
Task 7 10%
Task 8 5%
Task 9 5%

Code quality 5%

turnin

Submit your work by typing turnin --submit edwardsj project5 glsl at the command-
line. That is, submit ONLY the glsl subdirectory. You are graded only on your shader code. You
are responsible to ensure that what is submitted is correct. A helpful tool is turnin --verify.
Type man turnin at the command-line for details.

12


