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Abstract—Queueing Theory finds its applications in various
versatile domains in modern world. We investigate yet another
application of Queueing Theory - In modeling of MANET. More
specifically, we study the ‘Queueing Network Mobility Model’of
Mobile Ad-Hoc Networks (MANET), its applications and limita-
tions. Motivated by its simplicity and successful performance, we
use Queueing Network Analyzer (QNA) to re-analyze the model
without the limiting assumptions. The QNA is a powerful tool
to analyze large open networks of GI|G|m nodes with infinite
buffer stations, and FCFS service discipline. We use QNA to
extend the existing ‘Queueing Network Mobility Model’to make
it more generic. We also carry out simulations to compare the
analytical values of the performance measures. In this report,
we present our study of the QNA, and the ‘Queueing Network
Mobility Model’of MANET. Then we present the results derived
in order to remove the limiting assumptions, and modifying the
standard QNA to capture mobility of MANET. Then, we present
the numerical results verified by simulations.

Index Terms—MANET, Queueing Networks, Queuing Network
Analyzer, Switched General Process, Unreliable Servers.

I. INTRODUCTION

Queueing Networks have been widely used as efficient
tools to analyze the ‘performance measures’ in computer
and communication systems. For many classes of queueing
networks, elegant and efficient solution methods exist. Well
known closed product-form solutions are available for simpli-
fied networks under a number of restrictions; most important
of these being (i) packet service times are exponentially
distributed, and (ii) arrival processes are Poisson. These re-
strictions, however, do not always apply in practice.

An approximate approach for the solution of large queue-
ing networks with general inter-arrival and general service
processes was proposed by Kuhn [1] and later extended by
Whitt [2]. This is called the Queueing Network Analyzer
(QNA). In this approach, the arrival and service processes
are formulated as renewal processes, represented by first two
moments. Thus the individual nodes are analyzed as GI|G|m
nodes. An important advantage of the QNA approach is its
limited computational complexity.

Ad-hoc networks are one of the most research oriented
areas of modern times. Various modeling techniques have
been employed to develop mathematical models for randomly
moving nodes in a MANET. The most important of these
are Random walk mobility model, Random direction mobility
model and Random waypoint mobility model. One such at-
tempt, making use of Queueing Theory is ‘Queueing Network

Mobility Model’of MANET [3].
We present our study on the ‘Queueing Network Mobility

Model’to understand its limitations, and the standard QNA.
Then, we explain how the standard QNA can be tweaked
to capture the mobility of MANET, thus overcoming the
limitations of the existing model.

II. THE ‘QUEUEING NETWORK MOBILITY MODEL’OF
MANET

A. Static Model
A Jackson Network is an intuitive model for a static

network of nodes, where each node of the network can be
analyzed separately. The Jackson Network is a network of m
interconnected nodes, where communication among the nodes
is defined by the matrix of transition probabilities Q = (qij)
where qij is the probability of transitions from node i to
node j. The arrival and the service processes are assumed to
be Poisson in nature, which makes the nodes to be defined
as M |M |1 nodes, where first M denotes memoryless arrival,
second M denotes memoryless service, and 1 denotes number
of servers. A stochastic process is said to be Poisson in nature
if the inter-event time interval is distributed exponentially. The
network is defined by the following parameters:

qij is the probability of a customer leaving node i going
to node j.

Hence, the customer leaving the node j leaves the

network with probability 1−
m∑

k=0

qjk.

λ0j is the external arrival rate to node j.
λj is the total arrival rate to node j.
µj is the service rate at node j.
ρj = λj/µj is the utilization of node j.

For the jth M/M/1 node, if we make the ‘busy server
assumption’ i.e. ρj ≈ 1, [4] says that the departure process is
also Poisson with the rate λj (same as the arrival process).
This is a very important result, and makes the solution
of a Jackson Network easy. Using [4], we know that the
departure processes are also Poisson. Since the sum of
Poisson processes is again a Poisson process, the total arrival
rate at any arbitrary node is the sum of the rates of flow of
customers from all the other nodes, and the external arrival
rate.

