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Abstract—Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of

the essential components of vector field topology, play an important role in describing the complexity of the extracted structure.

Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as

turbulence. However, there is no effective technique that allows direct cancellation of critical points in 3D. This work fills this gap and

introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with a guaranteed

minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does

not require the extraction of the entire 3D topology, which contains non-trivial separation structures, and thus is computationally

effective. Furthermore, our algorithm can remove critical points in any subregion of the domain whose degree is zero and handle

complex boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply

our method to synthetic and simulation datasets to demonstrate its effectiveness.

Index Terms—Flow visualization, vector field simplification, robustness, computational topology

Ç

1 INTRODUCTION

COMPLEX and often large-scale vector fields arise from a
vast variety of scientific and engineering applications,

including climate study, combustion dynamics, seismology,
and automobile and aircraft design. Topological methods
have been employed extensively to extract features, such as
critical points and separatrices (i.e., special streamlines or
stream surfaces starting from the saddle points), for the pur-
pose of vector field visualization [1], compression [2],
design [3], [4] and simplification [5].

Applications requiring the study of turbulent flow, in par-
ticular, may generate vector fields with a large number of
critical points, leading to a visually cluttered representation
that hinders intuitive interpretation of the flow behavior. A
popular solution to address such a challenge is to simplify
the flow by systematically reducing the number of critical
points in the obtained topological representations. Such
topology-based simplification schemes typically cancel pairs
of critical points that are directly connected by separatrices
in order of their importance based on certain geometric prox-
imities (e.g., distance or area). While this strategy may work
well for 2D vector fields [4], [5], [6], it is not straightforward
to extend it to 3D vector fields due to the increasing

complexity of 3D topology. In addition, the full 3D vector
field topology can potentially be expensive to extract due to
the increased dimensionality of the separatrices as well as
numerical instabilities [3], [7], [8], making it less practical for
large-scale datasets. Furthermore, such simplification typi-
cally does not take into account the influence of flow magni-
tude, an important physical property of the flow.

In general, we believe little work has been done towards
topological simplification of 3D vector fields, especially the
development of techniques that do not depend upon the
computation of the topological skeleton. In fact, the only
work on this topic we found in literature is based on the
extraction and visualization of high-order critical points [8].
Simplification is achieved by looking at the behavior of the
flow on a bounding surface surrounding a cluster of first-
order critical points. A simplified representation of the 3D
vector field topology is then obtained by merging lower-
order critical points into higher-order ones. It has been
shown that the subsequent vector field representation is sub-
stantially simplified accordingly after this merging process.
Fundamentally different from the approach in [8], we pro-
pose the first framework that directly cancels pairs of 3D criti-
cal points with a guaranteed minimum amount of perturbation
for 3D vector fields. Importantly, our framework does not
require computing the entire topology of the vector field.
Although the minimum amount of perturbation may indi-
cate a small change to the vector field behavior in the vicinity
of the critical points, it prevents the introduction of mislead-
ing information. Therefore, we believe that the reduced num-
ber of critical points will lead to a simplified topological
representation of 3D flows. In particular, our contributions
are as follows (see Fig. 1 for an illustrative example):

� We propose a novel, scalable and hierarchical simpli-
fication strategy for 3D vector fields, where sets of
critical points are canceled based on a measure of
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their stability, quantified by the topological notion of
robustness. The resulting vector fields are smooth,
and with bounded perturbations.

� We generalize our algorithm to remove critical
points in any connected region of the vector field, as
long as it has zero degree. Our algorithm does not
require special boundary configurations.

2 RELATED WORK

Vector field simplification. Vector field simplification can be
accomplished via topology-based or non-topology-based
techniques. Non-topology-based techniques [9], [10], [11],
such as vector field clustering or segmentation, do not
explicitly simplify the flow structure. Therefore, we concen-
trate on only the former.

Vector field topology has been applied successfully to the
2D vector field simplification problem [4], [6], [12], [13] with
the aid of the notion of topological skeleton [5], [14]. Recently,
Morse decomposition and Morse Connection Graph (MCG)
have been introduced to the visualization community to
study the topology of vector fields [15], [16]. This topologi-
cal representation (i.e., MCG) can facilitate the construction
of a hierarchy of the flow structure by either a refinement
process [17] or the merging of neighboring Morse sets [18];
where the sizes of the Morse sets are used to determine the
ordering of simplification or refinement.

Despite the extensive research on 2D vector field simpli-
fication based on topology, little work has been done on the
topology-based simplification in 3D, due, at least in part, to
the complexity of the topology of general 3D vector
fields [3], [19] which consists not only of 1D skeletons but
also of 2D separation surfaces. This increased complexity
has made the extraction and visualization of 3D vector field
topology challenging [20], [21]. Theisel et al. introduced the

saddle-connector to reduce the occlusion issue in the visual-
ization of 3D topology [7]. Weinkauf et al. [3], [8] introduced
a technique to visualize high-order critical points, which is
achieved via the F-classification of a derived auxiliary tan-
gential vector field defined on a closed surface surrounding
each critical point. Iconic visualization can be produced
using the minimal skeleton of this derived vector field. Sim-
plification of a 3D vector field can be achieved by placing
the closed surface described earlier around a group of first-
order critical points. The method of Weinkauf et al. is fun-
damentally different from our approach. Whereas their
method achieves a simplified representation by merging
lower-order critical points into higher-order ones, our
approach cancels pairs of first-order critical points.

