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Neurons

Number of neurons in the human brain: 1010

Number of synaptic connections: 1014

Large amount of research on �connectome�

Neurons have complex geometries

http://www.homepages.ucl.ac.uk/~sjjgnle/, [Fiala et al., 2002]
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Neurons

[Fiala et al., 2002]

Geometries play a role:

A Neurologically normal
B Mentally disabled
C Severe neurobehavioral failure
D Fragile X syndrome

Electrophysiological simulations elucidate e�ects of geometries on

neuronal topology and combinatorics
learning, behavior, and memory
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Neuronal reconstruction

Input: a series of �traced� 2D
Electron Microscopy (EM)
cross-sectional images

Desired: 3D geometries suitable
for simulation
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3D reconstruction

Problem statement

Given planar contours in parallel slices, build analysis-ready 3D
surfaces
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3D reconstruction

[Bajaj & Goswami, 2008]

[Alberts et al., 2009]

[Turk & O'Brien, 1999]

Other applications:

Medical applications at organ and
cellular level using imagery from

magnetic resonance imaging (MRI)
computed tomography (CT)
ultrasound

geospatial information systems (GIS)

robotics

computer-aided design (CAD)

special e�ects
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Analysis-ready requirements

A surface is analysis-ready if it

is water-tight
has oriented surface normals
is non-intersecting
has no mesh irregularities
has manifold edges and vertices
is composed of low aspect ratio triangles
is topologically correct
is close to the true surface
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Reconstruction methods - geometric
Single component reconstruction

[Fuchs et al., 1977]

One of the seminal works was Fuchs et al.
[Fuchs et al., 1977] who posed the problem
and presented a triangulation solution

Spawned a number of geometric approaches
[Christiansen & Sederberg, 1978,
Boissonnat, 1988, Barequet & Sharir, 1994]

is water-tight
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normals
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has no mesh
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and vertices

is composed of low
aspect ratio triangles
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Reconstruction methods - geometric
Single component reconstruction

[Bajaj et al., 1996] presented an algorithm
with geometric and topological guarantees:

Guaranteed to be water-tight
Guaranteed topology with some assumptions
Supports arbitrary topologies such as
branching
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Reconstruction methods - geometric
Forest reconstruction

[Edwards & Bajaj, 2010] post-processes
surfaces and removes intersections

Maintains all guarantees of original
algorithm
Produces many sliver triangles
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Reconstruction methods - geometric
Single component meshing

[Zhang et al., 2005] further post-processes
surfaces and produces a mesh with quality
triangles

No guarantees about maintaining
intersection-free geometries
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Reconstruction methods - implicit

[Turk & O'Brien, 1999, Bermano et al., 2011]
generates an implicit function in 3D then
takes the zero-set

Quality of the geometry is dependent on the
zero-set extraction
Non-intersecting by de�nition, although
after extraction the surfaces will be touching
Very small geometries may get capped o�
and not carried through unknown region

Can be �xed using A-splines, but sca�olds

are essentially a geometric reconstruction
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Inter-component intersections

Intersections can occur between singly-reconstructed components in
inter-slice regions

Such intersections
occur when data is

highly
anisotropic

tightly packed

tortuous
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Intersection removal

Our algorithm reconstructs multiple components or a �forest� of
structures:

1 Use single component reconstruction method on each component

2 Remove intersections between components
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Intersection removal

Our algorithm removes intersections by adjusting only z-values of
existing tiles (triangles)

1 Removes intersections of a single component in a linear number of
steps

2 Will not cause additional intersections

3 Branching treated just like any other intersection
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Penumbral contours

Claim

All intersections occur in penumbral regions. A point's penumbral

contour is the contour whose projection contains the projected point.
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Con�ict points
A con�ict point is a point of intersection. Somewhat more formally:

De�nition

Point pg is called a con�ict point if there is some point py such that the
projections are equal (py ′ = pg ′) and py is closer to pg 's penumbral
contour than pg is.

