Approximating the Generalized Voronoi Diagram of Closely Spaced Objects

John Edwards¹

Eric Daniel²

Valerio Pascucci¹

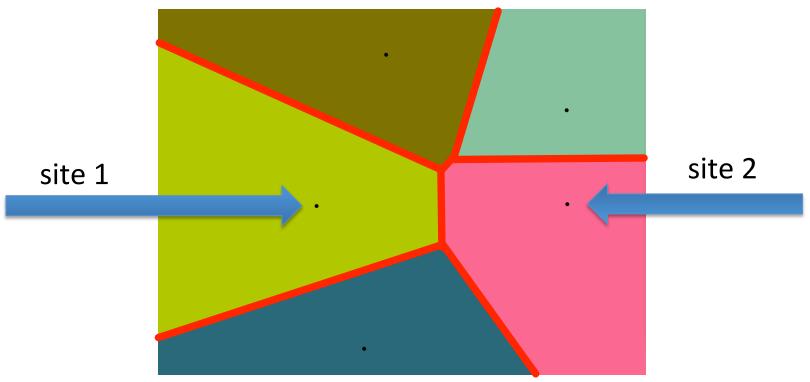
Chandrajit Bajaj³

SCI Institute, University of Utah
 Google, Inc.
 The University of Texas

Eurographics May 6, 2015

Voronoi Diagram

Sites are points

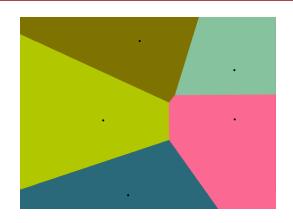


http://alexbeutel.com/webgl/voronoi.html

The Voronoi diagram:

- 1. is the locus of points equidistant from at least 2 sites
- 2. is a union of line segments

Voronoi Diagram



- Applications: GIS, biology, geology, physiology, crystallography...
- Exact computation algorithms are simple and fast. Fortune's algorithm:
 - O(N log N) time
 - O(N) space

Generalized Voronoi Diagram (GVD)

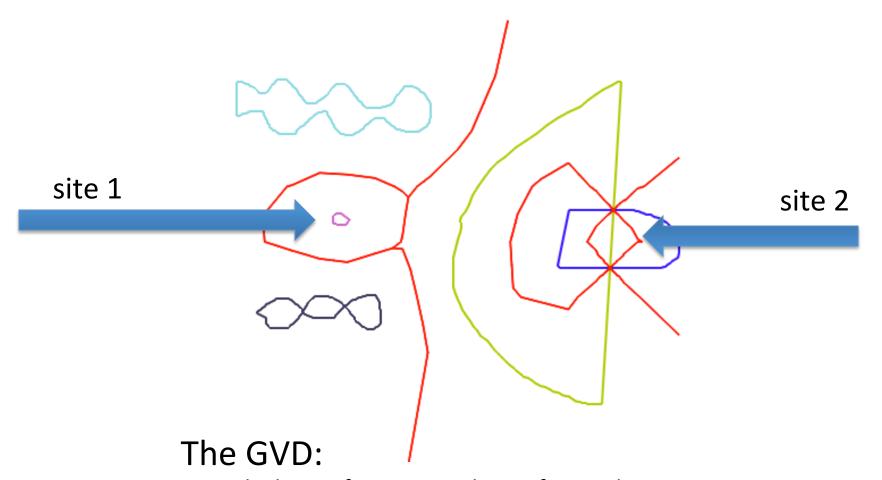
Sites are arbitrary objects

The GVD:

- 1. is the locus of points equidistant from at least 2 sites
- 2. is a union of line and (often complex) curve segments

Generalized Voronoi Diagram (GVD)

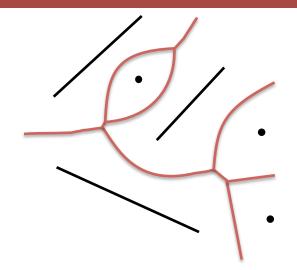
Sites are arbitrary objects



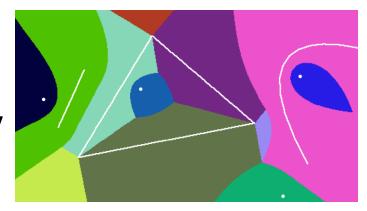
- 1. is the locus of points equidistant from at least 2 sites
- 2. is a union of line and (often complex) curve segments

Generalized Voronoi Diagram (GVD)

- Exact computation algorithms
 - Line and point sites only
 - (GVD composed of lines and parabolas)
 - Lee 1982, Karavelas 2004



- Approximation algorithms
 - Arbitrary sites; most are uniformly gridded
 - Hoff et al 1999, Cao et al 2010, etc.