Robustness. To introduce hierarchical simplification of
vector fields, one would rank the critical points by meas-
ures of relevance or importance. Kasten et al. [22] ranked
features based on their lifetime in the time-varying setting
and treated long-lived ones as being significant. Reining-
haus et al. [23] proposed a persistence-like importance
measure for critical points, which discriminates between
stable and unstable features of the vector field. Klein and
Ertl [24] tracked vector field critical points over multiple
spatial scales to assess their importance to the overall
behavior of the flow field. In this paper, we use the topo-
logical notion of robustness, a relative of persistence [25],
which was introduced through the algebraic concept of
well diagrams in [26], [27], [28], to quantify the stability
of critical points with respect to perturbations, which is
crucial in assessing their significance. Robustness has
been shown to be useful for the analysis and visualization
of both stationary and time-varying 2D vector fields [29],
[30]. It also leads to interesting theoretical results in fea-
ture tracking by relating critical points correspondences

Fig. 1. A synthetic example that illustrates the complexity of 3D simplification and demonstrates our robustness-based simplification of critical points.
For a pair of critical points residing within a region near a vortex core (as illustrated by the highly rotating streamlines), we showcase the global flow
behavior before (left) and after (right) simplification. Before simplification (left), the identification of this vortex core may return a number of discon-
nected curves due to the existence of a pair of critical points (sinks are red, saddles are blue). Cancellation of these critical points (right) eliminates
their interferences in the behavior of the vortex core. Namely, the vortex core exhibits higher continuity, which is highlighted by a bundle of red stream-
lines passing through the center of the region (i.e., without stopping at the original critical points). In this case, the simplification results in local rather
than global changes to the flow behavior, as indicated by streamline modifications in proximity to the critical points, and such local changes are crucial
to the study of the spiral region and the identification of the vortex core. See supplementary video, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2016.2534538 for details.
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to their stability [31]. Recent work in [32] proposed a 2D
vector field simplification strategy based on robustness,
where critical points are canceled according to a quantita-
tive measure of their stability. Such a strategy provides a
complementary view to topological-skeleton-based sim-
plification and handles more general boundary configura-
tions. In this paper, we provide a 3D version of such a
strategy, which fills the gaps of direct cancellation of pairs
of critical points in 3D vector fields. Compared to its 2D
counterpart, our 3D robustness-based simplification is
technically much more sophisticated and has, potentially,
an even bigger impact on enriching the research field of
3D vector field simplification.

3 TECHNICAL BACKGROUND

We provide relevant background in degree theory and
robustness. We give minimal algebraic definitions and offer
a high-level intuition whenever possible.

Our work relies on a corollary of the Poincar�e-Hopf theo-
rem, which states that a compact, connected, oriented mani-
fold M possesses a nowhere-vanishing vector field if and
only if its Euler characteristic is zero ([33], page 146). This
corollary implies that given a disk D � M � Rm that con-
tains multiple critical points of f , one could obtain a (homo-
topic) simplification of f by removing all the critical points
inDwhile leaving f constant outside ofD.

Degrees and indices. Consider f : M ! Rm to be a vector
field on a manifold M (where m ¼ 3 in our context). Sup-
pose x is an isolated zero (i.e., critical point) of f , that is, let
jfðxÞj ¼ 0. Fix the local coordinates near x and pick a closed
disk D that encloses x in its interior and contains no other
critical points. Then the index of x, or equivalently the local
degree of f at x, denoted as degðf j xÞ, is the degree of the

map u : @D ! Sm�1 that maps the boundary of D to the
ðm� 1Þ-sphere, given by uðzÞ ¼ fðzÞ=jfðzÞj (u is sometimes
referred to as the Gauss map). If D is a disk that contains
multiple critical points fx1; x2; :::; xng of f , then the degree
of f restricted to @D is the sum of the indices/degrees of f
at the xi, degðf j @DÞ ¼

Pn
i¼1 degðf j xiÞ. For notational conve-

nience, when f is fixed, we abuse notation by defining
degðDÞ :¼ degðf j @DÞ and degðxiÞ :¼ degðf j xiÞ, and refer to

them as degrees ofD and xi, respectively.
We consider isolated, first-order critical points in 3D:

sinks, sources, repelling saddles and attracting saddles.
Their indices (degrees) are þ1, �1, þ1 and �1, respectively.

Merge tree. Given an m-dimensional continuous vector
field f : M � Rm ! Rm, we define its corresponding magni-

tude function f0ðxÞ¼ jjfðxÞjj2. We use Fr ¼ f�1
0 ð�1; r� to

denote its sublevel set for some r � 0. F0 is the set of critical
points of f . To compute robustness of critical points in f ,
we construct a merge tree of f0 that tracks the (connected)
components of Fr (together with their degree information) as
they appear and merge by increasing r from 0. A leaf node
represents the creation of a component at a local minima of f0,
and an internal node represents the merging of components.
See [29], [34] for algorithmic details. To illustrate the construc-
tion, we show a 2D example adapted from [29] in Fig. 2. Once
the critical points and degrees are computed, the construction
of the merge tree is independent of the dimension, since
it uses only 0-connectivity (connected components) of the
sublevel sets.

