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Chapter 1   Introduction

Three-dimensional object segmentation refers to the task of detecting and

describing objects in volume data.  Applications such as medical imaging, geological

surveying, and computational fluid dynamics can all benefit greatly from 3D image

segmentation.  Approaches that are currently available to accomplish this task are

typically non-interactive and difficult to use.  In the 2D world, interactive tools are well

developed.  However, attempts to extend these techniques to 3D have not enjoyed the

successes of their 2D counterparts. This thesis outlines Live Mesh, a novel interactive 3D

image segmentation algorithm that provides an easy-to-use interface for extracting 3D

geometry from volumetric data.

One field in which Live Mesh can be extremely useful is medical imaging.  A

common task for a doctor is to determine the size and shape of a tumor using CT scan

image slices.  Using Live Mesh, the doctor can interactively segment the tumor data from

the surrounding bone and tissue data in a 3D-rendered environment and obtain a precise

model of the tumor.

Few 3D object segmentation strategies proposed earlier allow the user to work

directly in three dimensions.  Many rely on 2D segmentation techniques such as Snakes

or Live Wire (described in the next chapter).  After segmenting in 2D the descriptions are

combined and interpolated to produce a 3D object.  While simple to use, these

approaches don’t allow the user to work on the data as a whole.  Rather, they present the

user with one slice at a time.  The tools and user may make errors because of lack of

context of the slice data.  The Live Mesh algorithm works on the volume data, and, in

addition, allows the user to interact in a 3D environment.

The Live Mesh method is a 3D extension of Live Wire, an algorithm that uses

Dijkstra’s shortest-cost algorithm and a user-interactive interface to find object edges.

Live Wire has proven powerful and is widely used because of its high degree of user-

interactivity.  This is because automatic segmentation is still an unsolved problem and

many datasets still require expert knowledge from users.  Live Mesh retains the user-

interactivity of Live Wire while extending the working space to three dimensions.
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Novel ideas proposed in this thesis include a 3D extension of the Live Wire cost

function (Chapter 3  ), a spatial restriction for the 3D graph search (Section 3.3.2) and the

Live Mesh algorithm (Section 4.1) with proposed interpolation techniques (Section 4.3).

A simple implementation of the Live Mesh method, the SimpleSeg application, is also

discussed (Chapter 5  ).
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Chapter 2   Previous Work

Image segmentation techniques have been used for many years in a variety of

different applications to detect and describe objects in images.  The applications range

from simple to complex, and no one segmentation technique is adequate for all uses.

Current image segmentation methods can be split into three [11] general categories based

on the origin of the data used to perform the segmentation: global image information,

region-based data, or edge-based data.

2.1 Global

The primary segmentation technique that depends on global knowledge of the

image is thresholding [15,16].  This is accomplished for a gray-scale image by simply

setting all pixels with intensity levels above a threshold T to intensity one, and setting all

pixels below T to zero.  This produces a binary image, with all “on” pixels identified as

part of the object.  Thresholding can utilize any image characteristic, including intensity,

color or gradient.

Thresholding is simple both to understand and implement, and it provides an

effective segmentation solution for a wide variety of applications.  For simple problems,

thresholding can be used exclusively, but often more is required.  More commonly, it is

used in conjunction with other, more sophisticated segmentation algorithms.

Thresholding uses global knowledge by obtaining the threshold T by analysis of

the image’s histogram.  T is usually then applied to the entire image.

The remaining two general methodologies, region-based and edge-based, contain

numerous specific segmentation techniques which are more focused and sophisticated

than thresholding.

2.2 Region-based segmentation

Consider a picture of a red glove sitting on a brown table.  If the lighting is good,

most pixels comprising the glove will be some shade of red or another.  Exploiting this

feature, an algorithm could pick a pixel in the middle and mark it as being part of the

glove.  The algorithm could then mark all neighboring pixels as part of the glove.  This



4

could continue recursively until all contiguous pixels of some shade of red are found.

This is the basic principle that region-based segmentation techniques [14,18] are based

on.

Region-based segmentation relies on homogeneity of the target object’s pixels or

some characteristic of the pixels.  If two regions in an image are sufficiently similar to

each other are merged into one region.  This can be done recursively, starting at the pixel

level, until all remaining, adjacent regions in the image are dissimilar enough that no

more merging can be done.  The region resulting from merging is considered to be the

object desired.

Region-based methods are generally considered to be fairly tolerant to noise but

they are hindered by the requirement that the object’s pixels be similar to each other in

order to be considered in the same region.  If the object does contain disparate regions

then these regions must be manually merged, and if the object has many such regions,

manual merging can be prohibitively time-consuming, such as would be the case if the

user were segmenting a patchwork quilt from a scene.  In such a case either the method’s

similarity metric must be customized to the image (or class of images) or a different

segmentation technique must be used.

2.3 Edge-based segmentation

Consider the above example of a patchwork quilt.  The pixels within the quilt are

disparate, but the edge of the quilt against the background is quite clear.  Edge-based

segmentation techniques [11,17] take advantage of this by finding edges of the object.

Contiguous pixels exhibiting similar edge characteristics are grouped together and

considered to define an object boundary (or edge), ideally circumnavigating the object.

Edge-based techniques work on the output from edge detector operators.  Edge

detectors, such as the Laplace, Prewitt and Sobel operators, find pixels in the image

which exhibit characteristics of an edge.  Pixels with high likelihood of being an object

edge are ones which are highly dissimilar from some (but not all) of their neighbors.  If

the image were considered as a function, these pixels would have a very high first

derivative or gradient.  Additionally, the pixel’s second derivative would likely be close
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to zero, indicating that it is a peak in the gradient.  The output from these derivative-

finding operators provides a starting place for edge-based segmentation techniques.

Most image segmentation techniques use little user interaction.  However, as

complex scenes may require expert a priori knowledge, a degree of user interaction may

be desirable.  Two successful edge-based, highly user-interactive segmentation

techniques are Snakes [2] and Live Wire [1].

2.3.1 Snakes

Snakes [2], or Active Contour Models, are splines which fit themselves to object

boundaries based on internal energy, external energy and user-defined constraints.  We

define internal energy as the parameters describing the flexibility of the snake, or how

much force is required to bend the snake.  The external energy is obtained from the image

itself: areas with strong edge characteristics attract the snake, and areas that do not appear

to be edges repel the snake.  If an image is thought of as a mountain range, with peaks

defined as areas of low gradient, then the snakes algorithm can be thought of as placing a

tube of flexible rubber along the mountain range.  The tube will have the tendency to

settle in valleys (external energy), but only insomuch as required bending doesn’t exceed

its degree of stiffness (internal energy).

Users have some control over the behavior of the snake as it settles into a low-

energy state.  User-defined constraints such as springs and repulsors allow the user to

manipulate the behavior of the snake at runtime.

