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Neurons

http://www.homepages.ucl.ac.uk/
~sjjgnle/

[Fiala et al., 2002]

Geometries play a role:
A Neurologically normal
B Mentally disabled
C Severe neurobehavioral failure
D Fragile X syndrome

Electrophysiological simulations of action
potentials elucidate structure-function
relationships between geometries and

neuronal topology and combinatorics
learning, behavior, and memory
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Neuropil anisotropy

1µ x 1µ x 100nm 1µ x 1µ x 100nm

Not quality: Quality:
32817 tetrahedra 124458 tetrahedra

Tetrahedralize entire block and use FEM:
3x108 tetrahedra
3x108 variables to solve for
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3D reconstruction

Problem 1
Develop and describe methods to generate a surface mesh domain model D
from a labeled stack of 2D contours.
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Cable theory

internal
external

The cable equation is
1
ri

∂2V
∂x2 = cm

∂V
∂t

+
V
rm

(1)

ri* internal resistance
rm* membrane resistance
V potential on the cell membrane boundary
x position on the compartment
cm capacitance of the membrane

Starred (*) variables are dependent on surface area, cross-sectional area and
volume of the compartment. The compartments are combined using
Kirchhoff’s first law (conservation of current in a circuit) giving the final
governing equations K.
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3D reconstruction

Problem 2
Given a surface mesh of domain D, compute a volumetric decomposition MK

for analysis based on equations K.
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Ion diffusion
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The Poisson-Nernst-Planck equations are

∂ck

∂t
= ~∇ ·

[
−~Jk

]
(2)

where ~Jk = Dk(~∇ck +
(

ck
αk

)
~∇V(~r, t)) and

~∇ ·
[
ε(~r)~∇V(~r, t)

]
= ρ(~r) (3)

ck ion concentration of species k
~Jk ion flux
ε(~r) dielectric constant
{Dk, αk, zk,F} constants
ρ(~r) =

∑
k ckzkF charge density

These equations are solved over a volumetric mesh and require accurate boundary

representation (the Neumann boundary condition in our problem is n̂ · ∇ck = 0 to ensure that

ions don’t diffuse across boundaries) and correct surface normals (after applying the

divergence theorem). We call these equations PNP.
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3D reconstruction

Problem 3
Given a surface mesh of domain D, compute a quality 3D mesh MPNP that is
suitable for solving equations PNP.
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Problem 1

Problem 1
Develop and describe methods to generate surface mesh domain model D
from a labeled stack of 2D contours.
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Quality requirements

A surface mesh is suitable if it
is water-tight
has oriented surface normals
is non-intersecting
has no mesh irregularities
has manifold edges and vertices
is composed of low aspect ratio
triangles
is topologically correct
is close to the true surface
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Reconstruction - high level pipeline

Images, contours single reconstruction

multi reconstruction full domain
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Reconstruction - 2D contour curation (CAD 2011)

Algorithm:
1 Dilate contours by δ/2
2 Sweep line to find intersections
3 Cut on line connecting adjacent

intersections
4 Erode contours by δ/2
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Reconstruction - 2D to 3D

Single component reconstruction problem: Given a stack of planar
contours, reconstruct a surface mesh.
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Reconstruction - 2D to 3D

[Fuchs et al., 1977]

[Barequet and Sharir, 1994]

[Bajaj et al., 1996]

One of the seminal works was
[Fuchs et al., 1977] who posed
the problem and presented a
triangulation solution.

[Barequet and Sharir, 1994]
introduced a method using
linear interpolations between
slices of medical images.

[Bajaj et al., 1996] expanded on
their work to support arbitrary
topologies. We use Bajaj’s
algorithm.
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Reconstruction - 2D to 3D

The problem: when we add singly-reconstructed components back together
we get many interesections. This is because the data is

anisotropic (spacing between slices is very large)

tortuous

tighly packed

Many intersections between components Without inter-component intersections
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Related work - multi-component reconstruction

[Boissonnat and Memari, 2007]

[Liu et al., 2008]
[Barequet and Vaxman, 2009]

[Bajaj and Gillette, 2008]

Recent work by
[Boissonnat and Memari, 2007]
reconstructs single structures from
non-parallel slices.

Two approaches by [Liu et al., 2008] and
[Barequet and Vaxman, 2009] reconstruct
from non-parallel slices and additionally
reconstruct multiple components at the
same time, avoiding inter-component
intersections.

[Bajaj and Gillette, 2008] perform single
component reconstruction using
[Bajaj et al., 1996] and then remove
intersections by removing contour overlaps
in intermediate planes.
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Reconstruction - 3D curation (CAD 2011)

[Edwards and Bajaj, 2011] post-processes surfaces and removes
intersections.