Robustness. The robustness of a critical point is the height
of its lowest zero degree ancestor in the merge tree [29],
[35]. For example in Fig. 2, by definition, the critical points
x1 and x2 have robustness r1, and x3 and x4 have robustness
r3. Such a topological notion quantifies the stability of a crit-
ical point with respect to perturbations of the vector fields.
The robustness of a critical point is the minimum amount of
perturbation required to cancel it. Its technical properties
are explicitly stated in [29], which we restate here for com-
pleteness. A continuous mapping g is an r-perturbation of f ,
if dðf; gÞ � r, where dðf; gÞ ¼ supx2R2 jjfðxÞ � gðxÞjj2: Sup-
pose a critical point x of f has robustness r, then:

Lemma 3.1 (Critical Point Cancellation [29]). Let D be the
connected component of Frþd containing x, for an arbitrarily
small d > 0. Then, there exists an ðrþ dÞ-perturbation h of f ,

such that h�1ð0Þ \D ¼ ; and h ¼ f except possibly within
the interior ofD.

Lemma 3.2 (Degree Preservation [29]). LetD be the connected
component of Fr�d containing x, for some 0 < d < r. For any
"-perturbation h of f (" � r� d), degðf j @DÞ ¼ degðh j @DÞ. If
D contains only one critical point x, degðh j @DÞ ¼ degðf j xÞ.
Intuitively, if a critical point x has robustness r, then it

can be canceled with a ðrþ dÞ-perturbation, but not with a
ðr� dÞ-perturbation, for d > 0 arbitrarily small. By con-
struction, our simplification strategy perturbs the vector
field by rþ d, introducing the smallest possible (i.e., opti-
mal) point-wise perturbation.

4 ROBUSTNESS-DRIVEN SIMPLIFICATION

ALGORITHMS

Suppose we are given a 3D vector field with the critical
points identified along with their local degree informa-
tion. During robustness-driven simplification, we first
compute the robustness values of each critical point. For
critical points that share the same robustness value of r,
we compute the corresponding component of the sub-
level set with minimum area, D � Fr, that encloses them.
Due to the inherent properties of robustness, by con-
struction degðDÞ :¼ degðf j @DÞ ¼ 0. We then apply our
simplification strategy to simplify f in D while leaving f
intact outside of D. It is important to point out that,
although the vector field modification is local, it can
have global effects on the flow behavior (Fig. 1).

Fig. 2. Figure from [29] showing the merge tree for a 2D vector field
example. The robustness computation and merge tree construction are
the same in all dimensions. Suppose the vector field is continuous,
where sinks are red, sources are green, and saddles are blue.From left
to right: vector field f, relations among components of Fr, and the aug-
mented merge tree. f contains four critical points: a sink x1, a source x3,
and two saddles x2 and x4.We use b, g, v, etc. to represent components
of the sublevel sets.
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4.1 Preliminary

Preprocessing: robust critical detection. For simplicial meshes,
the simplest way to detect critical points is solving a linear
system numerically for each tetrahedron to identify if there
exists a zero in its function space. However, the critical
points detected this way suffer greatly from numerical
instabilities, often creating false negatives and/or false posi-
tives, especially when the induced linear system is poorly
conditioned. Instead, we employ a numerically robust
approach [36], which uses symbolic perturbations [37] to
eliminate numerical instabilities.

Preprocessing: degree and robustness computation. To com-
pute robustness, we must also compute the local degrees
(along with their relative degree orientations) of the detected
critical points. For simplicity, we refer to the degree of a criti-
cal point p in a tetrahedron t as the degree of t. Suppose there
are only first-order critical points in the vector field. A tetra-
hedron t (with a critical point p in its interior) may be
assigned a degree of only þ1 or �1, whereas regions larger
than a tetrahedronmay have higher degrees.

Suppose the tetrahedron t is formed by four vertices
fa; b; c; dg, with edges denoted by ab, ac, ad, etc. The orienta-
tion of tða; b; c; dÞ is defined as sign ðab 	 ðac
 adÞÞ, which is
the mixed product or determinant of jðabÞðacÞðadÞj and b sees
the triangle acd as counter-clockwise. To compute the degree
orientation of a given tetrahedron t, we examine the orienta-

tion of t in R3 as well as the orientation of fðtÞ. If the orienta-
tion of t and fðtÞ agrees, then the degree of t isþ1; otherwise
it is �1. There are two possible scenarios: (a) if the origin O
(i.e., the image of critical point p in t under f , fðpÞ ¼ O) is
contained in the interior of fðtÞ; and (b) if the originO lies on
(or near) the boundary of fðtÞ or fðtÞ is degenerate.

Scenario (a) is the generic situation. We compute the sign
of the determinants of t and fðtÞ directly. We use regular
tetrahedra t in the domain, which ensures that the sign of its
determinant can be correctly determined. Likewise, since
the origin is in the interior of fðtÞ, the sign of its determinant
can also be correctly determined.

In scenario (b), the above approach does not yield reli-
able results. Thus, we compute the degree orientation of a
larger neighborhood t0 such that it encloses the given tetra-
hedron t. Let t0 be the collection of tetrahedra that are adja-

cent to t, @ðt0Þ be its boundary and fð@ðtÞ0Þ be the image of
the boundary. Suppose t0 contains a single critical point in
its interior, denoted as p, where fðpÞ ¼ O in the image space.
We choose a random vector r and detect the set of triangles

T in fð@ðtÞ0Þ that intersect r. Although the choice of random
vector r is arbitrary in theory, we repeat the procedure with
several random vectors in case of potential degeneracies.

