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Summary. Many remeshing techniques sample the input surface in a meaningful way and
then triangulate the samples to produce an output triangulated mesh. One class of methods
samples in a parametrization of the surface. Another class samples directly on the surface.
These latter methods must have sufficient density of samples to achieve outputs that are home-
omorphic to the input. In many datasets samples must be very dense even in some nearly
planar regions due to small local feature size. We present an isotropic remeshing algorithm
called κCVT that achieves topological correctness while sampling sparsely in all flat regions,
regardless of local feature size. This is accomplished by segmenting the surface, remeshing
the segmented subsurfaces individually and then stitching them back together. We show that
κCVT produces quality meshes using fewer triangles than other methods. The output quality
meshes are both homeomorphic and geometrically close to the input surface.

1 Introduction

Surface remeshing is the process of transforming an input surface mesh S into an out-
put surface mesh W . Often a given model needs to be remeshed to meet the needs
of a given application. For example, the number of triangles may be too large for a
graphics application to render efficiently, or low triangle quality may cause numeri-
cal instability in a FEM simulation. Triangle quality improvement and reducing the
number of triangles (decimation) are two important, but often competing, goals in
remeshing.

Many remeshing methods sample and optimize points directly on S and then
use a triangulation of these points to produce W . These algorithms run into trouble
when the number of sample points is very low. Not only does the geometric approx-
imation suffer, but topological errors can be introduced, in the sense that W is not
homeomorphic to S, and also that W may not be 2-manifold.

In areas where the surface has high curvature this phenomenon makes intuitive
sense. But what can be at first surprising is that in many cases areas of very low
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(a) (b) (c)

Fig. 1. Remeshing the Toy Elk model using 2000 sample points. Non-manifold edges and
vertices are highlighted in red. (a) Uniform CVT. A shortage of triangles in the horns results
in topological errors. (b) lfs CVT. Despite a large number of triangles in the horn area there is
still one non-manifold vertex. (c) Our method, κCVT. Our method produces improved meshes
by distributing samples according to curvature rather than local feature size while avoiding
topological errors.

curvature require an inordinately large number of triangles to approximate faithfully.
This occurs when other sections of the surface, even if distant geodesically, come
in close proximity to the flat region. The fact that topological and geometric errors
increase with fewer triangles in such areas is an unfortunate side-effect of using
the euclidean metric to approximate geodesic distances. One way to look at this
is in terms of the local feature size (lfs), which is defined as the distance from a
point p ∈ S to the closest point on the medial axis of S. The r-sampling theorem,
discussed further in section 2, states that the number of samples needed to ensure
that W is homeomorphic to S is dependent on lfs. Thus, even if an area is nearly
planar, large numbers of triangles will be needed if the lfs is low.

The effects are felt beyond these areas of low curvature. Since a large number
of samples may be allocated to flat areas, an insufficient number of samples may
be left for areas where they are inherently needed – areas that are highly detailed.
The simple solution to this problem is to add more sample points, but if keeping the
number of triangles low is important then an alternative solution is desired.

We propose an algorithm that largely removes the requirement for dense sam-
pling in featurless areas. This is done through a surface segmentation algorithm that
decomposes S into a set of subsurfaces M = {Mi} such that for any p ∈ Mi,
lfs(p) ≈ 1/κ(p) where κ is the maximum of the absolute values of the principal
curvatures κ1, κ2 at p. We call a surface with this property “curvature dominant.”
Such surfaces with this property can be remeshed with enough samples to preserve
features with high curvature, while flattish areas can be approximated with fewer tri-
angles without risk of topological errors. Our remeshing of each individual subregion
is done using CVT with density function ρ =

√
κ. Hence the moniker κCVT.
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With remeshed subregions in place, our stitching algorithm composes them back
into a single triangulation. The stitching algorithm uses information on connectiv-
ity between regions as a heuristic for accurately finding correspondences between
triangles of different subregions.