The snake is first initialized by the user, either by being drawn (Figure 1a) or

initialized using Live Wire6 (explained below).  The snake then settles into a state of

equilibrium between the internal and external energy factors (Figure 1b).  The snake’s

settled state is often off the mark because of lack of precision of the initial snake or

misleading external forces.  Constraints can then be used to push and pull the snake into

position for a final, precise segmentation (Figure 1c).

Snakes have proven to be very effective segmentation tools.  While constraining

forces provide tools for the user to manipulate the position and shape of the snake, if the

snake goes far amiss, the task of repairing can be difficult and time-consuming.
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(a) (b) (c)

Figure 1 Snakes Example
(a) User-initialized snake.  (b) Snake after reaching equilibrium.  (c) Snake at equilibrium after
manipulating with constraints.

2.3.2 Live Wire

Live Wire is a very powerful edge-based segmentation method.  Its strength lies

in its very high degree of user-interactivity.  The user clicks on an edge of the object with

the mouse, defining a “seed point.”  He then moves the cursor to some other portion of

the object’s edge. The pixel that lies under the cursor is called the “free point.”  As the

free point moves, a wire connecting the seed point and the free point automatically snaps

to the edge (Figure 2a).  While the algorithm does do significant automatic segmentation

(by snapping to the edge), the user maintains complete control in that he can adjust

placement of the free pixel if the algorithm fails to find the correct boundary (Figure 2b

and 2c).

Live Wire uses Dijkstra’s shortest cost path algorithm. Dijkstra’s algorithm finds

the lowest cost path between two points.  The cost function in Live Wire is defined such

that the paths found by the algorithm lie along edges.  The wire that snaps to the edge is

simply the path from the free point to the seed point that has been determined to be of

lowest cost. Dijkstra’s algorithm not only finds the path between these two points, but

also the shortest paths from every point in the search space back to the seed point.  The

Live Wire algorithm is treated in more detail in Chapter 4.
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(a) (b) (c)

Figure 2 Live Wire Example
 (a) User dragging the wire around the dolphin.  (b) Getting a little carried away.  (c) After finding the
maximum drag distance while still finding the optimal boundary.

2.4 3D Segmentation

Both Snakes and Live Wire have 3D extensions.  Snakes’ 3D counterparts are

known as Balloons [13].  They work directly in 3 dimensions, expanding, contracting and

warping to the object.  Balloons suffer from the same difficulty as Snakes – loss of user

control after initialization.  Because of this, users prefer to drop back into the 2D world

by running the snake algorithm on the initial slice, and then using the resultant snake as

the initial snake for the successive slices in the volume.

Live Wire can also be used to segment 3D volumes.  Schenk et al. [7] have

optimized this process by only computing the cost for successive slices on regions that

fall within a given distance from a reference slice’s completed boundary.  A distance

map, showing distances from the reference slice’s boundary, is generated using a

chamfering process.  This distance map is used to determine which pixels in the current

slice will be used for the local cost computation.  In addition to speeding cost

computation, local cost feature optimization can be performed.

Schenk et al. also introduce an automatic segmentation step using shape-based

interpolation followed by a Live Wire-driven optimization process [7,12].  The user

segments selected slices, then intermediate slices are automatically interpolated.  The

interpolation is done by first building distance maps for each segmented slice.  A

conventional gray-level interpolation algorithm then builds a new, interpolated distance

map.  Finding the zero-crossings of the interpolated distance map then generates a binary

contour.  New seed points are interpolated from the seed points used in the segmented
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images, and these seed points are used to run Live Wire in automatic mode to optimize

the interpolated boundary.  This offers a degree of automation, though the user is still

required to inspect each slice and correct any errors.

Falcao and Udupa [8] developed a method that determines object boundary

information from orthogonal slices of a volume segmented by a user.  This technique is

fairly complicated, but it does allow the user to segment a minimal number of slices,

reducing the total segmentation time.  The 3D scene is first viewed as a montage of axial

slices, from which the user can determine a general idea of the topology of the object of

interest.  The user then breaks the object up into slabs of constant object topology, or sets

of contiguous axial slices such that the connectedness of the object boundary pixels does

not change from slice to slice.  For a simple object, such as a sphere, only one slab needs

to be defined.  But for a more complicated surface, multiple slabs may be required as the

boundary of the surface in an axial slice may need to be represented by several 2D

boundary contours.

Once the slabs are defined, the user selects a point c on one of the slices in a slab.

Each point on a line l parallel to the z-axis and passing through c must lie within the

object of interest.  A set S of slices intersecting with l is chosen.  Each slice in S is

segmented with Live Wire, forming a set P of points.  For each axial slice, all points in P

that lie on the axial slice are used effectively as seed points for automatic segmentation of

the axial slice using Live Wire.  This approach reduces the time required for

segmentation of the entire 3D boundary, given that the number of orthogonal slices

necessary is relatively low.  This segmentation technique requires a fair degree of user

training, however.

The above 3D segmentation methods use Live Wire to a degree, but suffer from

loss of user control, much like balloons.
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Chapter 3   Graph Search

To segment objects in true 3D space, a 3D graph search is required.  As Live Wire

uses Dijkstra’s traditional 2D algorithm, we have developed a 3D version of the same

algorithm for use in Live Mesh.  Both of these versions of the algorithm find shortest cost

paths between pixels such that the paths lie along object boundaries.  Extending

Dijkstra’s algorithm to three dimensions requires a 3D extension to the cost function

(Section 3.2).  In addition, since Live Mesh is a user-interactive tool, we have developed

optimizations (Section 3.3) so that the algorithm is fast enough to keep the software

responsive to the user.

3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is the basis for the dynamic nature of Live Wire and Live

Mesh.  Live Mesh uses the same basic algorithm as Live Wire.  We have modified it

slightly for optimization (Section 3.3).  Dijkstra’s algorithm finds the shortest cost path

from any vertex (pixel) v to a seed vertex s.  The algorithm is as follows:

Algorithm 1  Dijkstra’s algorithm
Description: Finds shortest cost path from every Vertex v back
to a seed Vertex s.
Structure: Vertex containing three properties:

Vertex prev
Number cost
Boolean isVisited

Input: seed Vertex s, Graph G
Output: prev pointer for each Vertex v in G

 (1) SortedList q
 (2) Vertex v
 (3) Number c
 (4) for every Vertex v in G
 (5) set v.cost = INFINITY
 (6) set v.isVisited = false
 (7) end for
 (8) set s.cost = 0
 (9) insert s into q
 (10) while q is not empty
 (11) set v = least cost Vertex in q
 (12) remove v from q
 (13) set v.isVisited = true
 (14) for each neighbor Vertex vi near v
 (15) if not vi.isVisited
 (16) set c = cost(v, vi)
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 (17) if v.cost + c < vi.cost
 (18) set vi.cost = v.cost + c
 (19) set vi.prev = v
 (20) insert vi into q
 (21) end if
 (22) end if
 (23) end for
 (24) end while

The seed vertex is initialized with a cost of zero (line 8), as the cost of traveling from

itself to itself is zero, and all other vertices are initialized with a cost of infinity (line 5).