We can resolve “conflict points” by moving them in the directions of
their penumbral contours without worrying about causing additional
intersections (proof on slide A1). Once all conflict points are resolved,
all intersections are removed.
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Reconstruction - 3D curation (CAD 2011)
Results
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Reconstruction - mesh improvement

We currently use QSlim [Garland, a] for surface mesh decimation and
geometric flow [Zhang et al., 2005] for smoothing which produces a
mesh with quality triangles. Many other approaches exist (e.g.
[Garland and Heckbert, 1997, Cohen-Steiner et al., 2004,
Lindstrom and Turk, 1998, Hoppe, 1996, Klein et al., 1996,
Garland et al., 2001]).

No guarantees about maintaining intersection-free geometries
No error guarantees (and in most cases error isn’t even reported)
Extracellular width isn’t maintained
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Reconstruction - mesh improvement

Sub-problem
Decimate and smooth surface meshes while maintaining extracellular width
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Problem 2

Problem 2
Given a surface mesh of domain D, compute a volumetric decomposition MK

for analysis based on equations K.
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Cylinders - micro-scale tracing

[Lichtman et al., 2008]

Multi-compartment models are
typically complete or
nearly-complete neurons

Imagery used is micron scale (light
microscopy)

There is significant literature in
neuron tracing and diameter
estimation [Peng et al., 2010,
Xie et al., 2010, Cohen et al., 1994]
But we are interested in deriving
models from much higher-resolution
microscopy

We deal with much smaller fields of
view as a consequence
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Volume decomposition

Step 1. Start with a dendrite (or axon). Step 2. Decompose volume.

Step 3. Assign proxies with identical
surface area, cross-sectional area, and

volume.

Step 4. Add compartments with
resistances and capacitances derived from

geometric properties of proxies.

Existing approaches include [Fiala, 2005, Helmstaedter et al., 2011, Jeong et al., 2010].
They are largely manual and may not preserve sum volumes.

We seek an accurate and automatic algorithm.
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Approaches to volume decomposition

1 Fit cylinder to each segment in skeleton
Care must be taken not to overcount volume
Existing methods use this approach

2 Partition surface and fit cylinders
Use variational approach [Cohen-Steiner et al., 2004]
Difficult to prove performance
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Problem 3

Problem 3
Given a surface mesh of domain D, compute a quality 3D mesh MPNP that is
suitable for solving equations PNP.

axon

axon

axon

dendrite

ECS
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Finite element method

Consider the equation −u′′ = f (x). The finite element method of solving it
comprises the following steps:

Derive a weak formulation of the equation.
Introduce a test function v to yield −u′′v = fv.
Take the integral of both sides and integrate by parts:

∫
Ω

u′v′ dx =
∫
Ω

fv dx.
Solving this equation for all v ∈ H1 yields the solution function u.

Discretize the domain Ω and define basis functions {φi}.
Basis functions must be integrable, typically polynomials.
A “finite element” ei is a discrete cell ci ∈ Ω and basis functions {φj}.

Cast u and v as linear combinations of {φi}.
Solve ∫

Ω

∑
i

φiβi

∑
j

φjαj dx =

∫
Ω

f
∑

i

φiβi

We can rearrange this into a linear system

Kα = F

where Kij =
∫

Ω φ
′
iφ

′
j and Fi =

∫
Ω fφi.
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Finite element method

The error of the solution from the finite element method is bounded as
follows:

‖e‖ ≤ ChP

where

C depends on the curvature of the function
h size of the mesh elements
P depends on the norm used and the basis functions

For each equation and domain we must determine

Discretization of domain

Basis functions
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Discretization

High anisotropy... ...explosion of elements

This example is 1µ x 1µ x 100nm and yields 124458 tetrahedra

Entire block yields 3x108 variables to solve using FEM

Goal: produce as few elements as possible without compromising
numerical solution
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Discretizations

Constrained anisotropic triangulation

Small and large angles cause badly conditioned linear systems

Large angles hurt error convergence

Constrained quality triangulation

Well-conditioned systems

Large number of elements

Grid (meshless)

Use scaffolds rather than boundary-conforming discretization

Need weight functions for boundary conditions

Aligned (novel)

Few elements

Starting point for further decomposition
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WEB-splines

Grid with tensor-product
B-splines

Mesh with weight functions

WEB-spline is a meshless method

B-splines are used as the basis

B-splines are multiplied by weight functions {ωi}
that vanish on ∂Ω to ensure boundary conditions

Often extra cells need to be “adjoined” to ensure
stability

i

Dark gray - support cells. Light gray - adjoined support cells.
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WEB-splines

i

Often the requirements for
stability results in...