In datasets with flattish regions as described, our method requires fewer triangles
to produce topologically correct meshes that are geometrically very accurate.

Our processing pipeline is to first segment S into subsurfaces {Mi}. We then
remesh each Mi individually using CVT, followed by stitching. Since understanding
CVT remeshing is important to understanding the segmentation algorithm, our pre-
sentation in this paper follows a slightly different order. After a discussion of related
work (section 1.1), we briefly describe the CVT algorithm and theorems related to
topological correctness of remeshed surfaces (section 2). We then discuss the curva-
ture dominance property and surface segmentation (section 3) followed by stitching
(section 4). We end with results and conclusions (section 5).

(a) (b) (c) (d)

Fig. 2. Examples of remeshing a thin box. (a) Voronoi diagram of seeds after running CVT
to convergence. The Voronoi cells are badly shaped because seeds are influencing cells on the
opposite side of the box. Seeds are shown in red. Most of the seeds have drifted inside the box
and are not visible. (b) Dual of the Voronoi diagram. Triangles in black are facing away from
the viewer – not only are many of the triangles poorly shaped, but there are topological errors
as well. (c) Half of the box has been removed. With a single sheet the Voronoi cells are as
expected: fairly regular hexagons. (d) The Dual has well-shaped triangles and no topological
errors.

1.1 Related work

Much work has been done in the area of surface remeshing. Some remeshing ap-
proaches are geared toward decimation, or reduction of the number of triangles,
and work directly on the mesh (e.g. [13, 15]) using a series of geometric opera-
tions such as edge collapse. These approaches typically have some error metric that
is maintained and decimation halts once the metric reaches a threshold. Other simi-
lar approaches use optimization [16] that maintains topology but is computationally
expensive. Another approach proposed by Cheng et al. [7] uses Delaunay refinement
to successfully remesh piecewise smooth meshes, including non-manifolds.

CVT is a popular remeshing technique that minimizes an energy function de-
signed to simultaneously reproduce the input mesh faithfully while producing well-
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shaped triangles. A primer on CVT in its general formulation (not necessarily applied
to surface remeshing) is given by Du et al. [8]. CVT has been applied to surface
remeshing. Sample points are placed on the surface and their locations are optimized
by minimizing the CVT energy function in order to produce quality triangles that
approximate the surface well. CVT methods fall into two camps: those that optimize
the points in parameter space and those that work directly on the mesh.

Of those that parametrize the surface, Alliez et al. [2] use a parameter represen-
tation of the surface as a whole. To avoid the difficulty of entire surface parametriza-
tion, various approaches parametrize locally [3, 21]. This simplifies parametrization,
but returning to 3D involves stitching, and optimization is not done globally, yielding
triangles that are not consistently uniform.

Another approach is to optimize sample points directly on the surface. This has
the advantage of being a global optimization and triangles have been shown to be of
higher quality [22]. These methods have been hampered by two issues. The first is
performance. Lloyd’s algorithm [19] has been the implementation of choice to min-
imize the CVT energy function despite its linear convergence rate [8]. Only recently
was the CVT energy function shown by Liu et al. [18] to have C2 smoothness, mak-
ing it a candidate for more efficient optimization techniques. In the same work the
limited-memory BFGS method (L-BFGS) [17] was applied to the minimization of
the CVT energy function with favorable results. Another work that further improved
the performance of CVT is that of Yan et al. [22] which proposed an algorithm to
efficiently and exactly compute the Restricted Voronoi Diagram (RVD), a necessary
ingredient in direct methods.

The second issue with these methods is the need for high sampling rates to
achieve topological correctness. While the method in [22] detects topological prob-
lems and corrects them by inserting additional samples, the requirement for large
numbers of samples, possibly even in flat regions, is troublesome. Peyre et al. [20]
use geodesic approximations directly, which largely obviates the sample density re-
quirements. Their application is surface segmentation, and CVT is used to optimize
two competing conditions (compactness and boundaries lying on sharp features) on
surface regions. While effective for segmentation, in the context of remeshing, where
the number of regions is very large, the performance is problematic. Our approach
allows flat regions to be remeshed with few samples, regardless of local feature size,
and does so while still using the euclidean metric.