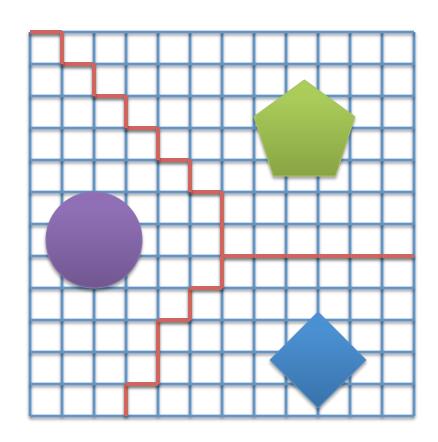


Hoff et al 1999

GVD – uniform gridding

Advantages:

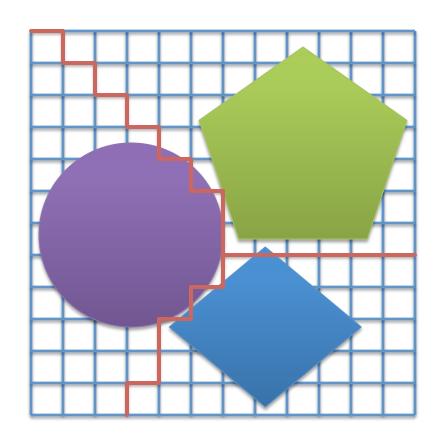
- Simple
- Fast
- Suitable for GPGPU implementations



GVD – uniform gridding

Disadvantages:

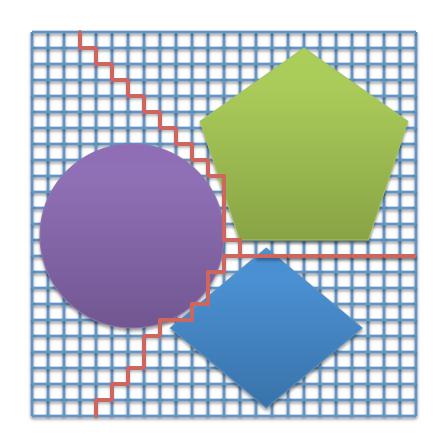
- Object spacings not normally known beforehand
- Resolution may not be high enough



GVD – uniform gridding

Disadvantages:

- Object spacings not normally known beforehand
- Resolution may not be high enough
- Grid may not fit in memory



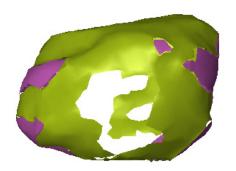
Uniform vs. Adaptive

- Uniform gridding:
 - Bunny requires 2²⁴ cells
- Adaptive gridding:
 - Bunny requires 7K octree cells
 - Previous work
 - Boada et al 2002, 2008 (connected regions only)
 - Teichmann and Teller 1997;
 Vleugels and Overmars 1998 (convex sites only)

Objective

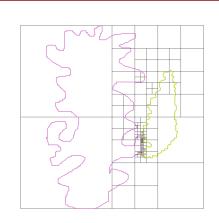
Our objective is to compute the GVD on datasets...

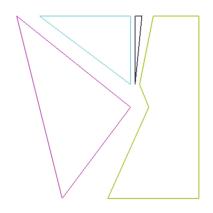
- with closely spaced objects
- with no shape restrictions
 - disconnected
 - non-manifold
 - self-intersections
 - inter-object intersections
- 2D and 3D
- in reasonable time on commodity hardware



Contributions

Octree models inter-object space using adjacency structure



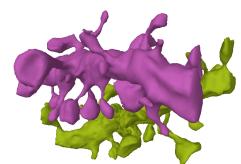


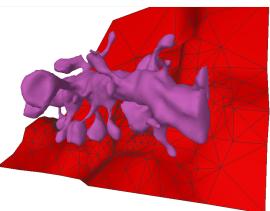
Wavefront distance transform on octree

GVD surfacing algorithm on labeled octree

Contributions

- Octree decomposition of space
 - Models inter-object space (rather than object features)
 - Adjacency structure (rather than hierarchical) for fast neighbor queries
- Wavefront distance transform on octree
 - Conjectured to be 3/2-approximation
- GVD surfacing algorithm on labeled octree

