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@ Motivating example and problem statement
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Neurons background

e Number of neurons in the human brain: 101°

e Number of synaptic connections: 10
e Large amount of research on “connectome”

o Neurons have complex geometries

‘K/ \ l i ?

http://wwv.homspagas.ucl.ac.uk/ sJJgnle/, [Fiala et al., 2002]

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 2
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ground

Neurons

o Geometries play a role:

A Neurologically normal

B Mentally disabled

C Severe neurobehavioral failure
D Fragile X syndrome

[Fiala et al., 2002]

e Electrophysiological simulations elucidate effects of geometries on

e neuronal topology and combinatorics
e learning, behavior, and memory

Edwards (Univ. of Texas) 3D Reconstruction



Neuronal reconstruction background

o Input: a series of “traced” 2D
Electron Microscopy (EM)
cross-sectional images

@ Desired: 3D geometries suitable
for simulation

(Univ. of Texas 3D Reconstruction RPE, March 29



3D reconstruction

background

Problem statement

Given planar contours in parallel slices, build analysis-ready 3D
surfaces

Edwards (Univ. of Texas)

3D Reconstruction RPE, March



3D reconstruction ckground

Other applications:

o Medical applications at organ and
cellular level using imagery from

___[Bajaj & Goswami, 2008] e magnetic resonance imaging (MRI)
o computed tomography (CT)
e ultrasound

geospatial information systems (GIS)
robotics
computer-aided design (CAD)

special effects

[Turk & O’Brien, 1999]

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 8 / 51
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© Meaning of “analysis-ready”
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Analysis-ready requirements

o A surface is analysis-ready if it

Edwards

is water-tight

has oriented surface normals

is non-intersecting

has no mesh irregularities

has manifold edges and vertices

is composed of low aspect ratio triangles
is topologically correct

is close to the true surface

(Univ. of Texas) 3D Reconstruction
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Analysis-ready requirements

not water-tight

water-tight

contribution

o is water-tight

Edwards

(Univ. of Texas)

3D Reconstruction

RPE, March 29, 2011
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Analysis-ready requirements contribution

has oriented surface
normals

non-oriented oriented

(Univ. of Texas) 3D Reconstruction 12 / 51



contribution

@ is non-intersecting

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011



Analysis-ready requirements

irregularity

no irregularities

contribution

@ has no mesh
irregularities

(Univ. of Texas)

3D Reconstruction
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Analysi Juirements

has manifold edges
and vertices

non-manifold

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011



Analysis-ready requirements

is composed of low
aspect ratio triangles

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 16 / 51



Analysis-ready requirements contribution
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Analysis-ready requirements

N

gsss
A
o

H

A

i
4

4
£lndy

e

TN
and

AT

SR

o

ek

e

v

i,
T,

(Univ. of Texas)

T
s
o

7

.

5

contribution

RN
SN

&

Sty

‘nﬂﬂgg
[N

T Ear

| aavs

Jovzss

WA
NV AN RRNN A
REASARK
Rt

AT 13
SESSEREY
SRy

@ is close to the true
surface




Outline

© 3D reconstruction approaches
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Reconstruction methods - geometric related work

Single component reconstruction

is water-tight

@ has oriented surface
normals

@ is non-intersecting

© has no mesh
irregularities

has manifold edges

and vertices
[Fuchs et al., 1977]
is composed of low

aspect ratio triangles

is topologically correct

@ One of the seminal works was Fuchs et al. o is close to the true
[Fuchs et al., 1977] who posed the problem surface
and presented a triangulation solution

e Spawned a number of geometric approaches
[Christiansen & Sederberg, 1978,
Boissonnat, 1988, Barequet & Sharir, 1994]

(Univ. of Texas) 3D Reconstruction



Reconstruction methods - geometric related work

Single component reconstruction

O is water-tight

@ has oriented surface
normals

@ is non-intersecting

© has no mesh
irregularities

© has manifold edges
and vertices

@ is composed of low
aspect ratio triangles

is topologically correct

@ is close to the true
surface

e |Bajaj et al., 1996] presented an algorithm
with geometric and topological guarantees:
e Guaranteed to be water-tight
o Guaranteed topology with some assumptions
e Supports arbitrary topologies such as
branchin

(Univ. of Texas) 3D Reconstruction



Reconstruction methods - geometric contribution

Forest reconstruction

0 is water-tight

@ has oriented surface
normals

O is non-intersecting

© has no mesh
irregularities

© has manifold edges
and vertices

@ is composed of low
aspect ratio triangles

is topologically correct

@ is close to the true
surface

o [Edwards & Bajaj, 2010] post-processes
surfaces and removes intersections
e Maintains all guarantees of original
algorithm
e Produces many sliver triangles