Alliez et al. [4] provide a more thorough survey of remeshing techniques.

2 CVT remeshing

Our presentation of the CVT follows that given in [22].
The Voronoi Diagram, or Voronoi Tessellation, is defined as follows. Given n

distinct sample, or seed, points X = {xi}ni=1 in RN , each point xi lies within a set
of points

Ωi = {x ∈ RN |‖x− xi‖ ≤ ‖x− xj‖,∀j 6= i}. (1)
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The set of points Ωi is called the Voronoi cell of xi and the set of all Voronoi cells
V = {Ωi}ni=1 is a decomposition of RN and is called the Voronoi Diagram de-
termined by X . The Centroidal Voronoi Tessellation (CVT) is a special case of the
Voronoi Tessellation such that each seed xi ∈ X coincides with the center of mass of
its corresponding Voronoi region Ωi. Given a density function ρ(x) > 0, the center
of mass x∗ is defined as

x∗i =

∫
Ωi
ρ(x)x dσ∫

Ωi
ρ(x) dσ

(2)

For computation purposes, the CVT can be formulated as a critical point of

F (X) =

n∑
i=1

∫
Ωi

ρ(x)‖x− xi‖2 dσ (3)

Equation (3) is known as the CVT energy function and is typically minimized using
Lloyd’s algorithm [19] or, more recently, the limited-memory BFGS method (L-
BFGS) [18, 17].

In the case of surface remeshing, two modifications to CVT have been proposed.
The first is Restricted CVT (RCVT). Given a surface S ⊂ R3, a set of seeds X , and
the induced Voronoi Diagram V , the Restricted Voronoi Diagram (RVD) is the set
of all restricted Voronoi cells (RVC) R = {Ri}ni=1 where Ri = Ωi ∩ S. In other
words, each RVC is the Voronoi cell restricted to the surface S. RCVT uses a slightly
modified energy function that utilizes the RVD:

F (X) =

n∑
i=1

∫
Ri

ρ(x)‖x− xi‖2 dσ (4)

Constrained CVT (CCVT) was introduced in [9] and is the same as RCVT except
that the seed points are restricted to S, as given in

x∗i = argmin
y∈S

∫
x∈Ri

ρ(x)‖y − x‖2 dσ (5)

The Restricted Voronoi Diagram is given by either CCVT or RCVT. The Re-
stricted Delaunay Triangulation (RVT) is dual of the RVD, in that each vertex in the
RVT corresponds to a cell in the RVD, two vertices share an edge if their correspond-
ing RVD cells share an edge, and a triangle exists where three cells share a Voronoi
vertex.

We use the efficient RVD computation given in [22] and the energy minimiza-
tion given in [18]. For simplicity in writing, we use the term “CVT” to refer to the
remeshing process comprising CCVT/RCVT and RVT.

2.1 Topological correctness

CVT does not guarantee that the output mesh W is homeomorphic to S. A theorem
states a sufficient condition to avoid topological errors.
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Theorem 1. Topological ball property [10]. If each Restricted Voronoi Cell is a topo-
logical disk then the Restricted Delaunay Triangulation is homeomorphic to S.

Figure 3 illustrates the topological ball property in 2D. If the RVD fails to meet
this property, well-spaced sample points can be added, as implied in the figure. This
solution is formalized in a theorem from the literature on surface reconstruction from
point clouds.

Theorem 2. r-sampling theorem [5]. If no point p on surface S is farther than r ·
lfs(p) from a seed point x ∈ X where r is a constant then the Restricted Delaunay
Triangulation induced by X is homeomorphic to S.