We first determine the relative orientation of each such
triangle. Suppose a triangle in T corresponds to a triangle
abc in t0. We form the first tetrahedron in the domain as
t1ða; b; c; pÞ and the second one in the image space as
t2ðfðaÞ; fðbÞ; fðcÞ; OÞ. We compare the orientation of t1 and
t2. If their signs agree, we say the contribution of the triangle
fðaÞfðbÞfðcÞ is þ1, otherwise it is �1. This process is illus-
trated in Fig. 3(left). To compute the degree, we sum the
contributions of all the triangles in T . Such an idea corre-
sponds to a high-dimensional analogue of computing the
winding number of a closed curve in the plane around a

given point, as illustrated in Fig. 3(right), where the wind-
ing number is computed by counting the number of up-
crossings and down-crossings. The local degree computa-
tion is implemented using the CGAL library [38] with exact
constructions and predicates.

For both techniques, we assume a piecewise linear (PL)
interpolation. The computation of the determinant (sce-
nario (a)) to detect the sign of the relative orientation
requires the convexity of the tetrahedra. The alternate
approach (scenario (b)) similarly requires the convexity of
the boundary triangles. A more general interpolation
scheme would rely on subdividing the triangles and
applying PL interpolation to each piece. In particular, this
scheme would require only the subdivision of triangles
that intersect with a chosen vector r. Note that this subdi-
vision approach can detect higher-order singularities
(e.g., with absolute degrees larger than 1). Furthermore,
although a simple intersection test is sufficient for our
purposes, there is room for improvement. We could use
more advanced tests (e.g., [39]) to robustly detect intersec-
tions between the vector and triangles in image space.

Finally, we compute robustness associated with each crit-
ical point by following the merge tree algorithm described
in Section 3 and detailed in [29]. Robustness computation is
implemented using C++ and is roughly linear in the num-
ber of tetrahedra.

Image space. Given a 3D vector field restricted to a degree-
zero component D � Fr, f : D ! R3, we define the image
space of D, imðDÞ, by mapping each point p 2 D to its vector

coordinates fðpÞ in R3. Intuitively, this mapping is similar to
the concept of a Gauss map except that the vectors are not
normalized. Since D � Fr, it follows that imðDÞ is contained
within a 3-ball of radius r, denoted as S3r , whose boundary

is a 2-sphere, denoted as S2r . Similar to the 2D case [32], we

consider the boundary of imðDÞ uncovered, if imð@DÞ � S2r ;
otherwise, as covered. These concepts naturally extend to the
piece-wise linear setting where we consider a vector field f

restricted to a triangulation K of D, f : K ! R3 where the
support of K equals D. The above construction then maps a
triangulation K of D to vertices, edges, triangles and tetra-
hedra in imðDÞ. An important feature of this approach is
that it does not require the sublevel set component to be
simply connected, that is, @D need not be simply connected
or may even consist of multiple components.

4.2 Algorithm Details

Algorithm overview. Given a zero-degree connected compo-
nent D � Fr, our simplification strategy consists of three
steps.

Fig. 3. Left: mapping between tetrahedra ða; b; c; pÞ and ðfðaÞ; fðbÞ;
fðcÞ; OÞ. Right: computing the winding number of a curve, where
winding# ¼ #up-crossings � #down-crossings ¼ 2� 1 ¼ 1.

1686 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 22, NO. 6, JUNE 2016



(a) We perform Laplacian smoothing on D (i.e., the
Smoothing operation). If the resulting vector field does
not contain critical points, returnD1 ¼ SmoothingðDÞ.

(b) We randomly sample points uniformly in S2r . If among all
the sampled points, there exists a point p such that it

belongs to the uncovered region of S2r , that is p 2 ðS2r �
imð@DÞÞ, then with respect to p, we: (i) deform the vector
field in its image space imðDÞ to remove critical points in
D (i.e., Cut operation); (ii) set D1 ¼ CutðDÞ, and return
D2 ¼ SmoothingðD1Þ.

(c) If no such point p has been found with sufficient
samples, then we assume the boundary of imðDÞ is
covered. In this case, we perform Unwrap. We mod-
ify the vector field in its image space imðDÞ so part
of its boundary becomes uncovered (i.e., Unwrap
operation). We set D1 ¼ UnwrapðDÞ, D2 ¼ CutðD1Þ,
and return D3 ¼ SmoothingðD2Þ.

The final step (d) is the Restore operation where we set
the boundary to its original value. We now describe some
key operations in detail.

Smoothing operation. Given a vector field f and a region D

to be simplified, a modified vector field f inside D can be
found by solving a constrained optimization problem,
referred to as Laplacian smoothing. Specifically, a vector-val-
ued discrete Laplacian equation is solved over D in the
domain (e.g., a triangular mesh) where the vector values at
the boundary vertices of D are fixed. We employ the equa-

tion fðviÞ ¼
P

j vijfðvjÞ; where vi is an interior vertex and vj
are the adjacent vertices that are either in the interior or on
the boundary of D. The weights vij are usually determined
using Floater’s mean-value coordinates [40]. This is a sparse
linear system, which can be solved using a conjugate gradi-
ent method [41]. Although this framework typically per-
forms well in practice, there is no guarantee that a critical
point free field can always be found due to the linear system
solver and the spatial discretization.