(Univ. of Texas) 3D Reconstruction



Reconstruction methods - geometric

Single component meshing

related work

@ |Zhang et al., 2005] further post-processes
surfaces and produces a mesh with quality
triangles

e No guarantees about maintaining
intersection-free geometries

O is water-tight

has oriented surface
normals

is non-intersecting

has no mesh
irregularities

has manifold edges
and vertices

is composed of low
aspect ratio triangles

is topologically correct

is close to the true
surface

3D Reconstruction



Reconstruction methods - implicit

related work

o [Turk & O’Brien, 1999, Bermano et al., 2011]
generates an implicit function in 3D then
takes the zero-set

e Quality of the geometry is dependent on the
zero-set, extraction

e Non-intersecting by definition, although
after extraction the surfaces will be touching

e Very small geometries may get capped off
and not carried through unknown region

o Can be fixed using A-splines, but scaffolds
are essentially a geometric reconstruction

Edwards (Univ. of Texas) 3D Reconstruction

is water-tight

has oriented surface
normals

is non-intersecting

has no mesh
irregularities

has manifold edges
and vertices

is composed of low
aspect ratio triangles

is topologically correct

is close to the true
surface

24 / 51
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@ Intersection removal
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Inter-component intersections contribution

Intersections can occur between singly-reconstructed components in
inter-slice regions

Such intersections
occur when data is

@ highly
anisotropic
e tightly packed

@ tortuous

Edwards (Univ. of Texas)

3D Reconstruction RPE, March 29, 2011 26 / 51



Intersection removal contribution

Our algorithm reconstructs multiple components or a “forest” of
structures:

@ Use single component reconstruction method on each component

@ Remove intersections between components

oo Yoy

(Univ. of Texas) 3D Reconstruction 27 / 51



ction removal contribution

Our algorithm removes intersections by adjusting only z-values of
existing tiles (triangles)
@ Removes intersections of a single component in a linear number of
steps
@ Will not cause additional intersections

@ Branching treated just like any other intersection

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 28 / 51



contribution

Penumbral contours

All intersections occur in penumbral regions. A point’s penumbral
contour is the contour whose projection contains the projected point.
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Conflict points contribution

A conflict point is a point of intersection. Somewhat more formally:

Point p# is called a conflict point if there is some point p¥ such that the
projections are equal (p*’ = p&’) and p” is closer to p&’s penumbral
contour than p# is.

Two components C& and CY intersect if and only if there is at least one
conflict point on the surface of either component.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 30 / 51



ing conflicts

We can resolve conflict points by moving them in the directions of their
penumbral contours without worrying about causing additional
intersections (proof on slide Al). Once all conflict points are resolved,
all intersections are removed.

Edwards (Univ. of Texas) 3D Reconstruction



contribution

@ Detect conflict points.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011



Conflict removal algorithm contribution

P1
@ Detect conflict points. DS
@ Trace paths between

conflict points along
edges of yellow tile. We
call these cut paths.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 32 / 51



Conflict removal al hr contribution

@ Detect conflict points.

@ Trace paths between
conflict points along
edges of yellow tile. We
call these cut paths.

@ Use original tiles and
cut paths to induce new
polygons.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011



Conflict removal a,lg | contribution

@ Detect conflict points.

@ Trace paths between
conflict points along
edges of yellow tile. We
call these cut paths.

@ Use original tiles and
cut paths to induce new
polygons.

@ Triangulate polygons
and move conflict
points along z-axis.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 32 / 51



Separating by a given delta contribution

Substituting for A and B:
d* = ((Ay(Bz = €) = (A: + €)By)?
b (A OBe — ABL — )
+  (AxBy — A/Bx)*)/(BX + B} + (B: +¢)*)

After collecting e:

0= E((Ay + By)® + (Ac + By)* — d°)
4+ e(2)((Ax + Bx)(A:Bc — AB;)
—(Ay + By)(AyB: — A:By) — d*A;)
+ (AyB, — A.B,)* 4 (A, B« — AB,)’
+(A<By — A,Bx)* — d*(B; + By + B;)

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 33 / 51



Separating by a given delta contribution

€ < |p& — Z(p#)| and e < |p¥ — Z(p¥)|

Idea of proof: as points approach original contours, which are separated
by d, the chords will be separated by at least d in the limit.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 34 / 51



Results contribution
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Conclusions and notes contribution

Algorithm is O(n?) where n is the number of tiles.

e Average case is closer to nlog n complexity of sweep line algorithm
as large majority of 2D intersections are not conflict points.