If W has topological errors, which can be detected using the topological ball
property, then we simply add seed points and re-run the algorithm. This is the ap-
proach taken in [22]. Eventually there are enough seeds to meet the r-sample crite-
rion given in theorem 2 and W will be homeomorphic to S (although termination
has not been proven). Since lfs is based on euclidean distance, points on S that are
geodesically very far from a given point p ∈ S can cause lfs(p) to be small, requiring
the sample density to be unduly high at p, even if the curvature at p is very low. This
is the very artifact that we seek to avoid.

We briefly digress to note that our approach is intended to enable meeting the
topological ball property with fewer triangles in areas of low curvature. It is not a
general solution for all areas of S. To illustrate this point we mention two conditions
that together are sufficient to meet the topological ball property, of which only the
first condition is targeted by κCVT. Let B(p, r) be a ball of radius r centered at p.

Condition 1 B(p, r) ∩ S is a single connected component.

Condition 2 B(p, r) ∩ S has a single boundary.

Condition 1 is typically violated in areas where both lfs and curvature are small.
Condition 2 is violated in areas where S is similar to a cylinder with small radius. In
this case, B(p, r)∩S may be a cylinder with open ends, which is a single connected
component but has two boundaries, thus is not homeomorphic to a disk. While this
can cause topological problems, there is nothing to be gained in segmentation since
local feature size is already dominated by curvature.

2.2 Geometric accuracy and triangle quality

CVT has been shown to give excellent results in terms of mean Hausdorff error [22].
Further, the density function ρ is an intuitive way to control the trade-off between ge-
ometric accuracy and triangle quality. Meshes produced from CVT using a constant
density function ρ = c tend to have very well-shaped triangles of roughly uniform
size. Using such uniform triangles can lead to reduced geometric accuracy in areas
of high curvature, not to mention topological problems in areas of low feature size.
The logical solution is to increase the number of triangles in these areas by setting
ρ = 1/lfs2. This produces gradation in the triangle sizes, affecting triangle quality.
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(a) (b) (c) (d)

Fig. 3. 2D graphic of the RVT. Resulting meshes are not necessarily homeomorphic to the
input mesh when certain conditions are not met. (a) There are only 4 sample points (black
dots) in the region of interest. The (unrestricted) Voronoi diagram is shown in dashed lines.
Note that the Restricted Voronoi CellRc = Ωc∩S corresponding to point c has two connected
components and thus is not a topological disk. Shared “edges” between samples a and c and
samples b and c are circled. These induce edges between cells in the triangulation. (b) RDT
induced by RVD. Edges between sample points (bold lines) are used to reconstruct the surface.
Because samples are not dense enough, the resulting surface is not homeomorphic to the input.
(c) Voronoi diagram of densely-sampled points. All RVCs are topological disks. (d) Resulting
surface is homeomorphic.

3 Surface segmentation

If S has flat regions with low lfs there are two options when remeshing with CVT.
The first is to use a constant density function ρ = c and risk topological errors. The
second option is to use ρ = 1/lfs2 which may produce large numbers of triangles
in those regions rather than allocating them to regions of high curvature. A surface
that is curvature dominant, however, can use curvature as the density function. This
ensures that few triangles will be used in flat regions while still maintaining good
likelihood that the topological ball property will be met. We approximate curvature
using CGAL’s implementation of the approach in [6]. Segmentation requires local
feature size for the vertices of S which we approximate using the approach given in
[1] by computing the distance to the nearest pole [5].

We first fix some notation. If we let A and C denote closed, adjacent triangles in
a 2-manifold triangulated surface S, then A ∩ C is the shared edge between them,
which we denoteAC. Let VA be the set of three vertices defining triangleA. Further,
let d(p,∆) = argminq∈∆ ‖p− q‖ be the minimum distance between p and 1- or 2-
simplex ∆. We define rp = 2 · α · lfs(p) and rA = argminvi∈VA

rvi . All of our
experiments use α = 1.1. Let PA,∆ be the set of all points p ∈ A that are within
rA of the simplex ∆. That is, PA,∆ = {p ∈ A|d(p,∆) < rA}. We note that for any
p ∈ PA,∆,B(p, rA) ∩∆ 6= ∅. See figure 7. Let lfsS(p) be the local feature size at p
with respect to surface S.

