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Surface remeshing

Surface remeshing is the process of transforming one surface mesh
into another
Reasons for remeshing

Decimation
Triangle quality improvement

Many techniques sample the input surface S and then triangulate
the points
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Motivation

[6] uniform lfs κCVT
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Sampling density

Some techniques resample in parameter space [1, 2, 7]
Global parametrization can cause distortion
Local parametrization: optimization is not global, stitching is
required

Direct sampling techniques require minimum sampling density
Reconstruction is done using the Restricted Voronoi Diagram
Required sample density is based on local feature size (lfs) [3]
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CVT remeshing

Centroidal Voronoi Tessellation (CVT) is a method of tessellating
a space

It can be formulated as a critical point of the CVT energy function
[4]

F (X ) =
n∑

i=1

∫
Ωi

ρ(x)‖x − xi‖2 dσ (1)

X = {xi} is the set of sample points, Ωi is the Voronoi cell of xi
with respect to the other sample points, ρ is a density function

In the context of surface remeshing:

We use the Restricted Voronoi Diagram for the �nal mesh [5]
Typical density functions are ρ = 1 and ρ = 1/lfs2 [8]
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Introducing κCVT

[6]: ρ =
√
κ

uniform: ρ = 1

lfs: ρ = 1/lfs2

κCVT: ρ =
√
κ

[6] uniform lfs κCVT

The $1,000,000 question: how can we use κ as the density function
while still meeting the sampling theorem?
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Segmentation

Segment surface S such that �attish areas have high lfs

Let A be a triangle in Mi . Heuristic: partition S into subsurfaces
M = {Mi} such that the ball B(p, rA) centered at any point p ∈ A
will yield a single connected component when intersected with Mi .

rA is an approximation of lfs(A).
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Building compatibility table and segmentation

Find which triangles are compatible with triangle A

Given triangle B , �nd the set of all points on A that are within rA
of B

Segmentation is done using the compatibility table and a �ood-�ll
algorithm
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Subsurface remeshing and stitching

Remesh each subsurface Mi individually using CVT with ρ =
√
κ

(hence the name of our method)

Stitch remeshed subsurfaces {M∗i } back together using a search
algorithm and cost function
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Method overview and results

original uniform lfs

segmented stitches κCVT
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Results

[6] uniform lfs κCVT
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Results

κCVT performed better than the other two CVT methods in
terms of geometric error in every test but one, and showed as much
as 20% improvement over the next-best method

Topological errors were reduced to 0 in every case but one. In that
case topological errors were reduced by 30% of next-best method

Average triangle quality was similar to that of lfs method

So what's the catch?

Min triangle quality was reduced, due to stitching
Improvement is speci�c to models with �attish areas that have low
local feature size
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Sampling density theorem

Theorem

r -sampling theorem [3] If no point p on surface S is farther than
r · lfs(p) from a seed point x ∈ X where r is a constant then the
Restricted Delaunay Triangulation induced by X is homeomorphic to S .
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Computation of rA

We de�ne rp = 2 · α · lfs(p) and rA = argminvi∈VA
rvi .

All of our experiments use α = 1.1.

J. Edwards (Univ. of Texas) May 30, 2012 20 / 16



Flood �ll segmentation
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Stitching cost function

tc is a candidate �connector�

cost(tc) =
∑
t∈Tc

area(t) · Q(t)−γ . (2)

γ is a user-de�ned parameter (we used γ = 0.5) and Q(t) is the triangle
quality measure

Qt =
6√
3

rt

ht
(3)

where rt and ht are the inradius and longest edge length of t,
respectively.
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Results - table

model # seeds method errors Hmean × 10
3 HRMS × 10

3 Qmin Qave θmin θmin,ave

Elk 2000 uniform 400 0.94 1.48 0.448 0.884 22.4 50.8
lfs 15 1.31 1.76 0.347 0.858 19.3 48.7

κCVT 0 0.76 1.00 0.220 0.849 11.7 48.1

Elk 8000 [6] 0 0.38 0.63 0.058 0.902 2.6 52.2
uniform 0 0.24 0.37 0.509 0.916 24.4 53.2

lfs 0 0.36 0.49 0.451 0.893 22.6 51.4
κCVT 0 0.23 0.34 0.259 0.885 15.2 50.9

Fish 1000 uniform 95 0.97 0.16 0.525 0.872 28.6 49.7
lfs 14 0.91 0.12 0.420 0.830 18.3 46.4

κCVT 0 0.82 0.12 0.236 0.809 13.1 45.0

Fish 4000 [6] 0 0.50 0.85 0.070 0.898 2.7 51.8
uniform 11 0.36 0.53 0.580 0.898 26.3 51.7

lfs 0 0.36 0.51 0.407 0.864 19.4 49.1
κCVT 0 0.36 0.58 0.160 0.863 6.5 49.0

Club 200 uniform 51 2.94 4.08 0.570 0.842 30.1 47.4
lfs 31 4.25 6.36 0.362 0.770 13.8 41.8

κCVT 19 3.42 4.92 0.173 0.728 9.2 39.5

Club 2000 [6] - 0.74 1.54 ∼ 0 0.832 ∼ 0 47.5
uniform 0 0.39 0.70 0.555 0.893 32.9 51.5

lfs 0 0.46 0.85 0.314 0.834 12.5 46.8
κCVT 0 0.34 0.62 0.082 0.855 4.5 48.5
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