Original contours remain unchanged — only makes changes in
interpolated data between slices

Topologically correct and water tight

Generates large number of extra triangles in intersecting regions

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 36 / 51
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© Ongoing work - error bounds
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motivation kground

When performing FEM or BEM simulations, two error terms
contribute:

e surface approximation
e numerical solution of PDE

If the surface approximation error dominates, then there is no benefit
to discretizing more finely for an improved solution.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 38 / 51



Error consternation kground

Why is there so little discussion of error bounds in the literature? Some
ideas:

e Bounding image segmentation error is difficult

e It isn’t considered important for visualization

e Optimizing certain criteria is sufficient. Consider the following
statements:

o “[Our algorithm has| a variety of possible options for choosing
optimizing criteria” [Fuchs et al., 1977].

e “Various conditions may be imposed: maximize the volume,
minimize the surface, minimize the edge length or angles...”
[Boissonnat & Geiger, 1992].

o “..the minimum surface optimizing algorithm...” [Bajaj et al., 1996].

e “Optimality: creating the best surface, in terms that are subjective,
but well-defined for each solution” [Barequet & Vaxman, 2007].

o “[Our algorithm]| tends in practice to minimize the surface area of
the reconstruction...” [Barequet & Vaxman, 2009].

@ It’s too hard

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 39 / 51



Error bounds — approach background

Fortunately we have some points that are known to be on the surface
(or at least close)

(Univ. of Texas) 3D Reconstruction re. 40 / 51



Volume error bound contribution

e Goal #1: bound the error of the surface area and volume
@ Approach: start by bounding perimeter and area of original
contours
o Perimeter error bounded by 2ne (derivation in slide A2)
o Area error bounded by 2€l(P,p) where ['(Pyp) is the perimeter
(derivation in slide A3)
@ We hope to bound the entire surface area and volume using these
bounds and knowledge of our reconstruction properties
o A promising approach: area and volume derivatives
[Bryant et al., 2004]

@ These bounds are useful for “cable equation” simulations

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011



Surface error bound contribution

e Goal #2: bound the deviation of the reconstructed surface from
the true surface
o Approach: start by bounding deviation of a single triangle

e Many triangles have all 3 vertices on contours
e Agsuming vertices are exact, error at a point given by its
barycentric coordinates (A1, A2, A3) is

A od + A Asdls + Ao Asd3; £1(¢)
2

V2

V4

U3

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011



Surface error bound contribution

e Single triangle:

A2 df + A A3d53+ A2 A3d3;
2 (€)

@ Problem A: how do we estimate the second derivative?

o We have a lot of 2D information (in the form of contours), but we
don’t know the normals at those points

e This is biological data, so we’ll have to determine an acceptable
feature size

e Problem B: what about triangles with only two or even one vertex
on the surface?

e Use Taylor’s theorem? Bound could then be unusably loose.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 43 / 51
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@ Ongoing work - mesh improvement
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Mesh improvement related work

Current mesh improvement algorithm has no intersection guarantees

In practice, this is not a problem because ...

(Univ. of Texas) 3D Reconstruction



Mesh improvement related work

Current mesh improvement algorithm causes erosion

This will damage whatever error bounds our reconstruction algorithm
gives.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 46 / 51



Mesh improvement futur

Desired: mesh improvement algorithm that respects constraints, which
could be

e spatial scaffolding

e volume/surface area bounds

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 47 / 51
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@ Summary and moving forward
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Problem statement

Given planar contours in parallel slices, build analysis-ready 3D surfaces

An analysis-ready surface
O is water-tight
© has oriented surface normals
is non-intersecting
© has manifold edges and vertices
0 is composed of low aspect ratio triangles
is topologically correct

@ is close to the true surface

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011



List of TODOs

TODO:
@ Determine error bounds for current reconstruction algorithm

e These include volume, surface area, and deviation from true surface
e Hopefully these will be general enough to apply to other algorithms

e Modify mesh improvement algorithm

e Must respect error bounds through some kind of constraint set
e Must be adaptive for quality simulations

e Look at better guarantees of topological correctness

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 50 / 51



3D surface reconstru future

Thanks!

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 51 / 51
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Al - MOVing conflic 1 contribution

Our algorithm will remove intersections without causing other
intersections.

Moving any conflict point p& in the direction of its penumbral contour
will not generate any additional conflict points among any pair of
components.