λj = λ0j +
m∑

i=0

λiqij (1)
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B. Mobility Modeling

Mobility has to be introduced in such a static model to
make it close to real-world applications. Mobility has been
introduced in the ‘Queueing Network Mobility Model’for
MANET in two ways:

• Case 1 - Gated Nodes
To model this case, an input link is introduced at the
entry of each node. The input link goes ON and OFF
exponentially. The link is said to be up when the link is
ON, and down otherwise.
λON and λOFF are the rates of the input links going ON
and OFF respectively. If the link is closed, the incoming
Poisson stream of packets is dropped. If λ′

j denote the
effective arrival rate at node j, then

λ′
j =

λOFF

λON + λOFF
· λj (2)

This splitting of the incoming Poisson stream is also
known as Interrupted Poisson Process (IPP), and gives
a new probability distribution of the arrival rates, which
is hyperexponential [5]. Thus, the nodes of such a model
become H2|M |1 nodes. The performance measures can
be calculated as

Ws =
1

µ(1− σ)
(3)

Ls =
λ′

µ(1− σ)
(4)

where, σ is effective server utilization (σ ≤ ρ). Note that
in this case ‘busy server assumption ’is σ ≈ 1.

Fig. 1. ‘Queueing Network Mobility Model’of a 3 node MANET. (Case 1)

• Case 2 - Server Vacations
In case 1, packets are lost if the incoming link is down.
Instead, if these packets are to be queued, the mobility
is transferred from the link to the server. The server
goes on vacation for exponential time and on duty for
exponential amount of time. If the server is on a vacation,
the incoming packets are queued. Thus, the effective

service rate of the server is reduced, and the end-to-
end delay is increased but packets are saved. µON and
µOFF are the rates of the server on duty and on vacation
respectively. If µ′

j denotes the effective service rate at
node j, then

µ′
j =

µOFF

µON + µOFF
· µj (5)

The performance measures can be calculated as

Ws =
1

µ′(1− ρ)
(6)

Ls =
λ

µ′(1− ρ)
(7)

Note that in this case ‘busy server assumption’ is ρ ≈ 1.

Fig. 2. ‘Queueing Network Mobility Model’of a 3 node MANET. (Case 2)

C. Limitations

In the modeling and analysis of MANET using Queueing
Networks, a strong implicit assumption is made that the server
utilization is high i.e. ρj = 1. Without this assumption, the
arrival processes to individual nodes are not Poisson and the
analysis is not possible using this model.

In real world applications, the server utilization is rarely this
high, and the arrival processes are rarely Poisson. The nodes in
such a network are mostly GI|G|1 nodes, where GI denotes
general independent arrival process, and G denotes general
service process. As the name suggests, general processes do
not follow any known probability distribution, but are general
in nature.

These assumptions and constraints make the application of
this model limited. The model, although a powerful one, can
not serve general purpose applications.
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III. PROBLEM DEFINITION

To overcome the limitations of the existing mobility model,
a new model has to be developed and analyzed without using
the ‘busy server assumption’, and ‘Poisson arrival assump-
tion’. Without these assumptions, the individual nodes become
GI|G|1 nodes.

Formally, the problem can be defined as analyzing an open
network of GI|G|1 nodes, with input links or server going ON
and OFF exponentially.

IV. THE QUEUEING NETWORK ANALYZER

The Queueing Network Analyzer (QNA), is an approxi-
mation technique and a software package developed at Bell
Laboratories to calculate approximate congestion measures of
a network of queues. The QNA is a powerful tool to analyze
general queueing networks. The most important feature of the
QNA is that the external arrival processes need not be Poisson,
and the service-time distributions need not be exponential.
The QNA can provide a fast approximate solution for large
networks.