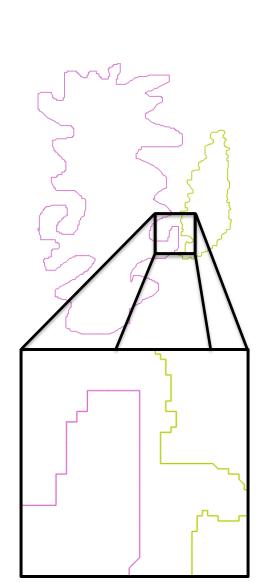




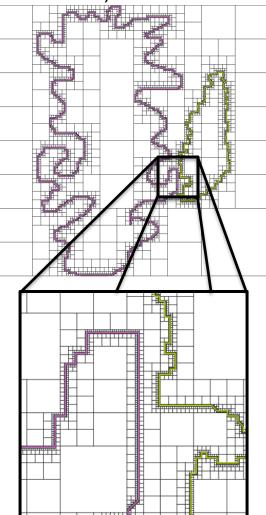
Octree

Note: In this talk I will use "octree" to refer to both quadtree and octree

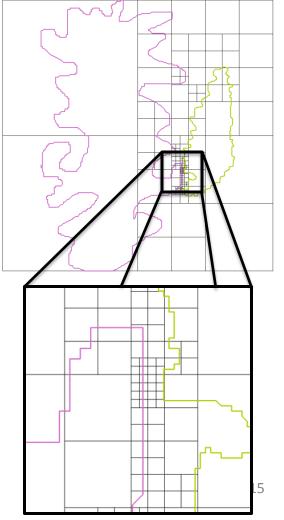
Octree



Previous approaches: Models objects 95,632 cells



Our approach: Models object spacing 160 cells

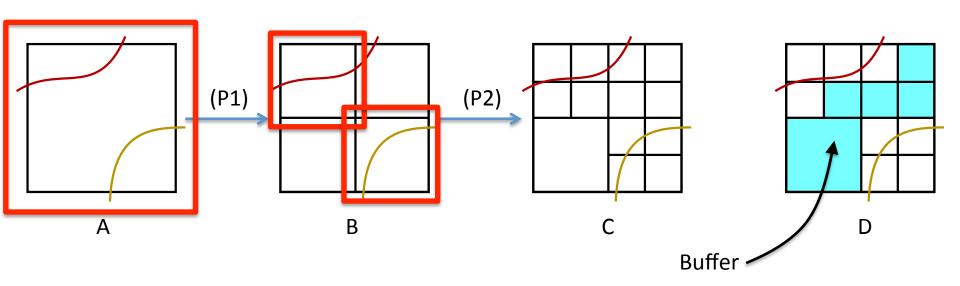


Octree – subdivision predicate

Subdivide cell *c* if

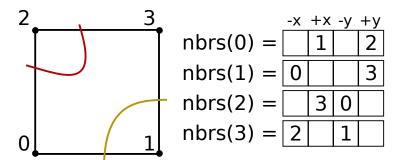
(P1) cell c intersects more than one object

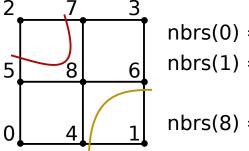
(P2) a neighbor of *c* intersects a different object



Octree – data structure

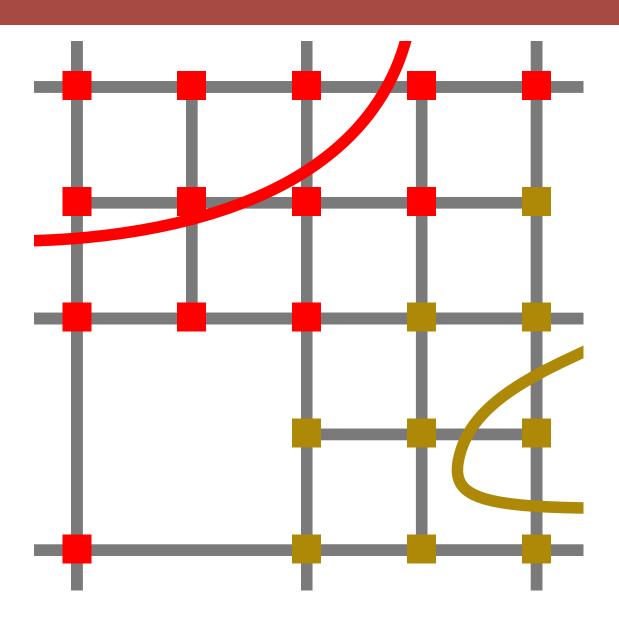
Cell vertices store neighbors – no hierarchy