Idea of proof: as a point moves toward its penumbral contour it won’t
enter any component because only two components can intersect in a
given penumbra.
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A2 - Perimeter error bound derivation contribution

Perimeter (rough bounds suggested by Alex Rand): All indices are modulo n. Let the perimeter be

f(p1, . pn) = F(PY = llpisa — Pill = \/(Xi+1 — %) + (Vi1 — ¥i)?

i=1 i=1
such that Vp;, ||p; — v;|| < e.
" d N d o d o
VE(P) = Z — llpit1 — pillkai—1 + *||P:+1 pillk2; + lIPiva — pillkaiys + llpiva — pillk2iy2
iz 9 dxjt1 dyit1
n — 1
=> ————(Piq1 — i) + —————(Piy1 — Pi)
iz lpiva — pill llpiva — pill
where (R;_, ey Rz,,) is the standard basis for R2". This results in 2n unit vectors (in n different planes in
R2"). By the triangle inequality,
IVE(P)II < 2n
Let V = (v1,v2,...,vn) be the vertices of Prep. By Taylor’s theorem,

f(V) = £(P) + (£(V) — £(POIVFEI

As stated above, ||[VF(Z)|| < 2n and [|[f(V) — f(P)|| < e. Thus the perimeter error is bounded by 2ne.
Tighter bounds could be derived using, for example, Lagrange multipliers, but this is more difficult and

messy.

(Univ. of T E & sconstructi RPE, March 29



A3 - Area error bound derivation

contribution
Area: All indices are modulo n. Using the cross-product, the area of a triangle Apipap3 is given as

A= i~ pa) % (b3 — pr)l = > [lx2 — )03 —y2) — 2 — )(xs — )

The area of a polygon with n vertices is given as the sum of the areas of the triangles of the form
Ap1pipit1,i # 1 and i # n. Thus the area of the polygon is

f(p1,...,pn) = f(P) :g[(xz —x1)(y3 —y1) — (y2 — ya)(x3 — x1)
+(x3 — x1)(ya —y1) — (y3 — y1)(xa — x1)
.

+Hxn—1 — x1)(yn —y1) — (¥n—1 — y1)(xn — x1)]
n—1
% ST (6 — x)(yisr — y1) — (i — y1)(xip1 — x1)
i2

Let f;(P) = (x; — x1)(yiza — y1) — (i — y1)(Xiy1 — x1)-

vEP) ="

i=1

d
—fikoi 4 + — Fiko:
dx: it2i—1 dy,- i02i

where (K1, ..., kan) is the standard basis for R2". ...

(Univ. of




d
—f(P)=(yv1 — yiy1) + vi —v1) = (¥i — ¥iy1)

dxy
d4 n—1
—F(P)=> (¥i —Yis1) =¥2 — ¥n (1)
dxq i=2
Similarly,
d n—1
—f(P)= Z(Xi+1 — Xj) = Xn — X2 (2)
dy1 i=2

At other vertices,

d . . .
if(P): Tx’_fj(P) i—1<j<i
dx; 0 elsewhere

?faP)+ h(P)
B dx; -1 dx; !

= Yis1 —y1) — (Yi—a —»1)

=VYit+1 —Vi—1
Similarly,
d
f(P) =xj_1 — Xiy1
dy;
Combining with equations (1) and (2),
n
VE(P)=> (yi+1 — Yi—1)kan—1 + (Xi_1 — Xj11)ken (3)
i=1
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A3 - Area error bound derivation (cont.) contribution

We can bound the length of the gradient:
n 1/2 n
2
IvVE(P)I = (Z(.Vi+1 - .Vi71)2 + (X1 — Xi+1) ) < Z HP:‘+1 = pi—1ll < 2M(Prep)
i=1 i=1

where I(Prep) is the perimeter of polygon Prep. The last inequality is due to the triangle inequality. Thus

we can bound the error in the area of Prep to be < 2el(Ppep).

(Univ. of




A4 - Triangle error derivation

contribution

See left figure. We’re looking for the error at v. Let the barycentric coordinates of v be (A1, A2, A3).

Preliminaries:
2 2 2

dis = di3 +d3q —2(v1 — v3) - (va — v3)

(law of cosines)
242 2 d2; + d2, — d2
= d123 + 223 2 13 23 12 (law of cosines again)
(A2 + A3)? A2 + A3 2
A2 + A3 A2X3d2
= S [ Nad + Aadiy - 2
(A2 +23) (A2 +A3)
Then the error i

is (see right figure):

€(v) = Mae(va) + €' (v)
AaXsdi; A1(A2 + A3)? 2 2 A2xzdds \ L.

a5 fh3(623) + 5 | dady + A3dyz — | fi4(€1a)

2002 + 23)2 2 2002 + 23)2 12 B2t

_ AMdadis + A1A3dfy + A2A3d3;

P £7(8)

where f{i(&u) is the second derivative in the direction of the vector v4 — vy at an unknown point £314
fy3(£23) is @eﬁn.ed similarly. f/(€) is the second directional derivative at an unknown point £ in an
unknown direction.

Vo €' (v)
o e(va) Aae(va)
. 4
o V4 ()

(Univ. of Texas)
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