The current version of QNA uses two parameter approach.
Both the arrival and service processes are formulated as
renewal processes defined by the first two moments with
independent and identically distributed renewal times, one to
describe the rate, and other the variability of the renewal
process. The entire network is broken into individual nodes,
and these nodes are analyzed as standard GI|G|m nodes.
Congestion measures for the network as a whole are obtained
by assuming that the nodes are stochastically independent.

The general approach in QNA is as follows:
• Find the parameters characterizing the flow.
• Make approximations based on the partial information

provided by the parameters.
• Apply the calculus for transforming the parameters to

perform operations.
• Devise a synthesis algorithm to solve the system of

equations resulting from the basic calculus.

A. Applications of QNA

The QNA has been used extensively in many theoretical
and practical applications and the results have been compared
with simulation results and/or the results of other techniques.
The low relative error percentage makes QNA one of the most
important tools in analyzing the general networks.

Results for complex network like a queue with a su-
perposition arrival process, eight queues in series, a tightly
coupled network of two nodes, Kuehn’s nine node network,
a computer system model etc are studied by Whitt in [6].
Other important applications include analysis of PH|PH|1|K
queues by Haverkort [7], Virtual Circuit Connection in a high
speed ATM WAN [8], and communication networks with
multicast data streams [9].

B. Input to Standard QNA

The input to QNA comprises of:
Number of nodes: m

Rate and SCV for external arrival: λ0i, c
2
ai

, i = 1, 2...m
Mean and SCV for service time: τi, c

2
si

, i = 1, 2...m
The Routing Matrix: Q = (qij), i = 1, 2...m, j = 1, 2...m

C. Traffic rate equations in Standard QNA

If λ0j is the external arrival rate to node j, qij is the
probability that a customer leaving node i goes to node j, then
the internal rates flowing to various nodes in the network can
be calculated using the following equation:

λj = λ0j +
m∑

i=1

λiqij (8)

Traffic intensities or utilizations at each node are given by
ρi = λiτi. Arrival rate from node i to node j is given by
λij = λiqij . The proportion of arrivals to j that came from i,
i ≥ 0 is defined as pij = λij/λj .

D. Traffic variability equations in Standard QNA

The variabilities of internal traffic flows are calculated using
the following linear equations:

c2
aj

= aj +
m∑

i=1

c2
ai

bij (9)

where expressions for aj and bij are derived after considering
merging and spilitting of traffic streams as:

aj = 1+wj

{
(p0jc

2
0j − 1) +

m∑
i=1

pij

[
(1− qij) + (qijρ

2
i xi)

]}
(10)

and
bij = wjpijqij(1− ρ2

i ) (11)

where, xi and wj are constants depending upon the input data,
and the data determined previously.

E. Performance Measures of GI|G|1 queue in Standard QNA

The approximation formula for the mean waiting time of a
customer in queue is given by:

Wq =
τρ(c2

a + c2
s)g

2(1− ρ)
(12)

where g ≡ g(ρ, c2
a, c2

s), such that g = 1, for c2
a ≥ 1

Other performance measures like mean waiting time in
system, mean number of customers in the system, mean delay
etc can also be calculated easily.

V. QNA WITH MOBILITY - GATED NODES

While analyzing the ‘gated nodes’model, we model the
arrival and service processes as general renewal processes with
parameters λi, c2

ai
, τi, c2

si
. There are no existing techniques

to model the splitting of a general arrival process. Hence, the
PDF of the effective arrival process can not be found. But,
the power of QNA makes it possible to analyze the model
without actually finding out the PDF of the effective arrival.
We need the parameters for effective arrival as functions of
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the parameters of the actual arrival. i.e λ′
i as a function of λi,

and c′2aj
as a function of c2

aj
.