The seed is then placed in a cost-sorted list q (line 9), called the “active list.”  As the seed

vertex is the only element in the active list q, it is the first to be removed.  Then, for each

neighbor vi the cost c from the neighbor back to the seed is determined.  For performance,

the cost c should simply be a lookup or a simple calculation.  If the seed cost v.cost plus

the calculated cost c is less than the neighbor’s cost vi.cost then vi.cost is set to be v.cost +

c (line 18), and the neighbor is given a pointer to the seed (vi.prev).  The neighbor is then

added to the active list (line 20).

Once all the seed’s neighbors’ costs have been updated, the seed is discarded and the

neighbor with the lowest cost to the seed is selected as the next vertex to visit (line 11).

The same process is iteratively followed for each vertex.

Once a vertex has been visited, it contains the optimal path back to the seed vertex

following each vertex’s prev property:

Algorithm 2  Print shortest-cost path
Description: Prints all vertices vi in shortest-cost path from a
vertex v to a seed vertex s.
Structure: vertex containing one property:

vertex prev
Input: vertex v, s

 (1) vertex cur
 (2) set cur = v
 (3) while cur ≠ s
 (4) print cur
 (5) set cur = cur.prev
 (6) end while

Once the algorithm has visited all connected vertices in the graph, each of those

vertices has an optimal path back to the seed.
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(a) (b) (c)

(d) (e) (f)

Figure 3 Dijkstra's algorithm
(a) Initial image.  Each black number is the cost of traveling between two pixels. The seed pixel (in red) is
initially the only pixel in the sorted list (right-hand box).  (b) After visiting the seed pixel.  Each red
number is the cost of traveling to the seed pixel.  (c-e) Continuing the search.  (f) The final result.

3.2 Cost function

The cost function used in the algorithm described above is simply a function

which calculates the cost of traveling between two adjacent voxels.  The function is

formulated such that the cost is lowest along edges of an object, ensuring that the lowest

cost path will lie along a boundary.  Three primary image features are used: Laplacian

zero-crossing ( Zf ), gradient magnitude ( Gf ) and gradient direction ( Df ).  Each feature

is weighted with constants ( Zω , Gω  and Dω ).  The cost function is formulated as

),()()(),(cost vufvfvfvu DDGGZZ ∗+∗+∗= ωωω . (1)

The following discussion of the cost function refers to 2D pixels rather than 3D voxels

for simplification.  Extending the cost function to three dimensions is fairly

straightforward and intuitive.  Rather than looking at the eight neighbor pixels, as in the
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2D case, the 27 voxel neighbors are considered in the 3D case.  In addition to this change,

there are a few other minor modifications that will be noted as they are described.

3.2.1 Laplacian zero-crossing

The Laplacian zero-crossing feature gives an indication of whether a pixel is on

an edge or not.  The algorithm uses information about the image and returns a binary

value specifying whether the pixel is an edge pixel or not.

The Laplacian operator finds the second derivative of the image intensity, or the

derivative of the gradient.  By definition of the derivative, every pixel in the Laplacian

image that is equal to zero is a maximum of the first derivative (image gradient).

Additionally, any place where adjacent pixels have different signs denotes a gradient

maximum (Figure 4).  The Laplacian image is binarized such that all pixels on zero

crossings are given a pixel value of zero and all other pixels are given a value of one by

the following algorithm:

Algorithm 3  In-place binarizing of Laplacian image
Input: Laplacian Image lap
Output: Binarized Laplacian Image lap

 (7) for every pixel pij in lap
 (8) if pij < 0
 (9) for every 8-connected neighbor nij of pij
 (10) if nij > 0
 (11) pij = 0
 (12) end if
 (13) end for
 (14) end if
 (15) if pij != 0
 (16) pij = 1
 (17) end if
 (18) end for

The choice to find crossings from negative pixels to positive pixels is arbitrary.  The

opposite would work equally as well.

)(vf Z  is defined as the value of pixel v in the image output from Algorithm 3.  Since

this value will be zero or one, the contribution the Laplacian makes to the cost function

(Equation 1) will be either zero or Zω .
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(a) (b) (c)

Figure 4 Laplacian zero crossings
 (a) Laplacian image with zero crossing indicators.  (b) Pixels that are now effectively zero.  (c) The
binarized image.

3.2.2 Gradient magnitude

The gradient magnitude feature of the cost function gives us an idea of how

confident we are that this pixel is an edge (as opposed as “whether the pixel is an edge or

not,” which is given us by the Laplacian zero-crossing calculation).  The gradient

magnitude is the first derivative of the image.  In 3D, it can be visualized using the

mountain analogy.  A cliff has a very high gradient magnitude, whereas a grassy meadow

has a very low gradient magnitude.

The gradient magnitude can be computed using the partial derivatives of a

volume. The Prewitt and Sobel operators (among others) find the partial derivative in one

direction.  We can derive the gradient magnitude at a pixel p as

yxyx IIIIpG +≈+= 22)( (2)

or at a voxel v as

zyxzyx IIIIIIvG ++≈++= 222)( (3)

where xI , yI  and zI  are the partial derivatives along the x, y and z axes, respectively.

Pixels with a high gradient magnitude have a high likelihood of being edges.  The

final cost of a pixel near an edge should be low, so )( pfG  is computed using the inverse

of the gradient:
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)max(

)(
1

)max(

)()max(
)(

G

pG

G

pGG
pfG −=

−
= (4)

where )max(G  is the maximum gradient magnitude value of any pixel in the image.

Therefore Gf  is the inverse of the normalized gradient magnitude at pixel p.

3.2.3 Gradient direction

Mount Shasta in California is shaped very much like a cone.  A person standing

halfway up the north side and wishing to hike to the point on the south side at the same

altitude has a few choices.  An adventurous person would hike up and over the top.  A

starving, tired person wishing to expend as little energy as possible would travel around

the mountain, taking care to neither gain nor lose altitude, traveling along a contour of

constant altitude.

Object boundaries very often lie along “contour” lines of the image.  In the

original Intelligent Scissors implementation, Mortensen and Barrett [3] added a gradient

direction constraint such that lowest cost paths would tend to lie along these contour

lines.  In doing so, they noted that the wire was smoothed out.  Live Mesh also uses the

gradient direction constraint.  This is the only constraint that doesn’t give any indication

of whether the pixel is on an edge or not.  It deals only with whether two pixels lie along

the same contour.

3.2.3.1 Live Wire (2D)

Consider an image that is white on the left side and gradually moves to black on

the right side (Figure 5a).  All pixels have identical gradient magnitudes.  Each edge

between two pixels p and q would yield very similar costs if we used only the Zf  and Gf

constraints.  But the cost of traveling to the right or left should be much higher than up or

down, since moving up or down would be going along a contour of constant color.  A

gradient direction vector )( pD  is defined by the partial derivatives xI  and yI  (and zI  for

a voxel) and by definition points up the steepest slope at that point (Figure 5b).  Rotating

)( pD  by 90 degrees defines )( pD′  which points along the gradient contour (Figure 5c).