Claim

Two components C g and C y intersect if and only if there is at least one
con�ict point on the surface of either component.
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Removing con�icts

We can resolve con�ict points by moving them in the directions of their
penumbral contours without worrying about causing additional
intersections (proof on slide A1). Once all con�ict points are resolved,
all intersections are removed.
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Con�ict removal algorithm

1 Detect con�ict points.

2 Trace paths between
con�ict points along
edges of yellow tile. We
call these cut paths.

3 Use original tiles and
cut paths to induce new
polygons.

4 Triangulate polygons
and move con�ict
points along z-axis.
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Separating by a given delta

d = |A×B|
|B|

Substituting for A and B:

d
2 = ((Ay (Bz − ε)− (Az + ε)By )

2

+ ((Az + ε)Bx − Ax(Bz − ε))2

+ (AxBy − AyBx)
2)/(B2

x + B
2

y + (Bz + ε)2)

After collecting ε:

0 = ε2((Ay + By )
2 + (Ax + Bx)

2 − d
2)

+ ε(2)((Ax + Bx)(AzBx − AxBz)

−(Ay + By )(AyBz − AzBy )− d
2
Az)

+ (AyBz − AzBy )
2 + (AzBx − AxBz)

2

+(AxBy − AyBx)
2 − d

2(B2

x + B
2

y + B
2

z )
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Separating by a given delta

Theorem

ε < |pg −Z (pg )| and ε < |py −Z (py )|

Idea of proof: as points approach original contours, which are separated
by d , the chords will be separated by at least d in the limit.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 34 / 51

contribution



Results
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Conclusions and notes

Algorithm is O(n2) where n is the number of tiles.

Average case is closer to n log n complexity of sweep line algorithm
as large majority of 2D intersections are not con�ict points.

Original contours remain unchanged � only makes changes in
interpolated data between slices

Topologically correct and water tight

Generates large number of extra triangles in intersecting regions
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Error bounds - motivation

When performing FEM or BEM simulations, two error terms
contribute:

surface approximation

numerical solution of PDE

If the surface approximation error dominates, then there is no bene�t
to discretizing more �nely for an improved solution.
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Error consternation

Why is there so little discussion of error bounds in the literature? Some
ideas:

Bounding image segmentation error is di�cult

It isn't considered important for visualization

Optimizing certain criteria is su�cient. Consider the following
statements:

�[Our algorithm has] a variety of possible options for choosing
optimizing criteria� [Fuchs et al., 1977].
�Various conditions may be imposed: maximize the volume,
minimize the surface, minimize the edge length or angles...�
[Boissonnat & Geiger, 1992].
�...the minimum surface optimizing algorithm...� [Bajaj et al., 1996].
�Optimality: creating the best surface, in terms that are subjective,
but well-de�ned for each solution� [Barequet & Vaxman, 2007].
�[Our algorithm] tends in practice to minimize the surface area of
the reconstruction...� [Barequet & Vaxman, 2009].

It's too hard
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Error bounds � approach

Fortunately we have some points that are known to be on the surface
(or at least close)
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Volume error bound

Goal #1: bound the error of the surface area and volume
Approach: start by bounding perimeter and area of original
contours

Perimeter error bounded by 2nε (derivation in slide A2)
Area error bounded by 2εΓ(Prep) where Γ(Prep) is the perimeter
(derivation in slide A3)

We hope to bound the entire surface area and volume using these
bounds and knowledge of our reconstruction properties

A promising approach: area and volume derivatives
[Bryant et al., 2004]

These bounds are useful for �cable equation� simulations
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Surface error bound

Goal #2: bound the deviation of the reconstructed surface from
the true surface

Approach: start by bounding deviation of a single triangle

Many triangles have all 3 vertices on contours
Assuming vertices are exact, error at a point given by its
barycentric coordinates (λ1, λ2, λ3) is

λ1λ2d
2

12
+ λ1λ3d

2

13
+ λ2λ3d

2

23

2
f

′′(ξ)
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Surface error bound

Single triangle:
λ1λ2d212+λ1λ3d213+λ2λ3d223

2
f ′′(ξ)

Problem A: how do we estimate the second derivative?