We consider a Switched General Process (SGP) as proposed
in [10]. In a SGP, the switching between two general renewal
processes with rates λ1 and λ2 is governed by general renewal
switching periods. For our case, since the packets are dropped
when the link is down, λ2 = 0. The effective arrival rate, and
the squared coefficient of variation are given by

λ′
j = pON · λj (13)

and
c′2aj

= c2
aj

+ k · λj (14)

Here, probability that an incoming packet will find the link
ON is given by

pON =
λOFF

λON + λOFF
(15)

and constant k defines the proportional change in the c2
aj

due
to the intermittent link.

k =
λON ·

[
VONλ2

ON + VOFF λ2
OFF

]
(λON + λOFF )2

(16)

where, VON and VOFF are variance of ON and OFF periods
respectively. Now, we are able to modify the equations of
standard QNA.

The traffic rate equation ?? becomes

λj = λ0j +
m∑

i=1

λ′
iqij (17)

Traffic intensities or utilizations at each node are given by
ρi = λ′

iτi. Arrival rate from node i to node j is given by
λ′

ij = λ′
iqij . The proportion of arrivals to j that came from i,

i ≥ 0 is defined as pij = λ′
ij/λj .

The variabilities of internal traffic flows are calculated using
the following linear equations:

c2
aj

= aj +
m∑

i=1

c′2ai
bij (18)

c2
aj

=

(
aj +

m∑
i=1

c2
ai

bij

)
+ kj

m∑
i=1

λibij (19)

where expressions for aj and bij have their usual forms, and
kj = k for jth node).

After calculating the moments of effective arrival, we can
use the standard QNA equations to find the perofmance
measures.

VI. QNA WITH MOBILITY - SERVER VACATIONS

Again, we model the arrival and service processes as general
renewal processes with parameters λi, c2

ai
, τi, c2

si
. We need the

parameters for effective service as functions of the parameters
of the actual service. i.e µ′

i as a function of µi, and c′2sj
as

a function of c2
si

. This model falls under the category of
the unreliable server models, as explained in [11]. For an
unreliable server with general service and general up and down

times, the first two moments can be found easily. Using the
first two moments, we get

µ′
j = pON · µj (20)

and

c′2sj
= (c2

sj
+ 1)

1
pON

+ l (21)

where,

pON =
µOFF

µON + µOFF
(22)

and constant l defines the proportional change in the c2
sj

due
to the server vacations.

l = µON · pON
(1 + c2

OFF )
µ2

OFF

− 1 (23)

Since there are no changes in the arrival process, and its
moments, we can get the various performance measures by
simply replacing µ by µ′, and c2

sj
by c′2sj

in the standard QNA.

VII. QNA WITH MOBILITY - INTERMITTENT LINKS

The ‘gated nodes’model gives mobility to nodes by consid-
ering a link per node, which implies that if the link is ON, the
node is connected to the network, but if it is OFF, the node is
completely isolated, since no other node can send packets to
this node. This is, however, an unrealistic assumption to make.
Most of the times in real-world networks, a link between two
nodes may be down, but they may still be connected via a
third node. Since using QNA, we do not need to find the PDF
of the various traffic flows, it becomes possible to analyze this
more realistic scenario.

According to standard QNA, the squared coefficient of
variation of the traffic flow from node i to node j is given
by

c2
ij = qij [1 + (1− ρ2

i )(c
2
ai
− 1)

+ρ2
i [max(c2

si
, 0.2)− 1)] + 1− qij (24)

If mobility is considered in the individual links, then

λ′
ij = pON · λij (25)

and

c′2ij = c2
ij + k · λij (26)

The above subsititution is reflected in the standard QNA
variability equation as

c2
aj

=

(
aj +

m∑
i=1

c2
ai

bij

)
+ wj

m∑
i=1

pijkijλij (27)

However, the rate equation remains the same.
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A. Comparison

A direct comparison between (19), and (27) shows the
difference in the two models. Using (11), (19) can be rewritten
as

c2
aj

=

(
aj +

m∑
i=1

c2
ai

bij

)
+

m∑
i=1

wjpijqijkjλi(1− ρ2
i ) (28)

If kij = kj i.e. the rates of links going ON and OFF are
same, then using λij = λiqij (27) reduces to

c2
aj

=

(
aj +

m∑
i=1

c2
ai

bij

)
+

m∑
i=1

wjpijqijkjλi (29)

For (1 − ρ2
i ) ≈ 1, (28) and (29) are equal. Thus, if the

servers are kept idle, the two models yield same performance
measures.