Figures 4d and 4e show what )( pD  and )( pD′  look like for various pixels in a less

trivial image.
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We then define a variable L  as the direction between two pixels p and q such that

the difference between L  and )( pD  is minimized:





<−⋅−

≥−⋅−

−
=

0)()(' if    ;

0)()(' if    ;1
),(

pqpDqp

pqpDpq

qp
qpL (5)

We can express the difference between )( pD′  and L  as

)](),(acos[),(

)],()('acos[),(

qDqpLqpd

qpLpDqpd

q

p

′⋅=

⋅=
. (6)

Df  is then defined as

{ }),(),(
3

2
),( qpdqpdqpf qpD +=

π
. (7)

Figure 6 shows examples of values of Df  for different pixel combinations.

Figures (a) and (c) yield very different Df  values since the vector between pixels L  in

(a) is pointing very much contrary to the contour of the image, whereas in (b), L  is in

very close alignment with the contour.  Note that if )( pD′  or )(qD′  were rotated by 180

degrees for any p or q the value for Df  would not change (5a and 5b).  This is because

),( qpdq , by reason of the inverse cosine, is invariant to 180-degree rotations in either

contributor to the dot product (Equation 6).

(a) (b) (c) (d) (e)

Figure 5 Gradient Direction of Two Different Images
(a) Image with constant gradient magnitude.  (b) Gradient direction )( pD  for a pixel.  (c) Rotated gradient

direction )( pD′  for the same pixel.  (d) )( pD  for each pixel (edge pixels’ gradient directions are not

defined).  (e) Rotated gradient directions )( pD′ .
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Figure 6 Calculation of Df

Calculation of L  and Df  for pixels varying in gradient direction and spatial relationship.

3.2.3.2 Live Mesh (3D)

In 3D, Df  is calculated very much like it is in 2D, except for the complication of

not knowing what axis around which to rotate the gradient direction vector )( pD  by 90

degrees to obtain )( pD′ .  To get around this, we first define L′  as the vector orthogonal

to )( pq −  such that the difference between L′  and )( pD  is minimized:

)(),(

)(),(
),(

pqqpT

pqqpT
qpL

−×

−×
=′ (8)

where

)()(),( pqpDqpT −×= . (9)

),( qpT  is the vector orthogonal to both )( pD  and )( pq −  (Figure 7b).  By taking the

cross product of ),( qpT  and )( pq −  we find L′ , which is the vector orthogonal to

)( pq −  that is closest to )( pD  (Figure 7c).  We can also think of L′  as being a vector

orthogonal to )( pq −  that is in the plane containing both )( pq −  and )( pD .

At this point we redefine Equation (6) to be:

)](),(acos[),(

)],()(acos[),(

qDqpLqpd

qpLpDqpd

q

p

⋅′=

′⋅=
, (10)
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the difference being that we’re now using )( pD , )(qD  and L′  rather than )( pD′ ,

)(qD′  and L . Df  is then calculated using (7), as is done in 2D.

(a) (b) (c)

Figure 7 Calculation of L′
(a) Starting vectors )( pq −  and )( pD .  (b) ),( qpT  is a vector orthogonal to both )( pq −  and

)( pD .  (c) L′  is orthogonal to )( pq −  and ),( qpT .

3.3 Search optimization

One challenge in extending Live Wire to three dimensions is the actual

computation time of the graph search.  The computational complexity of the search is

increased by an order of magnitude when adding another dimension, which renders a

traditional Dijkstra search very expensive.  Further speedup is accomplished by pre-

processing the cost matrix and restricting the search.

3.3.1 Cost Pre-processing

The computation for the cost between two voxels in three dimensions is very

expensive.  Assume that at search time the acos function has been pre-computed into a

lookup table and that the only values available are the laplacian result and the gradient

magnitude.  If this is the case, then nineteen multiplies and a divide are required to

compute the cost between a voxel pair.  To speed up the graph search a cost calculation

pre-processing step is employed.  This computes the cost for every voxel pair and stores

each cost in a matrix for quick array access.  The array is large:

2

26
#

2

#
# ∗=∗= voxels

neighbors
voxelsarraysize (11)
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For a 256 x 256 x 256 volume this would require Mb2088218,103,80132563 ==∗  of

storage if the costs are stored as unsigned bytes.  The size jumps to ~1.6 Gb in the case of

a 512 x 512 x 512 image.  Tested on a Pentium IV 1.7 with 512 Mb of RAM this pre-

processing step can take upwards of 3 hours.

Lest the time required for pre-processing seem prohibitive, it should be kept in

mind that the entire cost pre-processing can be done offline (without user interaction).

And the benefits are substantial.  Pre-computing every cost reduces the cost computation

at search time to a single array lookup, resulting in a speedup of more than a factor of 5.

3.3.2 Restricted Search

By default, the graph search expands throughout the entire image, but the user is

usually interested in only a portion of the image.  The time required for the graph search

to find the shortest cost path from the free point to the seed point can be decreased by

restricting the graph search to voxels in the neighborhood of the free and seed points

(Figure 8a).

If a restriction is used, the path is optimal only within the search space.  This is

fine if the edge contour is relatively linear, but if the image edges are poorly defined or

jagged then the locally optimum path may in fact be very far from the globally optimum

path.  An additional problem is that once the free point is moved outside of the restricted

search space the search must be restarted.  The following two sections describe an

algorithm by which these difficulties can be worked around with minimal impact while

retaining the benefits of a restricted search.

3.3.2.1 Expanded Search Space

Suppose a restricted search has run to completion, such that each point in the

search space has a locally optimal path back to the seed point.  If both the seed and free

points are still in place, then a new, expanded search can be started to find a path that is

optimal within a larger search area.  A naive implementation might be to simply re-search

all points in the new, larger search area.  However, many of the points in the original

search already have globally optimal paths.  For example, every neighbor of the seed

point is guaranteed to have a globally optimal path even in a restricted search.
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This novel algorithm takes advantage of the fact that we already have some

globally optimal information.  The original search area is re-searched from the outside-in

only as far as needed.  We use Dijkstra’s algorithm, with a few modifications, as follows

(additions are underlined and red, deletions are strikethrough):

Algorithm 4  Expanded Restricted Search
Description: Finds shortest cost path from every Vertex v back
to a seed Vertex s.
Structure: Vertex containing three properties:

Vertex prev
Number cost
Boolean isVisited

Input: seed vertex s, graph G, SortedList q, Set restriction
Output: prev pointer for each vertex v in G, list r suitable for
expanded active list

 (1) SortedList q r
 (2) Vertex v
 (3) Number c
 (4) for every Vertex v in G
 (5) set v.cost = INFINITY
 (6) set v.isVisited = false
 (7) end for
 (8) set s.cost = 0
 (9) insert s into q
 (10) while q is not empty
 (11) set v = least cost Vertex in q
 (12) remove v from q
 (13) set v.isVisited = true
 (14) for each neighbor Vertex vi near v
 (15) if not vi.isVisited
 (16) if restriction does not contain vi
 (17) insert v into r
 (18) else
 (19) set c = cost(v, vi)
 (20) if v.cost + c < vi.cost
 (21) set vi.cost = v.cost + c
 (22) set vi.prev = v
 (23) insert vi into q
 (24) end if
 (25) end if
 (26) end if
 (27) end for
 (28) end while

The active list q contains all voxels on deck to be visited.  q is passed into the

algorithm as input rather than being created inside the algorithm, as it is in the original

Dijkstra’s algorithm.  For the first search, which originates from the seed, q would be
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initialized to contain s and every vertex would be given a value of infinity before the

algorithm is called.  For each subsequent call, however, this is not done.