Cut operation. Recall that the image space imðDÞ of a com-

ponent D � Fr by construction belongs to a 3-ball S3r . The

center O of S3r (i.e., the origin) is part of imðDÞ if D contains
critical points. The Cut operation then deforms imðDÞ such
that there is a small void surrounding the origin, which
means the resulting vector fields restricted to D do not con-
tain any critical points. The key idea is to perform such a
deformation via a so-called cut point p on the uncovered

part of S2r . Although a deterministic algorithm exists to
locate a valid cut point via stereographic projection, in prac-

tice, uniform random sampling on S2r works well in detect-
ing cut points quickly and accurately as well as being far
simpler to implement. Suppose among all the sampled

points, there exists a point p 2 S2r � imð@DÞ.
As illustrated in Fig. 4, to deform the vector field, we first

define a line segment l that connects the origin O and the
cut point p. We define a 2D plane k that is orthogonal to l
but is " away from O. O projects onto k at a point s 2 k.
Next, we find all tetrahedra in the interior of imðDÞ that
intersect with l and project their boundary points onto k,
whose projections form triangles in k, e.g., in the domain of
the vector field D, vector at x 2 K is deformed from vx to
vx0 , respectively. Third, we locate all tetrahedra that inter-
sect l and contain one or two boundary points in imð@DÞ.
For each such tetrahedron, we move its remaining bound-
ary points to s. Since point p is uncovered, there exists no tri-
angle that intersects l whose boundary points are all on the
boundary of imðDÞ. This operation creates an empty wedge
around O, which ensures that there are no critical points in
D after the modification. By construction, the amount of
perturbation is less than rþ ", which represents the bound
on the amount of perturbation for simplification. Note that
the Smoothing operation may increase the amount of per-
turbation, but it is not strictly required for simplification.

In practice, the effect on image space through the cut
operation can be seen in Figs. 5c, 5d, 5e (please refer to Sec-
tion 5 for details on the datasets). If the boundary is uncov-
ered as in Fig. 5b, the internal tetrahedra may be projected
to uncover the origin and hence remove the critical points.

Unwrap operation for covered image space. The final scenario
is that the degree of D is 0, but imð@DÞ covers S2r . The Cut
cannot be directly applied since its corresponding sampling
procedure relies on imð@DÞ not covering the entire sphere in
the image space. In this case, the boundary must first be
unwrapped to reveal an uncovered region before the cutting
can take place. In 2D, as shown in [29], this case happens
rarely, occurring only in specially generated datasets. Sur-
prisingly, this situation occurs more readily in 3D,

Fig. 4. Cut operation. Left: the projection of tetrahedra that intersect l.

The shaded region represents the uncovered surface of S3r. Right: after
Cut, the shaded region corresponds to the empty wedge (void) contain-
ing the origin. The resulting vector field is critical point free.

Fig. 5. Top: image space for Synthetic#1 before (a) and after (c) simplifi-
cation via the cut operation. (b) shows only the boundary triangles,
where the uncovered origin (red sphere) is visible. Since it is visible, the
origin is uncovered and therefore there are no critical points remaining
after simplification in the sublevel set. Bottom: in practice, the image
space may be highly irregular both before and after simplification via the
cut operation. For example, we show the image space for DeltaWing#1
(d) and #2 (e) after the simplification, where the origins (where critical
points used to map to) are visible (therefore uncovered).
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appearing in generic synthetic datasets as well as real-world
ones. Intuitively, it seems that it would be difficult to cover
the entire sphere with a degree zero map. However, the
increased complexity of the boundary of the component
seems to imply the existence of such instances. In practice,
they have occurred for robust pairs where the correspond-
ing sublevel sets are quite large and complex (see Syn-
thetic#2 in Section 5.4 for an example).

In this scenario, since no potential cut point can been
found, the simplification would fail at the random sampling
stage. While theoretically the procedure for simplification is
dimension-independent, there are significant obstacles for
the unwrapping step in 3D as opposed to 2D. In 2D, the

boundary maps to the circle S1. Since R is the universal cover

of S1, it is possible to unwrap the image of the boundary,
using the parameterization by the angle (see [29] for details).

In 3D, this is not possible, as the universal cover of S2 is

again S2 itself. There exists no mapping into the euclidean

space R2, from which to determine the unwrap point. The
obvious extension of the 2D case, i.e., using two angles for
unwrapping, unfortunately does not work. This describes a

mapping into a torus (i.e., T ¼ S1 
 S1 ) rather than a sphere.
Our approach is an iterative smoothing procedure along

a sphere, peeling back the boundary until a point is uncov-
ered. Then, we proceed with the remaining steps, i.e., cut-
ting, smoothing and restoring the boundary. The intuition
behind this approach is that the Hopf degree theorem [33]
states that any map f : Sn ! Sn is homotopic to a constant
map if and only if it has degree 0. The degree 0 condition
therefore guarantees that we can continuously deform
imð@DÞ to a single point. We do not deform imð@DÞ all the
way to a point, but until we can find an uncovered region
(thereby leading to a cut point).