VIII. SIMULATION MODEL

To verify the analytical results, simulation model was set up.
We used OMNeT++ (a discrete-event simulator) to perform
all the simulations. The main idea behind the simulation is to
avoid any of the theoretical assumptions that we might have
made in analysis, because it is these assumptions that we want
to verify.

In the simulation, the network is defined as a group of nodes
linked in a prescribed manner. The simulation simply proceeds
event-wise for each module (or node), and is not bothered
with the rest of the network. Hence, we get the performance
measures for individual nodes.

IX. NUMERICAL RESULTS

All the derived results have been verified with simulation.
We have used the arrival process as a Poisson process, service
as exponentially distributed, and UP and DOWN periods also
exponentially distributed.

In analysis, effective arrival, and effective service has been
used to calculate the effective waiting time in the system. Since
we aimed to remove the ’busy server’assumption, the input
values have been chosen so as to keep the servers not-busy.

The relatice error in the analytical values given by QNA
and simulation values is expressed as percentage of analytical
value, and is given by

Error% = 100 · QNA V alue− Simulation V alue

QNA V alue

A. QNA with MOBILITY - Gated Nodes

Tables I and II give results for a 10 nodes network in
tandem, and scattered respectively.

Node τ λ0 Ws - QNA Ws - Sim Error %
1 0.0500 2.0 0.1077 0.1086 0.8635
2 0.0500 2.0 0.1864 0.1887 1.2473
3 0.0500 2.0 0.1664 0.1693 1.7338
4 0.0500 2.0 0.2567 0.2621 2.1161
5 0.0500 2.0 0.1497 0.1498 0.0969
6 0.0500 2.0 0.2368 0.2407 1.6364
7 0.0500 2.0 0.1133 0.1150 1.5260
8 0.0500 2.0 0.1480 0.1506 1.7193
9 0.0500 2.0 0.1201 0.1196 0.4030

10 0.0500 2.0 0.0985 0.0992 0.7086

Average Error % = 1.2081

TABLE II
QNA WITH MOBILITY - GATED NODES: 10 SCATTERED NODES

λON = 10/9, λOFF = 25

Node τ Ws - QNA Ws - Sim Error %
1 0.1000 0.2350 0.2373 0.9655
2 0.1010 0.2281 0.2295 0.6195
3 0.1100 0.2631 0.2647 0.5952
4 0.1200 0.3063 0.3090 0.8975
5 0.1189 0.2813 0.2842 1.0331
6 0.1090 0.2213 0.2231 0.7958
7 0.1321 0.3211 0.3234 0.7175
8 0.1200 0.2461 0.2490 1.1682
9 0.1140 0.2138 0.2152 0.6773

10 0.1000 0.1647 0.1658 0.6515

Average Error % = 0.8121

TABLE I
QNA WITH MOBILITY - GATED NODES: 10 NODES IN

TANDEMλ = 6, λON = 10/9, λOFF = 25

B. QNA with MOBILITY - Server Vacations

Tables III and IV give results for a 10 nodes network in
tandem, and scattered respectively.