In the above algorithm, any vertex in the search space that has a neighbor vertex that

is outside of the search space is added to a cost-sorted list r (line 17).  At the conclusion

of the algorithm, r contains all vertices along the boundary of the restriction.  r can then

be used as the active list in a subsequent, expanded search (Figure 8).

(a) (b) (c)

(d) (e) (f)

Figure 8 Expanded search
(a) Setting up the initial graph search.  (b) Search in progress.  Searched area is shaded.  (c) Completion of
initial graph search.  (d) Setting up the expanded graph search.  (e) Completion of expanded graph search.
(f) _ is the area re-searched.

Each vertex in the graph must be reset to “not-visited” (line 6) in case vertices

inside the old restriction need to be re-searched.  Any vertex inside the old boundary that

does not have an optimal path within the new boundary will be visited again in the new

search.  The area inside the previous search that is re-searched is called _, and ideally it

should be very small.  In some cases, however, it is large, even as large as the previous

search space itself (Figure 10).  In these cases the restricted search is extremely

inefficient, as the previous search space is entirely re-searched the second time.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9 Expanded Search Example 1
The active list q is in red while the sorted list r is in yellow.  (a) Beginning the initial search.  (b) After the
initial search has completed.  (c) The new search with active list initialized to be r from the previous search.
(d-h) Continuing on through the first and second expanded searches.

(a) (b) (c)

Figure 10 Expanded Search Example 2
(a) Completed initial search.  (b) Almost the entire initial region is re-searched.  (c) After completion of the
expanded search.

3.3.2.2 Changed Search Space

Suppose a restricted search is running and the free point is suddenly moved

outside of the search space.  A new search must be started, ideally using information

obtained in the aborted search.  This can be accomplished using exactly the same

algorithm as the expanded search (Algorithm 4).  The only difference is that, after the

free point is moved and the current search is aborted, r and the active list q must be

combined to form the new active list before restarting the algorithm.  In fact, r and q can

also be combined in the case of an expanded search.  An expanded search is never begun

until the previous search is complete.  q is empty upon completion of a search, so

combining q and r would effectively yield r.
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The area _ tends to be somewhat larger for a changed search compared to an

expanded search.  However, in practice, users tend not to move the free point (e.g. mouse

cursor) much at all until at least an initial wire appears.  At that time, if the free point is

moved at all, it is usually moved either closer or further from the seed point, not in a

different direction from it.  If it is simply moved closer, the free point usually remains

within the search space and an expanded search can take place.  If it is moved further

away, _ tends to be small as the new search space is close to, and often is a superset of,

the old search space.

(a) (b)

(c) (d) (e)

Figure 11 Changed search
(a) Setting up the initial graph search.  (b) Search in progress.  Searched area is shaded.  (c) After the free
point is moved and changed search is set up.  The new active list is the union of r and the active list q.  (d)
Completed changed search.  (e) Area _ of initial search that had to be re-searched.
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(a) (b)

(c) (d) (e)

Figure 12 Changed search example
The active list q is in red while the sorted list r is in yellow.  (a) At the very beginning of the initial search.
(b) At the beginning of an expanded search.  (c) A changed search in progress.  (d) At the beginning of an
expanded search after the changed search completes.  (e) Expanded search in progress.
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Chapter 4   Live Mesh

As Live Wire allows users to pull out wires that snap to 2D object boundaries,

Live Mesh provides a way for users to stretch mesh patches (Figure 13c) over a 3D

boundary.  These patches fill in between three user-defined points, looking something

like a rough triangulation, except that the triangle patches snap to the boundary’s contour.

4.1 Method

The Live Mesh method utilizes the power of Dijkstra’s algorithm to form a mesh

from multiple wires.  First, the user picks a point s0 in the volume and then moves the

cursor with trailing live wire w10 until a contour of arbitrary length is defined by picking

the ending point s1 (Figure 13a).  While defining this wire, the graph search is not only

finding the shortest-cost path from s1 to the seed point s0, but also finds the shortest-cost

path from every voxel within the search space (ideally defined by the entire image, but

possibly bounded by a restriction).  That is, after the graph search completes we are left

with shortest-cost paths reaching back from each pixel in the search space to s0.

After picking s1, the user moves the cursor to define the next wire w21.  A new

graph search is started with s1 as the seed pixel and wire w21 is displayed in real-time

(Figure 13b).  As mentioned above, Dijkstra’s algorithm has already found shortest-cost

paths from pixels surrounding the original seed point s0, and so, with no additional path

searching we can display shortest-cost paths leading to s0 from every pixel defining wire

w21 (Figure 13c).

Once point s2 has been chosen, thereby fixing the mesh s0 s1 s2, the user moves the

cursor and a new mesh drags out, using graph searches that have already been completed

or are well in progress.  If the free point s3 is close to s1 then the new mesh is defined as

shortest-cost paths from every point in w32 back to s1 (Figure 13e).  If s3 is closer to s0

than s1, the new mesh is made of paths from w32 back to s0 (Figure 13h). s0 and s1 both

work equally as well as seed points for a wire mesh as they both have expanded their

wavefronts during the definitions of w10 and w21, respectively.

The user continues defining meshes in this way until the surface is covered.  The

fact that little or no extra graph searching needs to occur to define the extra wires forming
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the mesh makes this algorithm very powerful.  Once the graph search out from s0 has

been completed, any two points s1 and s2 in the entire image can compute a wire w21, and

every point in w21 will immediately have a shortest-cost back to s0.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13 Live Mesh Diagram
(a) Initial Live Wire with so as the seed and s1 as the free point.  (b) s2 is the new free point.  (c) Shortest-

cost paths to s0 have already been computed so a mesh is formed from w21 to s0 with only overhead.
(d-f) A new mesh from w32 to s1.  (g-i) Free point s3 was moved from its previous position and new
mesh goes back to s0 rather than s1 since the new free point is now closer to s0.



26

The end result, once the user has covered the object in meshes, is a set of points

that lie on the object boundary.  Exactly how an object is segmented using these points is

highly application-specific.  The application may simply use the points as a set, or it may

use topological information found in the individual wires (e.g. )10,58,102(  is linked to

)10,58,101(  which is linked to )11,57,100( ...).