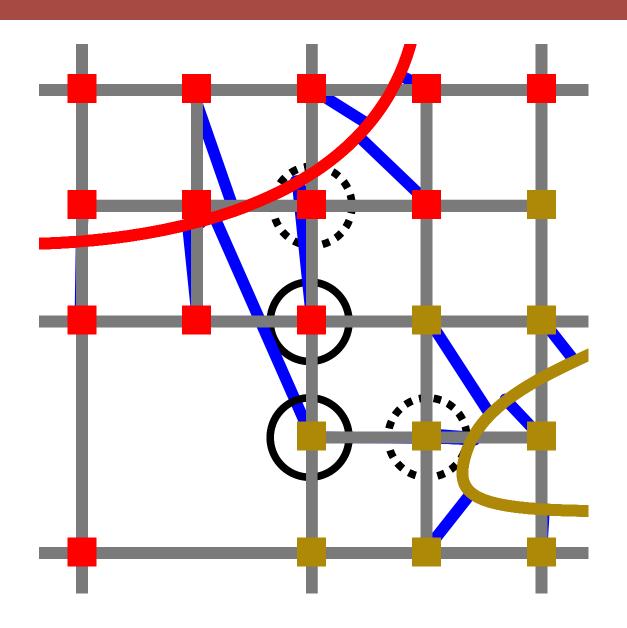


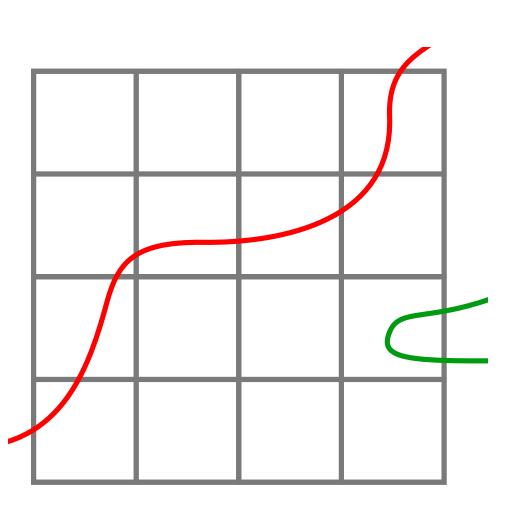


	-X	+x	-у	+ y	
nbrs(0) =		4		5	
nbrs(1) =	4			6	
nbrs(8) =	5	6	4	7	

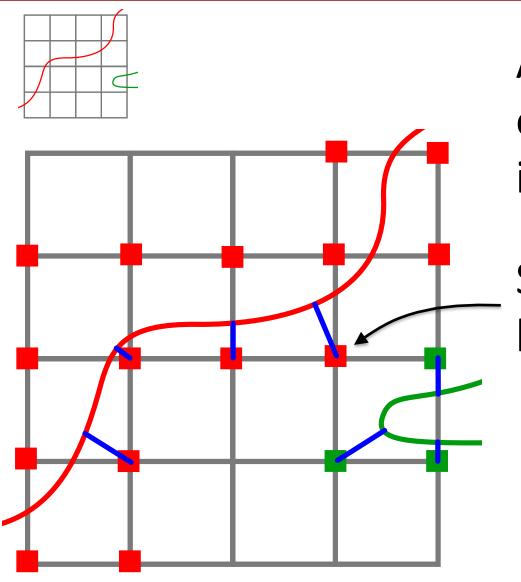
	Neighbor finding	Point location
Hierarchical	O(log N)	O(log N)
Flat (ours)	O(1)	O(N)