Node τ Ws - QNA Ws - Sim Error %
1 0.1000 0.2879 0.2800 2.7123
2 0.0110 0.0124 0.0137 10.1403
3 0.0200 0.0241 0.0251 4.2349
4 0.0200 0.0241 0.0251 4.2046
5 0.0289 0.0373 0.0381 2.1536
6 0.0090 0.0100 0.0114 14.2940
7 0.0121 0.0137 0.0152 10.5993
8 0.0100 0.0112 0.0126 12.9259
9 0.0140 0.0161 0.0176 9.0658

10 0.0100 0.0112 0.0127 13.2804

Average Error % = 8.3641

TABLE III
QNA WITH MOBILITY - SERVER VACATIONS: 10 NODES IN TANDEM

λ = 6, λON = 10/9, λOFF = 25



6

Node τ λ0 Ws - QNA Ws - Sim Error %
1 0.0250 2.0 0.0733 0.0746 1.8102
2 0.0250 2.0 0.2647 0.2729 3.0914
3 0.0250 2.0 0.1817 0.1805 0.6604
4 0.0250 2.0 0.9924 1.0010 0.8666
5 0.0250 2.0 0.1391 0.1388 0.1934
6 0.0250 2.0 0.8976 0.8862 1.2734
7 0.0250 2.0 0.0812 0.8862 1.5899
8 0.0250 2.0 0.1372 0.0825 0.2471
9 0.0250 2.0 0.0753 0.1369 1.5341

10 0.0250 2.0 0.0624 0.0635 1.7897

Average Error % = 1.3056

TABLE IV
QNA WITH MOBILITY - SERVER VACATIONS: 10 SCATTERED NODES

λON = 10/9, λOFF = 25

C. QNA with MOBILITY - Intermittent Links

Tables V gives results for a 10 nodes scattered network.

Node τ λ0 Ws - QNA Ws - Sim Error %
1 0.0400 2.0 0.0724 0.0719 0.7026
2 0.0400 2.0 0.1029 0.1026 0.3236
3 0.0400 2.0 0.0962 0.0950 1.2475
4 0.0400 2.0 0.1222 1.1207 1.2520
5 0.0400 2.0 0.0902 0.0885 1.8765
6 0.0400 2.0 0.1173 0.1159 1.2080
7 0.0400 2.0 0.0750 0.0746 0.4724
8 0.0400 2.0 0.0896 0.0881 1.6272
9 0.0400 2.0 0.0781 0.0762 2.3851

10 0.0400 2.0 0.0679 0.0675 0.5775

Average Error % = 1.1673

TABLE V
QNA WITH MOBILITY - INTERMITTENT LINKS: 10 SCATTERED NODES

λON = 10/9, λOFF = 25

The simulation values match with the analytical values given
by QNA with very less error. In most of the cases, the relative
error is approx 1 %. However, in one of the case, due to
randomness of the system, the error goes upto 8 %. But, in
general the error is very reasonable.

However, the numerical results show that the QNA is a
very powerful tool to analyze general networks, and verify
our derived equations.

X. CONCLUSION

This work gives an insight to the power of the Queueing
Network Analyzer, which, although an approximation tech-
nique, gives results with very less error. The ease with which
QNA can be applied to any real-world network is apprehended.
The ‘Queueing Network Mobility Model’of MANET is also
a very effective application of Queueing Theory in real-world
scenario. It is very promising, but being a novel model, it
makes many limiting assumptions.

This study was intended to overcome the limiting assump-
tions of this model. We started with aiming to remove the
‘Poisson Arrival’, ‘exponential service’, and ‘busy server’
assumptions. But as we started analyzing the model using
QNA, we found that we could as well remove the ‘exponential
UP time’, and ‘exponential DOWN time’ assumptions very
easily.

The ‘Queueing Network Mobility Model’of MANET also
assumes that either a node is in the network, or it is completely
isolated. In other words, the mobility is in node. QNA makes
it very easy to re-analyze the network by giving mobility to
each link, and thus making the analysis more close to the real-
world scenario.

As future work to this study, it is important to find the
various paramaters that may cause the links (and/or server) go
up and down. So far, we have incorporated all such possible
parameters into one ‘down period’. However, the different
parameters contribute to the links (and/or server) in different
manners. Modeling of the individual parameters’ behaviours
can be an immediate next step from here.
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