4.2 Parallelism

As the user moves the cursor to position s2 there are two graph searches required:

one with s0 as the seed and one with s1 as the seed (Figure 13c).  Ideally the s0 graph

search will already have completed sufficiently to include any points needed during

movement of s2 to display the mesh.  However, in practice this is often not the case.  The

s0 graph search often has catching up to do, thus requiring two graph searches to be

running at the same time.

Any application implementing Live Mesh should be multi-threaded at least

sufficiently to allow two simultaneous graph searches. w21 is not displayed until the s1

graph search has reached s2 (Figure 13b).  Wires in the mesh from w21 to s0 are displayed

as the s0 graph search reaches each point in w21 (Figure 13c).

This affords an opportunity for parallelism.  A computer with two processors can

be running the two current graph searches in parallel.  A computer with N available

processors can run graph searches expanding from the last N seed points in case they are

needed later.  Depending on the Live Mesh implementation, virtually any previously-

selected point could act as a seed point for a later mesh.  In the current Live Mesh

implementation, seed points are restricted to the three points comprising the last mesh.  In

Figure 13f, only s1 and s2 are candidates for subsequent meshes.  In Figure 13h, s0 and s2

are candidates.  The current implementation would make use of only two processors, but

implementations without this restriction could make use of many processors.

4.3 Interpolation

While Live Mesh can form a dense mesh, some pixels are still missed.  Each wire

in the mesh attempts to find the shortest path to the seed pixel, and pixel boundaries of

high cost are avoided, even if these are within the bounds of the mesh.  When this occurs,
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the mesh has visible gaps.  It is expected that the user be trained to back up and attempt

smaller, more dense meshes if large holes appear in the mesh.  The ability to do this is an

inherent characteristic of the Live Mesh tool.  But it is almost inevitable that meshes will

have some few pixels lost during segmentation.

(a) (b)

Figure 14 Iso-surface Generation from Interpolated Meshes
(a) Wire display.   (b) Iso-surface display.

Depending on the application, these gaps can either be ignored or handled in some

other way.  The current Live Mesh implementation fills these gaps for display purposes

by using a triangulation isosurface generation technique.  An isosurface is found by

triangulating with points found in each wire comprising the mesh:

Algorithm 5  Triangulation
Description: Triangulates two wires to form an isosurface
between them.
Input: List wire1, wire2
Output: List trianglePts

 (1) List l, reverse2, trianglePts
 (2) Point p, q
 (3) for every Point p in wire1
 (4) add p to l
 (5) end for
 (6) reverse2 = wire2 points in reverse order
 (7) for every Point p in reverse2
 (8) add p to l
 (9) end for
 (10) p = first Point in l
 (11) q = last Point in l
 (12) while p is not equal to q
 (13) add p to trianglePts
 (14) add q to trianglePts
 (15) p = Point after p in l
 (16) q = Point previous to q in l
 (17) end while
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The algorithm takes two wires, which are each simply a list of points, and forms one

list of points out of the wires placed back-to-back (lines 3-9).  It then steps along the list

from the first point forward (p) and from the last point backward (q), adding first p and

then q to the list of triangle points in each iteration.  The strip of triangles is defined by

this list of points (Figure 15).  The first three points in the list define the first triangle.

The 2nd, 3rd and 4th points define the second triangle, and so on.

Our Live Mesh implementation, the SimpleSeg application, uses this method only

for display.  The triangles found by the algorithm are excluded from the final set of points

defining the object boundary.  However, depending on the application, this method of

filling gaps could be useful in the segmentation of the object.  If this method is used for

final interpolation, then care should be taken to handle degenerate triangles.  SimpleSeg

ignores this possibility, as the adjacent wires have very close to the same number of

points, so the few degenerate triangles that existed had little effect on the display.

(a) (b)

Figure 15 Mesh Triangulation
(a) A simple mesh.  (b) Triangulation of the mesh shown in gray.
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Chapter 5   The SimpleSeg Application

The previous chapters discuss the Live Mesh algorithm and its powerful features.

This chapter describes SimpleSeg, an application implementing the Live Mesh algorithm.

As the name implies, it is a simple, first-cut at showing the abilities of the Live Mesh

method.  This chapter describes visualization and picking techniques followed by a report

of the results of a small user study conducted using SimpleSeg.

5.1 Data Visualization

As Live Mesh deals with the data in three dimensions, a way for the user to

interact with the data in three dimensions was needed.  Volume rendering is a technique

for visualizing a 3-dimensional set of data in a 2-dimensional environment (e.g. a

computer screen).  SimpleSeg uses volume rendering to display a 3D view of the dataset.

For a given volume V, a ray is passed through the volume for each pixel on the

computer screen.  As the ray passes through the volume it accumulates the intensities of

each voxel it intersects.  Once the ray has passed through the entire volume the

accumulated intensity is scaled and the pixel is displayed.  If a ray for a particular pixel

passes through a very dense portion of a volume, the pixel will be clipped to a maximum

intensity, denoting an opaque portion of the image.

Volume rendering has the benefit of allowing users to interact with the volume in

a quasi-3D environment.  The algorithm is real time so the user can zoom, pan and rotate

the volume.

Volume rendering is well adapted for visualizing the object of interest.  The entire

outer boundary of the object can be seen.  However, data deep within the object may not

be seen as the rays passing through the volume may reach complete opacity before

reaching the inner data.  SimpleSeg provides, in addition to the volume-rendered window,

three orthogonal 2D slices of the volume are displayed (Figure 16). The upper-left

window in the display is the “front view.”  The slice is defined with the z-axis as its

normal and is parallel to the view plane.  The lower-left window is the “left side view.”

That slice is defined as the plane with the negative x-axis as its normal.  It is the view as

if the user were looking at the volume from the left-hand side.  The upper-right window
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is the “top slice,” or the view from above.  Its plane is defined with the y-axis as its

normal.

While these slices can be thought of as views of the data from different angles,

they are not simply rotated views of the volume rendering. They are 2D images

comprised of every voxel intensity value lying in a plane passing through the volume.

With this interface the user can rotate the complete volume rendered image while seeing

the 2D slices of obscured data (where exactly the slice cuts through the volume is treated

in Section 5.3).

These 2D slices are present to allow the user to visualize and pick obscured data.

This has no effect on the underlying Live Mesh algorithm, which still searches in 3D,

regardless of which views are used to visualize the data.

Figure 16 Live Mesh Screen
The dataset is a CT scan of a lobster.  The bottom right-hand section is the volume-rendered image.  The
other three windows are orthogonal slices passing through the volume.

5.2 Picking

Picking is the process by which the user communicates which points to use as the

seed and free points in the graph search.  When working on a 3D dataset, a voxel can’t be

picked simply by clicking on the image.  Suppose the user is working on a 32x32x32

image in a volume rendered environment.  If he clicks on the view at display coordinates
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)16,16(  there are 32 possible voxels that could be interpreted as being picked.

Determining which voxel the user intends to be chosen as a seed or free point is

accomplished in two ways in Live Mesh: via the volume-rendered window or through

one of the 2D slices.