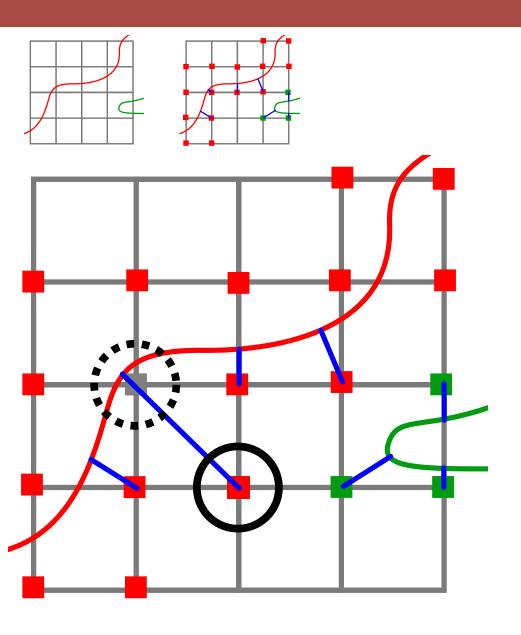


Example: start with two objects

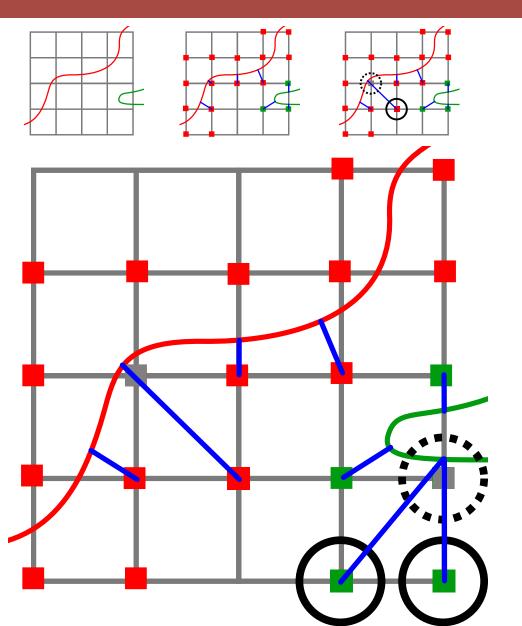


Assign vertices of octree cells that intersect objects

Some vertices belong to two cells

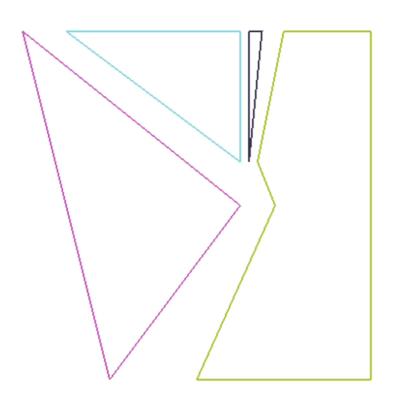


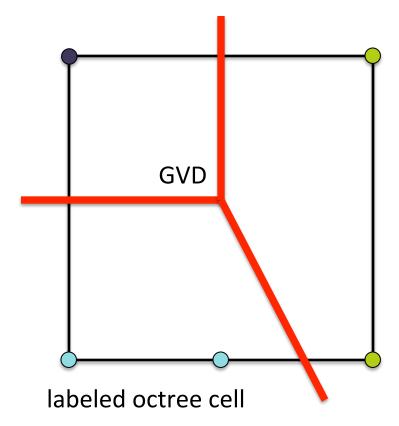
Propagate closest points to neighbor vertices



Propagate closest points to neighbor vertices

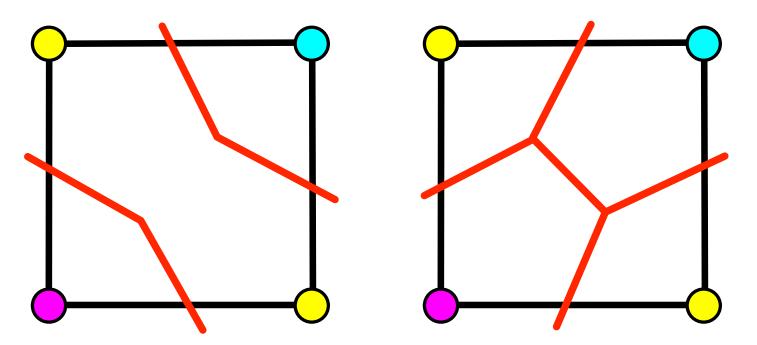
Wavefront propagates until all vertices have been assigned a label



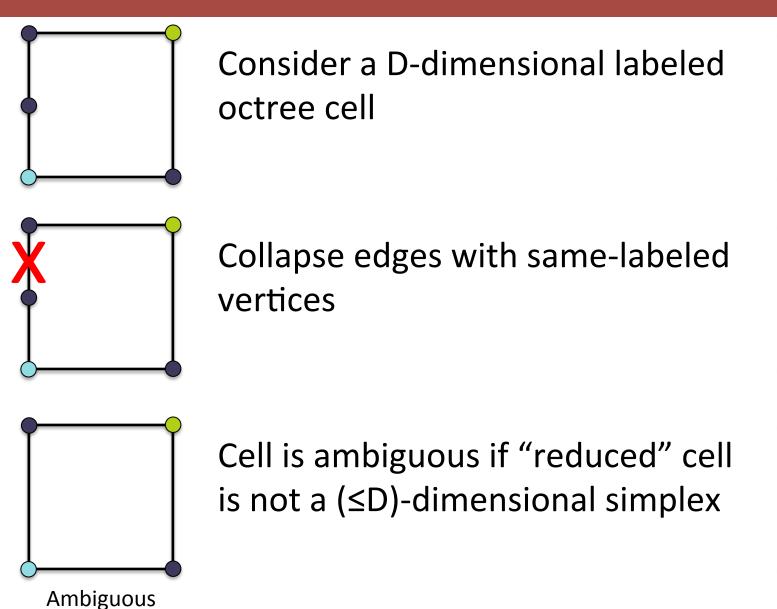


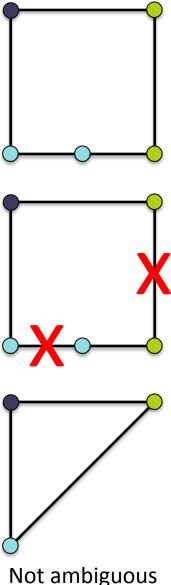
Ambiguity

A cell is ambiguous if there is more than one topology the GVD can take on the interior of the cell