The iterative procedure consists of two steps and is per-
formedwithin the space imð@DÞ (i.e., the image of the bound-

ary triangles in D). imð@DÞ is supposed to cover S2r , the
2-sphere with radius r (where r is the robustness value, i.e.,
the largest vector magnitude in D). In other words, the

underlying space of imð@DÞ, jimð@DÞj � S2r . The first step is
similar to Laplacian smoothing of imð@DÞ. In each iteration
we set each vertex to the centroid of its neighbors. Since we

take the Euclidean centroid, the vertex values move off S2r
over time. Therefore, after each iteration, we renormalize the

vertex values to project them back onto S2r . To prevent
the vertex values from moving too far off the surface of the
sphere, we add a damping term. In each iteration, for each vi,

1. fðviÞ ¼ ð1� aÞfðviÞ þ a
P

j vijfðvjÞ where 0 < a �
1, vj are neighbors of vi and vij are convex coeffi-
cients as in Laplacian smoothing.

2. fðviÞ ¼ r
jjfðviÞjj fðviÞ.

The above procedure is equivalent to Laplacian smooth-
ing restricted to the sphere S2r . In practice, imð@DÞ does not
lie perfectly on a sphere. In some cases, where the vector
field changes abruptly or if we are near the boundary of
the domain, the magnitudes of the vector field on the
boundary vertices may be quite different (see Fig. 15 left).
Therefore, we initially, and after each iteration, normalize/

project the points on imð@DÞ to the sphere S2r . See Fig. 6 for
an illustration.

In our pipeline, the Unwrap operation is combined
with the detection of the cut point to determine the ter-
mination condition for unwrapping. After every k itera-
tions, we perform a search for a cut point, terminating if
successful. We give an example of such an unwrapping
process in Section 5.4.

The method is also guaranteed to converge. This can be
seen by considering the eigenvalues of the discrete averag-
ing operator. In Euclidean space, it is known that since the
eigenvalues are bounded by 1, repeated iterations converge.
Although in our case we are on a sphere, the argument still
holds. The damped version of the averaging operator still
has its eigenvalues bounded by 1, and by taking a small
enough step size (the parameter a), it can be shown that the
re-normalization step does not affect convergence, as it can
be modeled by a correction term.

Visualization. Our visualization is built using Java and
OpenGL and runs interactively on a variety of desktop and
laptop platforms. The original vector field is first loaded
into the system (including vectors, vertices, and tetrahedra).
Then a stencil is placed on top of only the vectors that are
affected by the cancellation. Critical points are drawn as
outlined spheres. They are colored by their indices, þ1, red
or �1, blue. The streamlines are rendered as outlined col-
ored lines. Streamlines are seeded using the vertices of the
sublevel set as the starting locations. Each streamline is then
traced both forward and backward in time until one of the
following conditions is satisfied: (a) hitting the boundary of
the domain (for the study of global/external flow behavior,
e.g., Fig. 1) or the boundary of the sublevel sets (for the
study of local/interior flow behavior); (b) reaching a critical
point; and (c) reaching the maximum number of integration
steps. The vector magnitude is used to color streamlines by
applying a rainbow color map. In some cases, too many
streamlines are generated for a given sublevel set boundary,
leading to occlusion. In this case, we enable the culling of
the streamlines based upon a density measure that com-
putes the average distance of a streamline to any other
streamlines. The optional streamline tracing spheres (see
supplementary video, available online, for the synthetic
dataset) are outlined spheres that move at a constant speed
in the forward time direction along the streamlines in order
to convey the directions of flow.

5 EXPERIMENTS

We experiment with three datasets: one synthetic dataset
and two simulations from real-world experiments. The first
Synthetic dataset is provided Ye et al. [42]. The second one
that we refer to as the Delta Wing dataset is courtesy of Mar-
kus R€utten, DLR G€ottingen, Germany. It is an unsteady sim-
ulation of a delta wing configuration for the study of vortex
breakdown. In the simulation, a sharp-edged prismatic delta

Fig. 6. The centroid of a set of points on a sphere is not on the sphere
itself. In this case fðviÞ is the centroid of its neighbors fðvjÞ and fðvkÞ.
Therefore, after each iteration we perform normalization of the image
space to project the points back onto the sphere.
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wingmoves at subsonic speedwith the characteristic vortical
systems above the wing, and increasing the angle of attack
eventually leads to vortex breakdown [43]. The final dataset
is the Lifted Flame dataset. It is a sub-volume from a direct
numerical simulation of a turbulent lifted ethylene jet flame
[44], which results in a compressible and highly turbulent
flow. We describe our critical points cancellation with static
images captured via our software. For a dynamic viewing of
the simplification results in 3D, see our supplemental video,
available online.

5.1 Synthetic Dataset

According to [42], this dataset contains two spirals, two sad-
dles, and one source. The given mesh contains 132;651 verti-
ces and 750;000 tetrahedra. Our critical point detection has
resulted in 10 first-order critical points. The discrepancy
may be due to numerical issues. The augmented merge tree
structure (together with robustness values and degree infor-
mation) among these critical points is shown in Fig. 7(left).
We analyze the cancellation of two groups of critical points
here. The first group consists of two critical points requiring
only Cut operation. We refer to it as Synthetic#1, which has
a robustness valued of 13:2. The second group labeled as
Synthetic#2 consists of the remaining eight critical points
with robustness valued at 257:1. They are to be simplified in
a sublevel set that includes all critical points. This is also the
only complex scenario that we encounter that requires
Unwrap operation. We defer its discussion to Section 5.4.