We have a lot of 2D information (in the form of contours), but we
don't know the normals at those points
This is biological data, so we'll have to determine an acceptable
feature size

Problem B: what about triangles with only two or even one vertex
on the surface?

Use Taylor's theorem? Bound could then be unusably loose.
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Mesh improvement

Current mesh improvement algorithm has no intersection guarantees

In practice, this is not a problem because . . .
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Mesh improvement

Current mesh improvement algorithm causes erosion

This will damage whatever error bounds our reconstruction algorithm
gives.

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 46 / 51

related work



Mesh improvement

Desired: mesh improvement algorithm that respects constraints, which
could be

spatial sca�olding

volume/surface area bounds
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The problem

Problem statement

Given planar contours in parallel slices, build analysis-ready 3D surfaces

An analysis-ready surface

is water-tight

has oriented surface normals

is non-intersecting

has manifold edges and vertices

is composed of low aspect ratio triangles

is topologically correct

is close to the true surface
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List of TODOs

TODO:

Determine error bounds for current reconstruction algorithm

These include volume, surface area, and deviation from true surface
Hopefully these will be general enough to apply to other algorithms

Modify mesh improvement algorithm

Must respect error bounds through some kind of constraint set
Must be adaptive for quality simulations

Look at better guarantees of topological correctness
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3D surface reconstruction

Thanks!
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A1 - Moving con�ict points

Our algorithm will remove intersections without causing other
intersections.

Theorem

Moving any con�ict point pg in the direction of its penumbral contour
will not generate any additional con�ict points among any pair of
components.

Idea of proof: as a point moves toward its penumbral contour it won't
enter any component because only two components can intersect in a
given penumbra.
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A2 - Perimeter error bound derivation
Perimeter (rough bounds suggested by Alex Rand): All indices are modulo n. Let the perimeter be

f (p1, ..., pn) = f (P) =
nX

i=1

‖pi+1 − pi ‖ =
nX

i=1

q
(xi+1 − xi )2 + (yi+1 − yi )2

such that ∀pi , ‖pi − vi ‖ ≤ ε.

∇f (P) =
nX

i=1

d

dxi
‖pi+1 − pi ‖k̂2i−1 +

d

dyi
‖pi+1 − pi ‖k̂2i +

d

dxi+1
‖pi+1 − pi ‖k̂2i+1 +

d

dyi+1
‖pi+1 − pi ‖k̂2i+2

=
nX

i=1

−1
‖pi+1 − pi ‖

〈pi+1 − pi 〉 +
1

‖pi+1 − pi ‖
〈pi+1 − pi 〉

where (̂k1, . . . , k̂2n) is the standard basis for R2n . This results in 2n unit vectors (in n di�erent planes in

R2n). By the triangle inequality,
‖∇f (P)‖ ≤ 2n

Let V = (v1, v2, . . . , vn) be the vertices of Prep . By Taylor's theorem,

f (V ) = f (P) + (f (V )− f (P))‖∇f (Ξ)‖

As stated above, ‖∇f (Ξ)‖ ≤ 2n and ‖f (V )− f (P)‖ ≤ ε. Thus the perimeter error is bounded by 2nε.

Tighter bounds could be derived using, for example, Lagrange multipliers, but this is more di�cult and

messy.
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A3 - Area error bound derivation

Area: All indices are modulo n. Using the cross-product, the area of a triangle ∆p1p2p3 is given as

A =
1

2

|(p2 − p1)× (p3 − p1)| =
1

2

[(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)]

The area of a polygon with n vertices is given as the sum of the areas of the triangles of the form
∆p1pi pi+1, i 6= 1 and i 6= n. Thus the area of the polygon is

f (p1, . . . , pn) = f (P) =
1

2

[(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)

+(x3 − x1)(y4 − y1)− (y3 − y1)(x4 − x1)

+ . . .