5.2.1 Picking in the Volume Rendered Window

In the above example, the user clicks on pixel )16,16(  of the display.  There are

32 voxels lying along the ray parallel to the z-axis and passing through display pixel

)16,16( .  For simplicity, the display x and y coordinate system is assumed to be identical

to the data x and y coordinate axes.  These voxels lying along the ray originating at

display coordinate )16,16(  are )31,16,16(,),1,16,16(),0,16,16( L .  The Live Mesh tool uses

a very simple algorithm of following voxels along the ray until a voxel of a certain

threshold intensity is reached:

Algorithm 6  3D Picking
Description: Finds the first voxel in a ray that exceeds a
threshold.  x and y are the picked values in 2D display
coordinates.  zmax is the maximum z value of the image.
Input: Number x, y, zmax, threshold
Output: Number picked_z

 (1) for every z from 0 to zmax
 (2) if intensity{x, y, z} > threshold
 (3) picked_z = z
 (4) end if
 (5) end for

Obviously the threshold value is highly data-dependent.  SimpleSeg chooses a default

intensity of 100, but it can be adjusted manually.

This picking method is useful in Live Mesh only on datasets in which the

boundary to be segmented is visible or is defined by voxels whose intensities are higher

than those of neighboring voxels.  More sophisticated 3D picking techniques using image

properties other than intensity (e.g. gradient, neighborhood gradient, neighborhood cost)

could be used.  However, they have disadvantages.  With the simple intensity algorithm,

the user has but one parameter to control, and a very simple one at that.  As the picking

technique gets more sophisticated, the number and complexity of parameters grows and

by nature becomes more difficult for the user to control.  This may not be undesirable in a
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more automated system, but Live Mesh’s effectiveness depends on a very high degree of

user-interactivity, and so the user must have as much understanding of and control over

what is happening as possible.

5.2.2 Picking with the 2D Slices

In addition to 3D picking, Live Mesh has a powerful 2D picking method which

gives the user complete control over which voxel is picked.

As explained in section 5.1, the Live Mesh user interface has 2D views of the

data.  These views can be used for picking.  For example, suppose the “front view” slice

is positioned at z-value 10.  Thus it is the place parallel to the x and y axes passing

through the point )10,0,0( .  As the user moves the cursor on that image, each ),( yx  point

on the image is picked and thus the 3D point picked is )10,,( yx .  This is done similarly

with the other two slices.

5.3 Positioning the Slices

Each 2D slice occupies a position in the volume.  This position is determined by

the current pick point.  Points are picked as the user moves the mouse cursor along the

3D volume rendered window.  For example, if the user picks point )112,33,56(  using 3D

picking, then the front slice would slice through 112=z , the left slice would be

positioned at 56=x  and the top slice would move to 33=y .

The net effect of this is that as the user moves the mouse cursor around in the 3D

view all three slice views change.  As the user moves the cursor around in one of the slice

views, only the other two slices change.  If the user moves the cursor in the front view,

the ),( yx  pick position is changing, so the left and top views change.  But the z position

remains the same, so the front view does not change. If the cursor moves in the left slice

view, the ),( zy  position changes, but x remains the same. The behavior is similar with

the top view.



33

5.4 Mesh Visualization

As the user creates a new mesh, each wire in the mesh is displayed in red.  Once

the user finishes a mesh, the wires are displayed in blue and the new, current mesh is

displayed in red.

Using the isosurface generation technique described in Section 4.3 above, an

isosurface can be generated from finished meshes dynamically.  It has been observed that

turning on the isosurface display has been very helpful to users in visualizing the mesh.

The mesh is displayed in the volume rendered window.  This way the user can

observe the entire mesh being constructed while the user works.  Even while the user

works on the 2D slices the mesh can be seen in 3D (Figure 18).  If the object is obscured,

then the rendering of the volume itself can be turned off and the mesh displayed alone.

This is assistive especially if the user has some a priori idea of what the object looks like.

(a) (b) (c)

(d) (e) (f)

Figure 17 Mesh Visualization
(a) Dragging out an initial mesh.  (b-c) Finished meshes displayed in blue; active mesh in red.  (d-f) With
isosurface display turned on.
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(a) (b) (c)

Figure 18 Mesh visualization while working in 2D
(a) View of entire application.  (b) Close-up view of the upper-left window in which the user is currently
working.  (c) Close-up view of the lower-left window (volume rendered) where the user observes the mesh
being constructed.

5.5 User-Centered Study

We conducted a study to find out how accurate, reproducible and fast the Live

Mesh algorithm is in the SimpleSeg implementation.  We obtained accuracy results on a

very simple dataset and reproducibility results from two more complicated datasets.

5.5.1 Methods

Four users participated in the study.  They were given a set of instructions to tutor

them through usage of both Live Wire and SimpleSeg.  After gaining familiarity with

both tools they were asked to segment three datasets.  Dataset #1 was a sphere (~28 pixel

radius). Dataset #2 was an MRI of a human brain.  The users were asked to segment the

caudate nucleus, a walnut-sized organ in the center of the brain.  Dataset #3 was a CT

scan of a lobster.  The users were asked to segment the left “thumb.”

5.5.2 Accuracy

Accuracy is how well the SimpleSeg segmentation describes the true boundary of

the object.  It is a difficult measure to obtain, because with most datasets the true

boundary is not known.  In fact, the true boundary is often subjective, especially if the

edges are not clearly delineated.  That is, one user may choose one set of voxels as the

boundary, while another user may decide on a slightly different set.  As such, only the
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sphere dataset was used for an accuracy measure, as the dataset is artificial and the

boundary is very clearly delineated.

Each user was asked to segment the sphere once slice-by-slice using Live Wire

and once using SimpleSeg.  Results are reported in Table 1.  The “Num Points” column

shows the total number of points that comprise all Live Wires in the segmentation.  That

includes not only seed and free points, but also every point in each wire.  “Avg Distance”

is the average Manhattan distance from each point in the segmentation to the nearest

point in the actual boundary.

Table 2 shows a summarized comparison of the results of Live Wire and

SimpleSeg.  As can be seen, segmentation using SimpleSeg was significantly more

accurate (the T-test yielded a T value of 0.000216%).  Obviously the Live Mesh graph

search is no more accurate than Live Wire’s, as they are essentially the same.  Part of the

difference is because Live Mesh appears to require fewer seed points and thereby fewer

opportunities for user error.  As reported by Mortensen and Barrett3, Live Wire yields

significantly better results than manual segmentation, so ideally the Live Wire algorithm

should be made to do as much of the work as possible, while allowing the user control to

guide the algorithm.  Each seed point is essentially a manual segmentation, and so

limiting them can be beneficial.

Most of the rest of the difference is likely due to picking.  Because of the very

clear object boundary, 3D picking in SimpleSeg hit the actual boundary very often

compared to the user’s attempts to click exactly on the boundary in 2D Live Wire.