For the pair of critical points in Synthetic#1, Fig. 8 illus-
trates the relative location of its enclosing sublevel set
(highlighted by gray transparent surface) with respect to
the entire domain from three different viewing angles. The
two critical points (indicated by the arrows) have opposite
degrees, i.e., degree þ1 (red ball) and degree �1 (blue ball).
As we increase the threshold of the sublevel set, we see that
the originally separated connected components that contain
the two critical points eventually merge with each other,
forming an arch-like geometry that encloses the pair.

To investigate the local flow behavior of Synthetic#1
before and after simplification, we employ streamline cull-
ing and focus on the sublevel set that encloses the pair from
the second and third viewpoints in Fig. 8. Their correspond-
ing visualizations are provided in Fig. 9, where we highlight
the location of the critical points before simplification (left
images). As illustrated in Fig. 9, Synthetic#1 is a typical 3D
example of source-saddle cancellation, which is achieved by

reversing the flow directions along the connection between
them (similar to its 2D counterpart). After simplification,
the flow near the original critical points has been slightly
altered. This change is more obvious near the original
source (red). Before simplification, the streamlines are all
coming out of the source, while after simplification, the
streamlines traverse through it as illustrated in Fig. 9(right).
This indicates that the source has been removed and the cor-
responding flow region is critical-point-free. In the mean-
time, the flow away from the two canceled critical points
remains mostly intact. This could be explained by the inher-
ent characteristics of robustness-based simplification. The
given critical points have relatively low robustness; there-
fore, the simplification requires only a small amount of per-
turbation (i.e., upper bounded by their robustness value),
and results in a vector field modification that is local to the
sublevel set, which is desirable for a topological simplifica-
tion. The effect on the image space can also be seen in Fig. 5.

5.2 Delta Wing Dataset

The Delta Wing Dataset has been studied in previous work
[43]. The mesh contains 1;889;283 vertices and 3;853;502 tet-
rahedra. We detect eight saddles that form four pairs. The
augmented merge tree structure (together with robustness
values and degree information) among these critical points
is shown in Fig. 7(right). We focus on three pairs of critical
points for an in-depth investigation of the flow behavior
before and after simplification. The cancellation of the last
pair involves a very high robustness value with a sublevel
set covering almost the entire domain, and thus is omitted
here. The three pairs are labeled as DeltaWing#1, #2 and
#3, with robustness values 20:8, 28:9 and 91:2, respectively.

Fig. 10 illustrates the relative locations of their sublevel
sets (highlighted by the gray transparent surfaces) with
respect to the entire domain. The positioning of these sub-
level sets specifically showcases the hierarchical simplifica-
tion conducted at multiple levels of the merge tree. In
particular, the sublevel set of DeltaWing#1 is entirely
enclosed by the sublevel set of DeltaWing#3, forming a
nesting configuration. This is also clear within the merge
tree structure of Fig. 7(right).

The simplification result for DeltaWing#1 is shown in
Fig. 11. Both DeltaWing#1 and #2 (omitted here) involve a
pair of critical points located near a vortex core/spiral
region, as illustrated by the circular patterns of the stream-
lines within the sublevel set. This is similar to the example
in Fig. 1. After simplification, there exists no critical point in
the interior of the spiral region, leading to a potentially con-
tinuous representation of the vortex core (not shown here).
This is desirable for the subsequent identification and visu-
alization of vortices. We notice that the to-be modified

Fig. 7. Augmented merge trees for Synthetic (left) and Delta Wing (right)
datasets.

Fig. 8. Synthetic#1. Highlighted sublevel set from three different viewing
angles. Critical points to be simplified are pointed by arrows.
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sublevel set appears to be long and relatively skinny. This is
a challenging boundary configuration that our simplifica-
tion algorithm can handle.

Fig. 12 demonstrates a case for DeltaWing#3 where more
than two critical points could be canceled in a single simplifi-
cation process. In this example, four critical points are
enclosed within a single component of the sublevel set that
has zero degree. In addition, two of these points form the pre-
vious critical point pair DeltaWing#1. There are two possible
ways to cancel this group of critical points. On the one hand,
we could cancel the pair #1 first before canceling the other
two critical points in a hierarchical fashion. On the other
hand, if we fix a simplification level, then these four critical
points could potentially be canceled together. In either case,
our method can successfully replace the flow within the sub-
level set regionwith a critical point free flow.Wewish to point
out that the latter group cancellation is particularly useful for
the removal of a cluster of critical points with small robust-
ness, which typically appear due to noise in the data or

numerical instabilities. As illustrated in the zoomed views of
Fig. 12, the flowbefore and after simplification has veryminor
changes, as illustrated by the similar patterns of their respec-
tive seeded streamlines. This example demonstrates again
that our robustness-based simplification requires only a mini-
mum amount of perturbation (bounded by the robustness) in
order to remove critical points. It is worthmentioning that the
sublevel set that encloses these four critical points has a non-
trivial topology, that is, it contains a tunnel (see Fig. 13).
The example of Fig. 13 shows that our algorithm could handle
domains with arbitrary boundary configurations, even those
that are not simply connected. The only requirement on
the zero degree domain is that it should be a manifold with
boundary, which can always be achieved in the PL setting by
appropriately thickening the original sublevel set.

5.3 Lifted Flame Dataset

We have extracted a small subvolume of the Lifted Flame
dataset for our experiment. The mesh contains 6;000;000

Fig. 10. Highlighted sublevel sets from three pairs of critical points to be
simplified. From left to right, DeltaWing#1,#2 and#3, respectively.