Compatibility table

Our algorithm partitions a surface triangulation S into subsurfaces M = {Mi} such
that the ball B(p, rA) centered at any point p ∈ A ∈Mi will yield a single connected
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component when intersected with Mi (figure 4). The first step in our algorithm is
to build a table of all “incompatible” pairs of triangles in S (figure 5). Triangles
A ∈ S and B ∈ S are incompatible if there exists any pair of points p ∈ A and q ∈
B(p, rA)∩B such that there is no path from q to p residing entirely in B(p, rA)∩S.
(Note that a surface P is a single connected component iff for any two points p, q ∈
P there exists a path Γq,p from q to p such that Γq,p ⊂ P .) In this case, both A and
B cannot exist in the same subsurface Mi without violating condition 1.

(a) (b)

Fig. 4. 2D graphic illustrating use of lfsS to find incompatible triangles. (a) A and B are
compatible. For any p ∈ A, q ∈ B(p, rA) ∩B there is a path from q to p, similar to the path
shown along the arrows. The path lies entirely in B(p, rA)∩S. (b)A andB are incompatible.
There is no path from q to p.

(a) (b) (c) (d)

Fig. 5. Identification of incompatible triangles. (a) The triangle of interest A is in magenta.
The blue ball has radius rA. Triangles compatible with A are shown in green. Any ball
B(p ∈ A, rA) intersected with the compatible triangles will yield a single connected compo-
nent. (b) Rotated to see the opposite sheet near A. Triangles within a distance rA of A that
are incompatible with A are shown in red. (c), (d) Two examples of final segmentation. All
triangles of the same color are compatible with each other.
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To build the compatibility table, we first construct an R-tree [14] with all triangles
in S. We then iterate through each triangle A ∈ S. Given A, we find, using the R-
tree, the set of all triangles B = {Bi} such that each Bi is within rA of A (i.e.
∃p ∈ A, q ∈ Bi s.t. ‖q − p‖ < rA). We then compute PA,Bi

. We do this in three
steps. First we construct a prism Z = {q|q′ ∈ Bi, ‖q − q′‖ ≤ rA} around Bi (figure
6) where q′ is the projection of q onto the plane defined by Bi. In other words,
we sweep Bi in its normal direction by −rA to rA. We then construct a set of three
cylindersX = {X{123}} of radius rA around each edge ofBi. Finally we construct a
set of three spheres Y = {Y{123}} of radius rA around each vertex ofBi. We can now
compute PA,Bi

= A∩(Z∪
⋃
Xi∈X Xi∪

⋃
Yj∈Y Yj) and PA,BiC = A∩(Xj∪Yk∪Yl)

where C is an edge-neighbor ofBi andXj (Yk, Yl resp.) their shared edge (vertices).
Since Bi is within rA of A, PA,Bi 6= ∅. For every point p ∈ PA,Bi and every point
q ∈ B(p, rA) ∩ Bi there must exist a path Γq,p ⊂ B(p, rA) ∩ S. Let NBi

be the
edge-neighbors of Bi.

Our algorithm uses a breadth-first search from A over all Bi ∈ B, flagging each
Bi as compatible or incompatible.A andBi are incompatible if

⋃
Nj∈NBi

PA,NjBi \
PA,Bi 6= ∅. See figure 7. Each set of points PA,∆ is the union of ellipses and poly-
gons (figure 6). Using these primitives directly makes for very expensive boolean set
computations, so our implementation converts PA,∆ to a raster representation so that
less expensive bitwise boolean operations can be used.

Region merging

Let Λi be a set of triangles. With the compatibility table built, we define a binary
predicate operator Λi⊕Λj that yields true iff every triangle in Λi is compatible with
every triangle in Λj . Segmentation proceeds as a region merge algorithm.