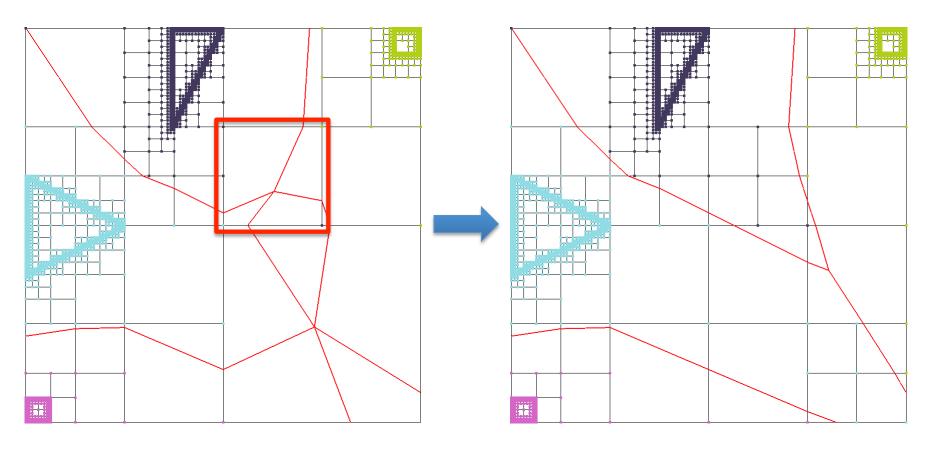
Definition of ambiguity





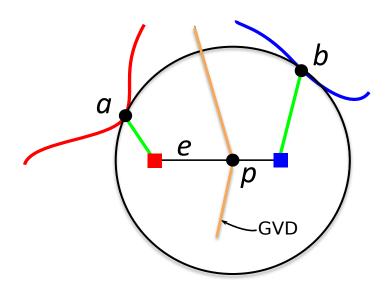
Ambiguity resolution

Resolve ambiguities through subdivision



GVD edge intersections

Where on an edge does the GVD reside? We seek point p = (x,y,z) on edge e.

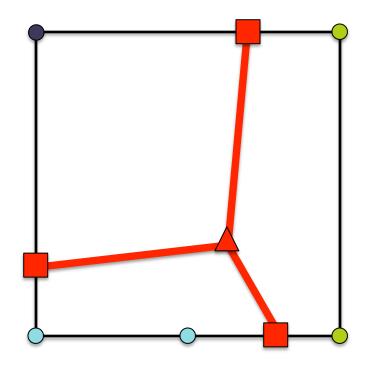


$$x = \frac{2y(a_y - b_y) + 2z(a_z - b_z) + b^T b - a^T a}{2(b_x - a_x)}$$

2D GVD construction

Given a 2D cell with labeled vertices:

- 1. Compute GVD-edge intersections
- 2. Compute GVD center point
 - Center point = center of mass of edge intersections
- 3. Connect edge intersections with center point



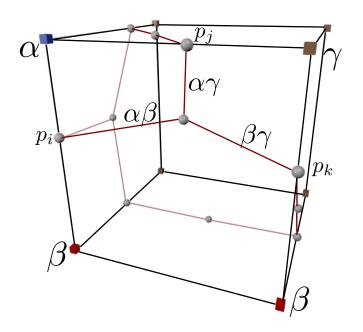
= GVD edge intersection= GVD center point

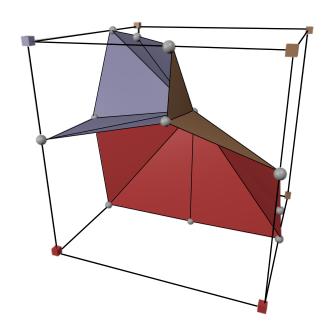
= GVD

3D GVD construction

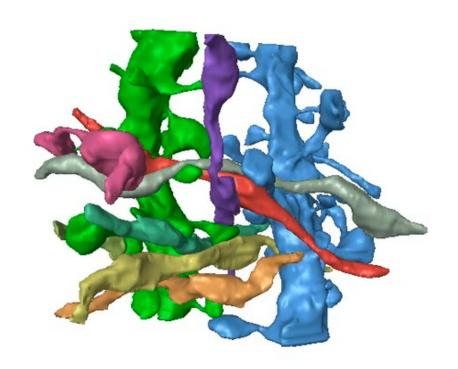
Given a 3D cell with labeled vertices:

- 1. Compute 2D GVD for each face
- 2. Triangulate 2D GVDs with cell center

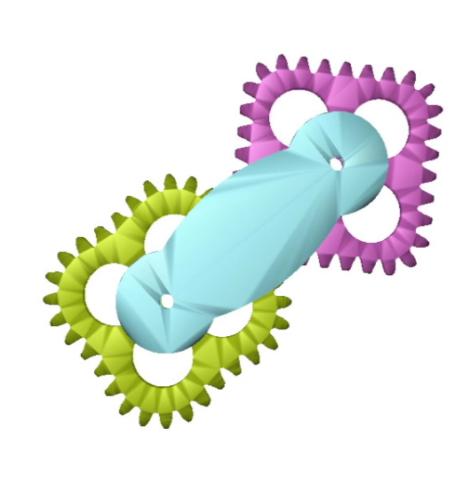




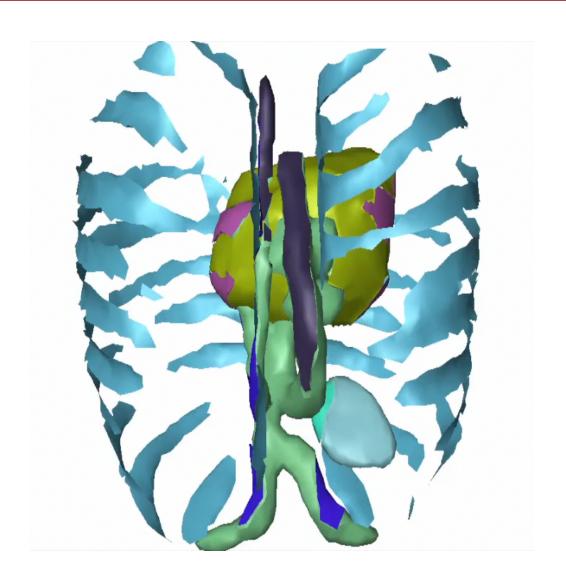
Results



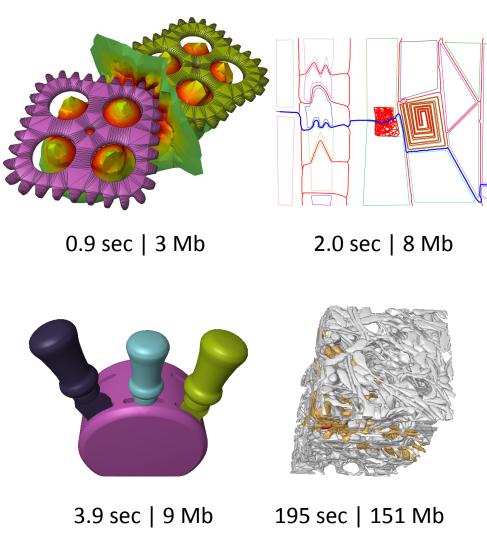
Results

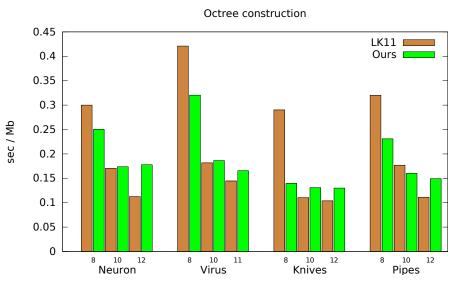


Results



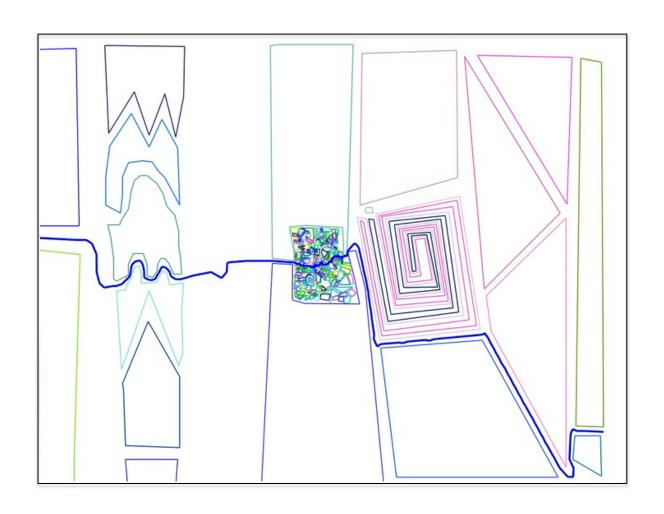
Performance



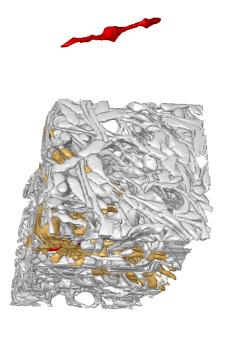


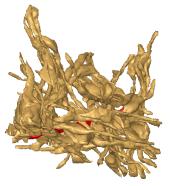
Comparison with Laine and Karras (LK11), which computes an octree that models objects