Fig. 11. DeltaWing#1 before (left) and after (right) simplification. Critical
points to be simplified are indicated by arrows.

Fig. 9. Synthetic#1. Local view before (left) and after (right) simplification from the second (top) and third (bottom) viewing angles in Fig. 8. Critical
points to be simplified are indicated by arrows.
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vertices and 35;403;294 tetrahedra. Since the flow field has a
strong directional drift, we further subtract the mean field
from the data. Such subtraction is essentially related to the
Galilean invariance. See [45] for details. We analyze one pair
of critical points in detail for demonstration purposes, it is

labels as Flame#1, with a robustness value 1:4
 10�4.
Fig. 14 shows the local flow behavior (restricted to the sub-
level set) before and after simplification in the vicinity of the
pair Flame#1. As can be seen, our robustness-based simplifi-
cation successfully removes this pair of critical points with a
minimal amount of perturbation introduced to the vector
field, i.e., the streamlines have similar patterns in general
before and after simplification, except near the critical points.

5.4 Discussion on Unwrap Scenario for Synthetic#2

The group of critical points in Synthetic#2 is the only com-
plex scenario we encounter that requiresUnwrap operation.
As illustrated by the merge tree structure in Fig. 7, the eight
critical points have high robustness values (approximately
four times the robustness value of the Synthetic#1 pair),
and thus the sublevel set that encloses them almost covers
the entire domain. Visualizing streamlines in the domain
when all critical points have been removed does not give
much useful information with respect to the simplification.
Instead, in order to prove that our simplification algorithm
involving the Unwrap operation is indeed correct, we illus-
trate the image spaces of the corresponding sublevel set
before and after Unwrap in Fig. 15. On the left of Fig. 15, we
see that the boundary covers the origin completely and that
the magnitude of the vector field is very different across the
boundary, because such a component contains a large por-
tion of the boundary of the domain. To apply our unwrap-
ping algorithm, we normalize the vector field to the
maximum of the magnitude (i.e., robustness value) to
ensure that no points in the image of the component are out-
side the sphere. The normalized vector field is shown in
Fig. 15(middle). At this stage, if we rotate the (re-normal-
ized) image space, we see that there are no uncovered
points. Furthermore, Fig. 15(middle) shows that the image
space is highly folded over itself with folds and cusps. After
approximately 400 iterations, we obtain Fig. 15(right),
where we see that the unwrapping is successful (that is, a
region on the surface of the sphere is uncovered). This
implies that we could successfully locate a cut point within
this uncovered region, and we proceed with the Cut and
Restore operations.

Fig. 12. DeltaWing#3. Cancellation of four critical points in a single set-
ting, before (top) and after (bottom) simplification. The four critical points
to be simplified are indicated by arrows.

Fig. 13. DeltaWing#3. Sublevel set surrounding the four critical points
(indicated by arrows) has a non-trivial topology, e.g., it contains a tunnel.

Fig. 14. Flame#1. Local flow behavior in the interior of the sublevel set
before (left) and after (right) simplification. Critical points to be simplified
are indicated by arrows.

Fig. 15. The image space for Synthetic#2. On the left, we have the origi-
nal image space, in the middle the normalized image space and on the
right, the unwrapped image space. After Unwrap, we locate an uncov-
ered region within the unwrapped image space on the right, and the
standard Cut operation is then performed followed by restoring the
boundary.
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6 DISCUSSION

Higher-order critical points. Our simplification strategy can
simplify isolated, first-order critical points in 3D vector
fields. If we could detect higher-order critical points in 3D,
e.g., using algorithms developed in [8], [21], in principle,
our robustness-driven simplification strategy could be
directly applied to canceling them, because our algorithm
requires only a zero-degree component in the sublevel sets
and is oblivious to the degrees of individual critical points.

There may arise some situations where we may want to
cancel particular sets of critical points. For example, in the
Synthetic dataset, we have a component of maximum
degree of þ3 at 38:2 < r < 64:0 (Fig. 7 left). At r ¼ 64:0, the
component drops to a degree of 2. We may choose to cancel
the �1 degree critical point with any of the three þ1 degree
critical points. Although there is no canonical choice of
which critical point to cancel with, there certainly exists a
connected component in the domain that contains the �1
degree point and one of the þ1 degree points. Applying the
algorithm on this subset would cancel this pair.

Vortex and vortex core structure. Vortices are important
flow structures that are not part of the vector field topol-
ogy [46], [47], [48], [49]. However, a unified definition of
vortices does not exist. Existing vortex core detection techni-
ques are also sensitive to small perturbations or noise in the
data, leading to many small and disconnected segments as
well as excessively complex vortex core structure, which
prevents the identification of the salient behaviors of these
vortices. Simplifying this vortex core structure by removing
the smaller vortices can help alleviate this issue. However,
little work has been done on the simplification of vortex
core structure. Our robustness-based simplification can
help fill this gap to some extent. In the case of incompress-
ible turbulent flow, we have seen a number of critical points
near vortex cores (Figs. 1 and 11). The existence of these crit-
ical points partially contributes to the early termination of
the tracing of vortex cores. Removing them with small
amount of perturbation locally using our method can
improve the continuity of the detected vortex cores and sim-
plify the corresponding vortex core structure, while pre-
serving the vortex behavior at the same time. Nonetheless,
it will be interesting to extend the presented framework for
the direct simplification of vortex core structure, which we
plan to investigate in our future work.
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