Data: triangles S = {Ti}
Result: regions M = {Mi}

1 Initialize one region Λi per triangle Ti
2 foreach region Λi do
3 foreach neighbor Λj of Λi do
4 if Λj ⊕ Λi then
5 merge Λj and Λi
6 end
7 end
8 end
9 Repeat lines 2-8 until no regions are merged

Algorithm 1: Segment via region merging
Region merging outputs a set of subsurfaces M = {Mi}. CVT with density

function ρ =
√
κS is applied to each Mi. κS(p) is the curvature at point p with

respect to surface S. It is important to use the curvatures from the original surface,
since edges with high curvature in S may be boundary edges in Mi with very low
curvature. Even though the new boundary is flattish, we still desire high density there
so that the stitching algorithm has border edges that have roughly the same spacing
between two subsurfaces.
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Remeshing

With the surface S segmented into subsurfaces we now remesh subsurfaces indi-
vidually using CVT with ρ =

√
κ. The N samples must be distributed among the

different subsurfaces for initial placement and optimization. We allocate Ni seeds
to each subsurface Mi where Ni = N

∫
Mi
ρ(x) dσ/

∫
S
ρ(x) dσ. One subtlety in the

remeshing stage is that we must ensure that adjacent boundaries of subsurfaces have
compatible sample density so that subsequent stitching is uniform. For this reason,
our density function uses the curvature computed with respect to the original surface
S rather than with respect to a subsurface Mi.

In some cases, CVT remeshing of a segmented region yields a vertex that is
shared by only two triangles such that the edges are not orderable. This is automati-
cally detected and repaired by either breaking the triangles apart or adding two new
triangles that connect them.

(a) (b) (c)

Fig. 6. Construction of PAB . TriangleA is in green and triangleB is in purple. (a) Intersection
of A with prism Z. The shaded portion of the 2D graphic is the intersection restricted to A.
(b) Intersection of A with cylinder Xi. The other cylinders are not shown. (c) Intersection of
A with sphere Yj . The other spheres are not shown. The 2D graphic shows PAB .

(a) (b)

Fig. 7. 2D illustration of PA,∆. (a) In this case, given that C is compatible with A,
PA,Bi \ PA,CBi = ∅, so A and Bi are compatible. That is, B(p ∈ A, rA) ∩ S is a sin-
gle connected component. (b) Given C is compatible with A, PA,Bi \ PA,CBi 6= ∅, so A and
Bi are incompatible. B(p ∈ A, rA) ∩ S yields two connected components.
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4 Stitching

The segmentation algorithm described in section 3 yields a set of subsurfaces {Mi}.
After segmentation, but before remeshing, we build a table JUNCTIONS of n-way
surface boundary intersections. If a vertex is shared by multiple subsurfaces, an en-
try is made in the table listing the index of each subsurface. After remeshing, we
consult JUNCTIONS to find subsurface correspondences. Suppose an entry of the ta-
ble consists of 3 subsurfaces Mi, Mj , and Mk. We first search to find a “connector
triangle” tc such that tc shares a vertex with each of the three subsurfaces and is op-
timal in some sense. See figure 8. Let Ei be the boundary edges of Mi and let Vi be
the vertices in Ei. We iterate through each vertex of one set of edges. Let V pj (resp.
V pk ) be the closest nα vertices in Ej (Ek) to p in terms of euclidean distance. The set
of all candidate connector triangles is {(p ∈ Vi, q ∈ V pj , r ∈ V

p
k )}. For nα = 4 (the

value used in our experiments) there are then 16 · |Vi| candidate connectors.
For each candidate connector triangle tc we stitch a distance of nβ triangles in

each direction (in experiments we used nβ = 5, but we use nβ = 2 in the figure for
clarity). Let Tc be the set composed of tc and the 3 ·nβ neighborhood stitch triangles.
We assign a score to tc using the cost function

cost(tc) =
∑
t∈Tc

area(t) ·Q(t)−γ . (6)