...large numbers of cells!
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Aligned elements

Aligned elements

Path to a solution: produce large cells with certain properties
that we

May be able to use as-is as a decomposition

Can at least be used to derive non-axis-aligned
decompositions for meshless methods

Can use to derive anisotropic meshes for traditional
FEM
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Aligned elements

Fails criterion 2

Meets criterion 2

Criteria:
1 Polygons are convex
2 Immersed boundaries have only one connected

component inside a given cell. That is, let b be all
immersed boundaries and element e ∈ MPNP. Then
b ∩ e must have a single connected component.

3 The number of elements |MPNP| is small compared to a
constrained, quality Delaunay tetrahedralization.

Ideas:
1 Resample points P on ∂Ω and use Voronoi diagram
2 Resample points P on medial sheet and use Voronoi

diagram
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Moving forward

Problem 1 - 3D surface mesh

Largely done

Decimation that respects ECS is a possible task

Problem 2 - multi-compartment models

Investigate skeleton vs. variational approaches

Determine which best decomposes volume

Problem 3 - FEM models

Further characterize mesh requirements

Determine algorithms with provable quality
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Analysis-ready domain models of neuronal forests

Thank you!
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Appendix - Penumbral contours

Claim
All intersections occur in penumbral regions. A point’s penumbral contour is
the contour whose projection contains the projected point.
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Appendix - Conflict points

A conflict point is a point of intersection. Somewhat more formally:

Definition
Point pg is called a conflict point if there is some point py such that the
projections are equal (py′ = pg′) and py is closer to pg’s penumbral contour
than pg is.

Claim
Two components Cg and Cy intersect if and only if there is at least one
conflict point on the surface of either component.
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Appendix - Conflict removal algorithm

1 Detect conflict points.
2 Trace paths between

conflict points along
edges of yellow tile. We
call these cut paths.

3 Use original tiles and cut
paths to induce new
polygons.

4 Triangulate polygons and
move conflict points
along z-axis.
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Appendix - Conclusions and notes

Algorithm is O(n2) where n is the number of tiles.
Average case is closer to n log n complexity of sweep line algorithm as
large majority of 2D intersections are not conflict points.

Original contours remain unchanged – only makes changes in
interpolated data between slices

Topologically correct and water tight

Generates large number of extra triangles in intersecting regions
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Appendix - Reconstruction - 3D curation
Separating by a given delta

d = |A×B|
|B|

Substituting for A and B:

d2 = ((Ay(Bz − ε)− (Az + ε)By)
2

+ ((Az + ε)Bx − Ax(Bz − ε))2

+ (AxBy − AyBx)
2)/(B2

x + B2
y + (Bz + ε)2)

After collecting ε:

0 = ε2((Ay + By)
2 + (Ax + Bx)

2 − d2)

+ ε(2)((Ax + Bx)(AzBx − AxBz)

−(Ay + By)(AyBz − AzBy)− d2Az)

+ (AyBz − AzBy)
2 + (AzBx − AxBz)

2

+(AxBy − AyBx)
2 − d2(B2

x + B2
y + B2

z )
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Appendix - Reconstruction - 3D curation
Separating by a given delta

Theorem
ε < |pg −Z (pg)| and ε < |py −Z (py)|

Idea of proof: as points approach original contours, which are separated by d,
the chords will be separated by at least d in the limit.
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Appendix - Cylinders - first attempt

Extract skeleton from C using mesh contraction in [Au et al., 2008].

Fit cylinder to each segment in skeleton

Problem:
∑

c∈Ml
K

Volume(c) > Volume(C)
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Appendix - Cylinders - ultrastructure

Our approach is to partition the surface, fit cylinders, then match volumes.

Given a single component C ∈ D, we seek a partition P of C and a
topology-preserving bijective function f : MK 7→ P where MK is the set
of cylinders.
Quality criteria for P:

Let Pe be the region that element e ∈ R is assigned to in the partition P. If
ei ∈ R and ej ∈ R are in different branches, then Pei 6= Pej .
Elements in a section between branches all belong to the same r ∈ P.

Quality criteria for MK : ∀c ∈ MK

Area(c) = Area(f (c))∑
c∈MK

Volume(c) = Volume(R)
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Appendix - Cylinders - variational approach

Cohen-Steiner et al [Cohen-Steiner et al., 2004] proposed a variational
approach to shape approximation

Represent each region Pi of a partition P with a tuple Pi = (Xi, ~Ni)
where Xi (resp. ~Ni) is the “average” point (normal). Proxies are planes.
Define Πi(·) to be the orthogonal projection onto proxy plane Pi.
Define an error metric:

L2(Ri,Pi) =

∫∫
x∈Ri

‖x−Πi(x)‖2 dx

Optimal shape proxies: a set P of proxies Pi that minimizes

L2(R,P) =
∑

i=1..k

L2(Ri,Pi)
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Appendix - Cylinders - variational approach

A partition R and proxy set P must be found. Use Lloyd’s algorithm (similar
to cluster k-means, CVT, etc).