Table 2 also reveals that Live Mesh has far fewer points comprising the

segmentation than Live Wire.  Ideally the mesh of wires would be very dense.  However,

the user study revealed that users pull the mesh out as far as they possibly can before the

wires lose the boundary, paying little attention to the density of the wires.  And rightfully

so.  The user should be concerned only with how well the mesh “sticks” to the boundary

and not with how many wires comprise the mesh, unless there is a large gap with an

obvious missed feature.  The larger the patch, the more each wire tends to run together

with other wires (this is treated in Section 4.3) and the larger the gaps.
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Live Wire SimpleSeg

Time (s) Num points Avg distance Time (s) Num points Avg distance

User 1 557 6785 0.1892 1439 3586 0.0033

User 2 1043 6702 0.1892 2110 3871 0.0085

User 3 325 6921 0.1935 1011 3586 0.0070

User 4 295 6912 0.1934 217 2222 0.0014

Table 1 Results of sphere dataset
Time, number of points in all wires and average Manhattan distance from each point in the segmentation to
the nearest point on the actual boundary.

Live Wire SimpleSeg

Time (s) 555 1194
Num points 6830 3316
Avg distance 0.191 0.005
% exact 81% 99.50%

Table 2 Sphere results summary
Direct comparison of averaged times, number of points, average distance and percent of segmentation
points lying on the boundary.

5.5.3 Repeatability

Datasets #2 and #3 (MRI of a human brain and lobster, respectively) were used to

obtain repeatability statistics of Live Wire compared to SimpleSeg.  The MRI dataset was

chosen because the caudate nucleus is in the center of the brain and is completely

obscured when in a volume-rendered environment.  This forced the users to work

exclusively from the 2D slices.  The lobster dataset was chosen because the users were

able to work in the volume rendered window, but the object had a more interesting and

rough surface than the sphere.  The users were asked to segment each dataset twice using

Live Wire and then twice using SimpleSeg.  The average distance, which finds the

average distance from each point in a segmentation to the nearest point in a second

segmentation and vice versa, is obtained using Algorithm 7 (Appendix A) and was

chosen to be the metric of repeatability.

SimpleSeg yielded a high average distance value (~1.14 voxels) compared to that

of Live Wire (~0.33 voxels).  This is at least partially because the meshes were not nearly

as dense as expected, and as the user rarely placed the meshes in exactly the same place

on the second segmentation, the wires of the meshes rarely coincided.  Additionally, the

user interface of SimpleSeg is somewhat primitive and doesn’t exploit the features of the



37

Live Mesh algorithm as well as it could.  Ideas for enhancing the user interface are

presented in Chapter 6  .

5.5.4 Segmentation time

Segmentation time, on the average, increased dramatically (by about 200%) with

SimpleSeg. SimpleSeg has a high learning curve, while Live Wire is natural and easy to

use.  However, note in Table 1 that User 4 required less time for the SimpleSeg

segmentation of the sphere than with Live Wire with no loss in accuracy.  Judging from

this result, it is possible that the large time difference is due to the high learning curve for

SimpleSeg, and that once users become experienced at SimpleSeg that it could actually be

used to segment images faster than Live Wire.  A user study involving experienced

SimpleSeg users would be required to know if this is true.

Observation during the user study showed that working on the 3D dataset from

the 2D slices was very difficult for users because they had to work with multiple,

orthogonal slices, thereby making the 3D transformations in their head to re-orient

themselves in different slices.  Additionally, the users watched the mesh being built in 3D

(Figure 18 above).  Future work on the SimpleSeg user interface (or other

implementations of Live Mesh) should concentrate on providing a way for users to work

exclusively in the 3D view.
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Chapter 6   Conclusions and Future Work

Live Mesh is a powerful 3D image segmentation tool, and has great possibilities

for the future.  The 3D cost function extension is effective for finding object edges.  The

restricted search and pre-processing of the cost function make the algorithm fast enough

to be responsive to the user.  The Live Mesh algorithm, including the idea of pulling

patchwork meshes over 3D object boundaries, is an intuitive extension to the Live Wire

method.

Objective results from a user study using SimpleSeg show that points comprising

the meshes tend to be on or very close to the desired object boundary for simple datasets,

though the repeatability of such needs further study.  The Live Mesh algorithm provides a

solid foundation for highly repeatable segmentations, and that an intuitive user interface

makes this a very powerful tool.

SimpleSeg should be enhanced to allow the user to bypass the 2D slices and work

solely in a 3D view.  Many volume rendering techniques, including clipping and transfer

functions, which allow the user to highlight and work on obscured data, are well

researched and accepted in the community.  Color and weighting can also be used.

Additionally, the user could be given control over a cut plane with arbitrary axes

which is shown directly in the 3D window.  This plane could control clipping and provide

the user easier access to obscured regions for visualization and picking.

To get a more meaningful repeatability measure the segmentation needs to be

more complete, with some sort of interpolating post-processing step.  The interpolation

scheme is data-dependent.  For example, for some datasets, the convex hull may be best

way to describe the final object boundary.  Others may use the points of the mesh to

initialize a Balloon13.  Still others may use some sort of recursive Live Wire algorithm to

fill in all of the gaps. Because it is dependent on the dataset, and a survey of final

interpolation methods is beyond the scope of this work, Live Mesh does not make any

attempt at determining a final interpolated segmentation.

As Live Mesh does not define any sort of interpolating post-processing for a final

segmentation, a method for accomplishing this should be researched.  Ideas for doing this

are using the convex hull, using the mesh points to initialize a balloon or recursively
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defining wires to make the mesh denser.  The latter could be done as follows: choose a

wire in a mesh.  Step along each point in the wire looking for adjacent points that also

belong to a wire in the mesh.  If there only two such points (the previous and next points

in this wire) then start a graph search looking for the first point belonging to any wire in

the mesh.  Once that point is found, define a wire from that point to the seed point.  Done

recursively, this could fill in holes left by the original mesh definition.

While responsive, Live Mesh could use even further speedup, and parallelism is

certainly an option to be explored.  Multiple graph searches could run simultaneously on

separate processors, so that when shortest-cost paths are needed from any particular seed,

it is likely that many or all of those paths will have already been computed.

Live Mesh is a solid 3D image segmentation tool.  Its usefulness in allowing the

user to work directly in 3D, while maintaining a high degree of user-interactivity has

been shown.
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Appendix A
Algorithm 7  Average distance
Description: Finds the average distance from each point in a
segmentation to the nearest point in a second segmentation and
vice versa.  Sets A and B contain the points in the two
segmentations.
Input: Set A, B
Output: Number d

 (1) Number cnt, total, d
 (2) Point q
 (3) cnt = 0
 (4) total = 0
 (5) for every Point p in A
 (6) q = nearest point in B to p
 (7) total = total + distance from p to q
 (8) cnt = cnt + 1
 (9) end for
 (10) for every Point p in B
 (11) q = nearest point in A to p
 (12) total = total + distance from p to q
 (13) cnt = cnt + 1
 (14) end for
 (15) d = total / cnt
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