γ is a user-defined parameter (we used γ = 0.5) and Q(t) is the triangle quality
measure [11]

Qt =
6√
3

rt
ht

(7)

where rt and ht are the inradius and longest edge length of t, respectively. Once all
candidate triangles are scored we choose the one with the lowest score. This gives
an approximately optimal triangle according to our cost measure that connects three
surfaces. Once we’ve found connecting triangles for each entry in JUNCTIONS we
simply search out from one such triangle, adding triangles along the way until we
reach another connecting triangle.

5 Experimental results and conclusions

We compare our results with direct CVT methods and the method proposed by
Fuhrmann et al. [12] which samples points directly on the mesh and then optimizes
their placement in local parameter domains. The latter method isn’t well-suited for
aggressive decimation (the triangulation of initial samples fails), so we only report
its results for higher sampling rates. We used 100 Lloyd iterations and used a density
contrast exponent of 0.5 with no laplacian smoothing. In this discussion we refer to
unsegmented CVT using the density function ρ = 1 as uniform CVT and unseg-
mented CVT with ρ = 1/lfs2 as lfs CVT. We refer to our method of segmenting,
CVT with ρ =

√
κ, and stitching as κCVT.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Finding connector triangles and stitching. (a) Segmented triangulation. M{ijk} are
three subsurfaces in M . The table JUNCTIONS has an entry (i, j, k) since the three subsur-
faces share a vertex. From the JUNCTIONS table we see that M∗i , M∗j , and M∗k need to be
stitched. (b) Segmented regions M∗{ijk} after remeshing using CVT. (c), (d), (e) Three candi-
date connector triangles. The connector is dark cyan. Neighbor stitches up toNβ = 2 distance
in each direction are light cyan. (f) The connector triangle which, along with associated neigh-
bor stitches, gives the best score. Final stitching is shown.

Figure 1 uses 2000 sample points to remesh the Toy Elk model. This is far too
few sample points to meet the criteria for topological correctness when using uni-
form CVT, and many errors result. Even the lfs method produces one non-manifold
vertex in the horn region. Our method yields a mesh that is manifold and homeo-
morphic to S. In addition, our method also improves geometric error across almost
all experiments, measuring geometric error with mean Hausdorff error (figure 9 and
table 1). In fact, our results show geometric error improvement of as much as 20%
compared to the next-best method. In the single case that another method outper-
formed κCVT, our method had less than half the number of topological errors (see
also figure 10). In all other cases κCVT had identical or improved geometric error
while reducing the number of topological errors to 0. In general there is some loss in
average triangle quality when compared to uniform CVT. Similar to that of lfs CVT,
the quality suffers due to the triangle size gradation. This is due to the fact that the
optimization is not global and so even an optimal stitching algorithm cannot yield
good triangles in every case.

Figure 10 is an example of our method avoiding topological errors that can result
from extreme decimation. Uniform CVT has topological errors in the flat regions
while lfs CVT has errors in the cylindrical regions (since it allocates most sample
points to the flat regions). Our method distributes samples better, although it also has
some errors in the cylindrical regions, as explained in section 2.1.
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Figure 11 shows results from remeshing the Fish model at two levels of decima-
tion.

Figure 12 helps explain the gains in geometric error. The upper box highlights
the horn region. The method from [12] suffers in high-curvature regions due to local
optimization. The uniform CVT method fails to allocate enough triangles around the
edges of the horns. The lfs CVT method places far more triangles than needed in
the flat horn region, causing a lack of triangles in the higher curvature but lower lfs
ball region shown in the lower box. Our method uses far fewer triangles in the flat
horn region, which doesn’t affect geometric error, and allocates more triangles to the
edges of the horns (a failing of uniform CVT) and to the ball region (a failing of lfs
CVT).