Partition randomly. Choose k seeds and flood-fill.

Find Pi for each partition. Xi is the average of the barycenters of the
triangles. ~Ni is found using the covariance matrix of the normals of the
triangles.

Repartition: Each triangle Tj gets assigned to proxy Pi that minimizes
L2(Tj,Pi).

Iterate to convergence
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Appendix - Cylinders - variational approach

Other works have extended the proxies used to cylinders
[Yan et al., 2009], spheres, cylinders and rolling-ball blend patches
[Wu and Kobbelt, 2005] and general quadrics [Yan et al., 2006].

Our approach will be to use cylinders
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Appendix - Cylinders - variational approach

Algorithm:
1 Produce an initial partition of the surface mesh triangles of C.
2 Fit a cylinder to each partition.
3 Repartition the triangles.
4 Iterate over (2) and (3) until convergence.

Initial partition: Choose a random triangle t ∈ T . Set T := T − t. Iteratively
choose adjacent triangle tj in the direction of maximum curvature. Set
T := T − tj. If set of chosen triangles |ci| > |C|/n then increment i and iterate.
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Appendix - Cylinders - variational approach

Algorithm:
1 Produce an initial partition of the surface mesh triangles of C.
2 Fit a cylinder to each partition.
3 Repartition the triangles.
4 Iterate over (2) and (3) until convergence.

Cylinder fitting: Get the minimum curvature directions {γmin} for each
vertex. Use the average direction as the cylinder axis d. Now project the
barycenters of the triangles to the plane with normal d. Then fit a circle to the
projected points, finalizing the cylinder parameters. The circle is fit by
minimizing the error E(Tj, ck) =

∑3
i=1 g(T i,⊥

j , ck)|Tj| where T i,⊥
j is the

projection of the ith vertex of triangle Tj. |Tj| is the area of triangle Tj and
g(x, y, ck) = A(x2 + y2) + Bx + Cy + D = 0.
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Appendix - Cylinders - variational approach

Algorithm:
1 Produce an initial partition of the surface mesh triangles of C.
2 Fit a cylinder to each partition.
3 Repartition the triangles.
4 Iterate over (2) and (3) until convergence.

Repartitioning: Distance from each triangle Ti to each cylinder ck is
computed and the Ti is assigned the closest cylinder. Distance is computed as

d(Ti, ck) = (1/6)(d2
1 + d2

2 + d2
3 + d1d2 + d1d3 + d2d3)|Ti|

where dj is the distance of the jth vertex of Ti to ck and |Ti| is the area of Ti.
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Appendix - Cylinders - variational approach

Algorithm:
1 Produce an initial partition of the surface mesh triangles of C.
2 Fit a cylinder to each partition.
3 Repartition the triangles.
4 Iterate over (2) and (3) until convergence.

Convergence: Convergence is reached when no triangles change partitions in
the repartitioning step.
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Appendix - Cylinders - variational approach

Clearly our implementation needs work.

Need to fix bugs and add topology constraint.

Would this approach possibly work for
skeletonization?
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Appendix - Voronoi elements

Not well-aligned

Well-aligned

Definition: well-aligned
Let P be a sampling of points on ∂Ω and let T(P) be a
constrained Delaunay triangulation. Let S be the set of all
Delaunay spheres in T(P) and let C (s) be the centroid of
sphere s. P is well-aligned if T(P) is a conforming
Delaunay triangulation and ∀s ∈ S, C (s) ∈ Ω.
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Appendix - Voronoi elements

Conjecture
Given well-aligned points P on ∂Ω, the Voronoi diagram of P is a
decomposition that satisfies criterion C2.

We could just sample points to be no more than lfs(p) apart (where lfs(p) is
the local feature size at p as defined in [Amenta et al., 1998]), but this would
violate criterion C3.

Well-aligned points yield... ...cells that meet criterion 2
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Appendix - CVT primer

The centroidal voronoi tessellation (CVT) is a voronoi
diagram where each generating point lies at the center
of mass of its voronoi cell.

Points can be resampled iteratively using Lloyd’s
algorithm to generate a CVT.

We will require an anisotropic CVT (ACVT). One
approach is to use a directional distance function
[Du and Wang, 2005].
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Appendix - Voronoi elements

1 Compute the medial sheet
2 Resample points on the sheet using an anisotropic version of the CVT
3 Intersect all edges of the CVT with ∂Ω and induce new surface vertices

at the intersections
4 Compute the Voronoi diagram using these new surface points

Step 1 Step 2 Step 3 Step 4
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Appendix - Voronoi elements - initial implementation

An earlier version of this algorithm has been implemented by Pan Hao in
Professor Wenping Wang’s lab.

The CVT run on the medial sheet is isotropic
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