+(xn−1 − x1)(yn − y1)− (yn−1 − y1)(xn − x1)]

=
1

2

n−1X
i=2

(xi − x1)(yi+1 − y1)− (yi − y1)(xi+1 − x1)

Let fi (P) = (xi − x1)(yi+1 − y1)− (yi − y1)(xi+1 − x1).

∇f (P) =
nX

i=1

d

dxi
fi k̂2i−1 +

d

dyi
fi k̂2i

where (̂k1, . . . , k̂2n) is the standard basis for R2n . . . .
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A3 - Area error bound derivation (cont.)
d

dx1
fi (P) = (y1 − yi+1) + (yi − y1) = (yi − yi+1)

d

dx1
f (P) =

n−1X
i=2

(yi − yi+1) = y2 − yn (1)

Similarly,

d

dy1
f (P) =

n−1X
i=2

(xi+1 − xi ) = xn − x2 (2)

At other vertices,

d

dxi
f (P) =

(
d
dxi

fj (P) i − 1 ≤ j ≤ i

0 elsewhere

=
d

dxi
fi−1(P) +

d

dxi
fi (P)

= (yi+1 − y1)− (yi−1 − y1)

= yi+1 − yi−1

Similarly,
d

dyi
f (P) = xi−1 − xi+1

Combining with equations (1) and (2),

∇f (P) =
nX

i=1

(yi+1 − yi−1 )̂k2n−1 + (xi−1 − xi+1 )̂k2n (3)
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A3 - Area error bound derivation (cont.)

We can bound the length of the gradient:

‖∇f (P)‖ =

0@ nX
i=1

(yi+1 − yi−1)2 + (xi−1 − xi+1)2

1A1/2

≤
nX

i=1

‖pi+1 − pi−1‖ ≤ 2Γ(Prep)

where Γ(Prep) is the perimeter of polygon Prep . The last inequality is due to the triangle inequality. Thus

we can bound the error in the area of Prep to be ≤ 2εΓ(Prep).

Edwards (Univ. of Texas) 3D Reconstruction RPE, March 29, 2011 58 / 51

contribution



A4 - Triangle error derivation
See left �gure. We're looking for the error at v . Let the barycentric coordinates of v be (λ1, λ2, λ3).
Preliminaries:

d
2

14
= d

2

13
+ d

2

34
− 2(v1 − v3) · (v4 − v3) (law of cosines)

= d
2

13
+

λ2
2
d2
23

(λ2 + λ3)2
−

2λ2

λ2 + λ3

 
d2
13

+ d2
23
− d2

12

2

!
(law of cosines again)

=
λ2 + λ3

(λ2 + λ3)2

 
λ2d

2

12
+ λ3d

2

13
−

λ2λ3d
2

23

(λ2 + λ3)

!

Then the error is (see right �gure):

ε(v) = λ4ε(v4) + ε
′(v)

= λ4
λ2λ3d

2

23

2(λ2 + λ3)2
f
′′
23

(ξ23) +
λ1(λ2 + λ3)2

2(λ2 + λ3)2

 
λ2d

2

12
+ λ3d

2

13
−

λ2λ3d
2

23

(λ2 + λ3)

!
f
′′
14

(ξ14)

=
λ1λ2d

2

12
+ λ1λ3d

2

13
+ λ2λ3d

2

23

2

f
′′(ξ)

where f ′′
14

(ξ14) is the second derivative in the direction of the vector v4 − v1 at an unknown point ξ14.

f ′′
23

(ξ23) is de�ned similarly. f ′′(ξ) is the second directional derivative at an unknown point ξ in an
unknown direction.
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