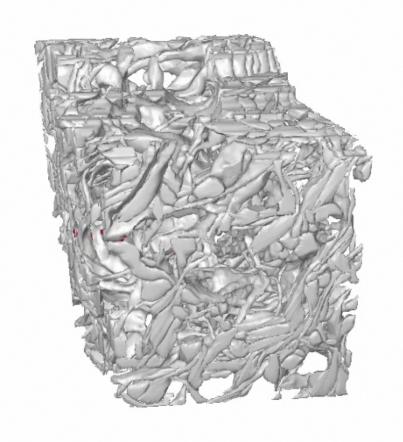
Applications – path finding



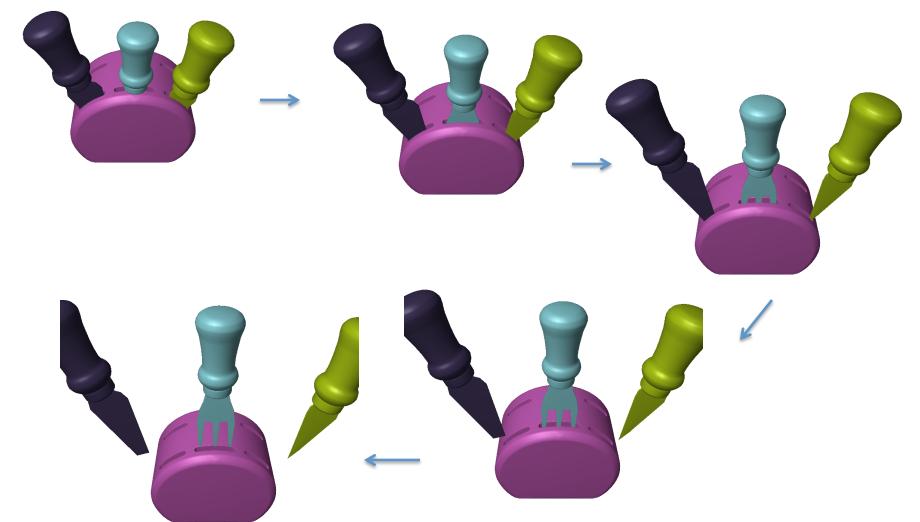
Applications – proximity query



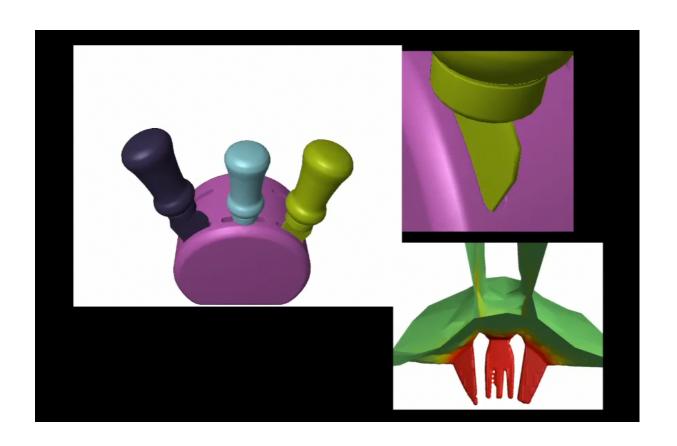




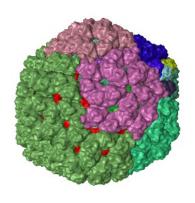
Applications – intersection-free motion



Applications – intersection-free motion



Applications – exploded diagrams



Centroid-based

GVD-based

Conclusion

Before:

fun CanComputeGVD(dataset)
if (grid fits in memory)
return TRUE
if (dataset is well-behaved)
return PROBABLY
return FALSE

Now:

fun CanComputeGVD(dataset) return TRUE

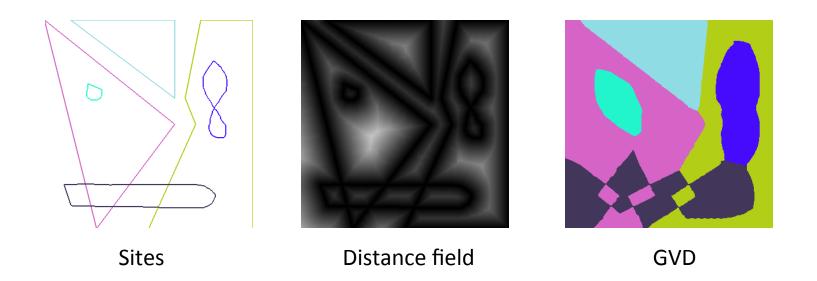
Summary

- GVD can now be computed on arbitrary datasets
- Applications involving difficult datasets are unlocked
- Further work needs to be done for
 - Improved error bound on distance transform
 - Parallelization and other optimizations

Thank you

Code and datasets available at cedmav.org

Relationship to medial axis



- Medial axis is the locus of critical points of the distance field
- GVD is a subset of the medial axis