We are interested in furthering this work by improving Qmin and θmin by per-
forming a final CVT energy optimization over the stitches and surrounding region.
As we did not use feature preservation in this current work, we anticipate adding it
in the future, similar to that done in [22]. We note that the method is parallelizable
– after decomposition we can remesh the seperate segments in parallel, which we
expect to implement in a distributed fashion.

Our method is a tool that can be used to more effectively control the trade-offs
between geometric, topological, and triangle qualities. It is useful in cases where flat
sheets pass close to each other, freeing the CVT algorithm from allocating inordinate
numbers of samples into those regions while avoiding topological errors.
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Fig. 9. Graph of mean distance from input mesh to output mesh. κCVT performed equally or
better in every test but one.
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(a) (b) (c)

Fig. 10. Remeshing the Club model with 200 sample points. Triangles with non-manifold
edges are highlighted in red. (a) Uniform CVT. (b) lfs CVT. (c) κCVT.

model # samples method errors Hmean × 103 HRMS × 103 Qmin Qave θmin θmin,ave

Elk 2000 uniform 400 0.94 1.48 0.448 0.884 22.4 50.8
lfs 15 1.31 1.76 0.347 0.858 19.3 48.7

κCVT 0 0.76 1.00 0.220 0.849 11.7 48.1

Elk 8000 [12] 0 0.38 0.63 0.058 0.902 2.6 52.2
uniform 0 0.24 0.37 0.509 0.916 24.4 53.2

lfs 0 0.36 0.49 0.451 0.893 22.6 51.4
κCVT 0 0.23 0.34 0.259 0.885 15.2 50.9

Fish 1000 uniform 95 0.97 0.16 0.525 0.872 28.6 49.7
lfs 14 0.91 0.12 0.420 0.830 18.3 46.4

κCVT 0 0.82 0.12 0.236 0.809 13.1 45.0

Fish 4000 [12] 0 0.50 0.85 0.070 0.898 2.7 51.8
uniform 11 0.36 0.53 0.580 0.898 26.3 51.7

lfs 0 0.36 0.51 0.407 0.864 19.4 49.1
κCVT 0 0.36 0.58 0.160 0.863 6.5 49.0

Club 200 uniform 51 2.94 4.08 0.570 0.842 30.1 47.4
lfs 31 4.25 6.36 0.362 0.770 13.8 41.8

κCVT 19 3.42 4.92 0.173 0.728 9.2 39.5

Club 2000 [12] - 0.74 1.54 ∼ 0 0.832 ∼ 0 47.5
uniform 0 0.39 0.70 0.555 0.893 32.9 51.5

lfs 0 0.46 0.85 0.314 0.834 12.5 46.8
κCVT 0 0.34 0.62 0.082 0.855 4.5 48.5

Table 1. Table of quality statistics of our method compared to CVT without pre-segmentation.
errors is the number of faces with non-manifold edges or vertices. Hmean and HRMS are the
mean and RMS of one-way distance, or error, from S to W divided by the bounding box
diagonal, respectively. Error in the opposite direction is similar. Qmin (resp. Qave) is the
minimum (average) Q-measure given by equation (7). θmin (resp. θmin,ave) is the minimum
(average minimum) triangle angle.
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(a) (b) (c) (d)

Fig. 11. Remeshing the Fish model using 4000 sample points. Original model is shown on
the left. (a) Algorithm from [12]. (b) Uniform CVT. (c) lfs CVT. (d) Our method, κCVT. Our
method preserves features of the gills below the mouth (features that are lost using [12] and
lfs CVT) while avoiding topological errors (uniform CVT has 11 non-manifold edges).

(a) (b) (c) (d)

Fig. 12. Remeshing the Toy Elk model using 8000 sample points. Original model is shown on
the left. (a) Algorithm from [12]. (b) Uniform CVT. (c) lfs CVT. (d) Our method, κCVT. Our
method produces improved meshes by distributing samples according to curvature rather than
local feature size while avoiding topological errors.
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