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ABSTRACT 

 
Microfluidics is a rapidly emerging field with numerous applications. However, 

microscale flow and heat transfer characteristics are often not well understood, reliable 

microfluidic design data are limited, and the parameters and computational methods used 

to model microsystems are not well established. Utilizing MPM-ICE, an existing, 

continuum based, fluid-structure-interaction (FSI) algorithm, several studies are 

conducted to address some of these issues.  

MPM-ICE is modified to include a number of common microfluidic effects, namely, 

first- and second-order accurate slip velocity, temperature jump, and creep flow boundary 

conditions, and viscous dissipation terms. For single fluid internal flow problems, slip 

velocity and temperature jump boundary conditions are applied at the computational 

boundaries of ICE. With this approach, rectangular microchannel Poiseuille and Nusselt 

numbers, with either isoflux or isothermal boundary conditions, are evaluated subject to 

the effects of channel aspect ratio, various slip boundary condition models, creep flow, 

viscous dissipation, pressure and shear work, axial conduction, and thermally/ 

hydrodynamically developing flow. The numerical modifications for internal flow are 

verified with comparisons to original analytic solutions for the Poiseuille and Nusselt 

numbers. For FSI problems, the momentum and thermal energy exchange models utilized 

by MPM-ICE are modified, such that slip velocity and temperature jump are achieved at 



deformable fluid-solid surfaces. The modified FSI models are verified with comparisons 

to original analytic solutions for the material displacements and temperature distributions. 

The rectangular microchannel Poiseuille and Nusselt numbers are found to be 

significantly affected (up to an order of magnitude) by channel aspect ratio, rarefaction, 

slip model parameters, creep flow, viscous dissipation, pressure and shear work, axial 

conduction, and thermally/hydrodynamically developing flow. The single fluid internal 

flow evaluations indicate that ICE, run implicitly, with slip boundary conditions, is 

capable of accurately and efficiently assessing microscale effects, but for limited 

geometries. Slip flow FSI verifications indicate that MPM-ICE, with the modified 

momentum and energy exchange models, is the first FSI algorithm capable of modeling 

steady and unsteady FSI within the slip flow regime with accuracy approximately 

equivalent to the first-order slip velocity and temperature jump boundary conditions. 

MPM-ICE is, however, explicit with time and consequently requires significant 

computational resources.  

 v
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CHAPTER 1 

 
INTRODUCTION 

 
Advances in microfabrication techniques have made micro-electro-mechanical 

systems (MEMS) a reality [1-4]. However, before the full potential of these systems may 

be realized for applications in electronics, instrumentation, bioengineering, and advance 

energy systems, their behaviors must be completely understood, and the ability to reliably 

model them must exist. Currently, the ability to accurately and reliably predict the flow 

and heat transfer characteristics of microfluidic systems is a great challenge. 

Experimentally, microfluidic systems are difficult to study due to measurement and 

accuracy limitations. Analytical studies are limited to very simple configurations and 

necessitate many simplifying assumptions. For these reasons, accurate numerical 

solutions and methods are particularly important in the process of understanding and 

designing microfluidic systems. This research is intended to numerically substantiate and 

add to previous analytical, experimental, and numerical results and methods for 

predicting the flow and heat transfer characteristics of a few common microfluidic 

configurations.  

 
1.1. Rarefaction effects 

Several factors cause microscale fluid systems to behave differently than standard 

macroscale fluid systems. For microsystems with gaseous flows, rarefaction effects may 
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be considerable. Rarefaction takes place as either the size or pressure of a fluid system 

decreases, resulting in a mean free path of the fluid molecules that is comparable to the 

characteristic length of the system itself. When this occurs, discontinuities between the 

fluid and the solid surface, as well as other noncontinuum behaviors begin to develop. 

Typically, the Knudsen number, Kn, is used to represent the degree of rarefaction, or 

noncontinuum effects present. The Knudsen number is defined as the ratio of the fluid’s 

molecular mean free path to the characteristic length of the flow. Empirically, the 

Knudsen number has been used to classify flows into four different regimes [1]. While in 

the continuum flow regime (Kn ≤ 0.01), conventional continuum conservation of 

momentum and energy methods, such as the Navier-Stokes equations, may be used. For 

the free molecular flow regime (Kn ≥ 10), free molecular models such as the Boltzmann 

equation must be solved. In the transition flow regime (0.1 ≤ Kn ≤ 10), either numerical 

solutions of the Boltzmann equation or direct-simulation-Monte-Carlo (DSMC) methods 

are commonly used. For the slip flow regime (0.01 ≤ Kn ≤ 0.1), it has been determined 

experimentally [5-16] that the deviation of molecular motion from the continuum 

distribution is small enough that models based on the continuum equations may be used, 

but with ‘slip velocity’ and ‘temperature jump’ boundary conditions that take into 

account the incomplete momentum and energy exchange between the fluid molecules and 

the solid surface. 

The original slip velocity boundary condition, given in Eq. (1.1), and temperature 

jump boundary condition, given in Eq. (1.2), were derived by Maxwell [16] and 

Smoluchowski [17], respectively. 
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Equations (1.1) and (1.2), as well as subsequent equations, are presented in a format 

assuming a Cartesian coordinate system, a wall normal direction (y), and a streamwise 

direction (x). The first term in Eq. (1.1) is the slip velocity due to the shear stress at the 

wall, and the second term is the thermal creep velocity, uc, due to a temperature gradient 

tangential to the wall. Values for the momentum accommodation coefficient, σν, and the 

thermal accommodation coefficient, σt, range from zero to one, where σν = 0 represents 

completely specular reflection, σν = 1 represents completely diffuse reflection, and σt = 1 

corresponds to a perfect energy exchange.  

Equations (1.1) and (1.2) are a result of a first-order expansion, in Kn, of the 

Boltzmann equation, and understood to be applicable only in the slip flow regime [18]. 

However, in an effort to extend the range of applicability of the slip flow boundary 

conditions to higher Knudsen number flows, specifically the transition regime, many 

‘second-order’ modifications and methods have been proposed [1, 19-34]. The boundary 

conditions derived by Deissler [20], given in Eqs. (1.3) and (1.4), and the boundary 

conditions suggested by Karniadakis and Beskok [1], given in Eqs. (1.5) and (1.6), are 

two of the more commonly applied second-order slip boundary condition models. Often, 

second-order boundary conditions models are compared for two-dimensional, planar, 

constant property flow. For this configuration, each of the slip boundary condition 

models presented in Eqs. (1.1) - (1.6) may be written in the format shown in Eqs. (1.7) 
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and (1.8), where βν1 and βt1, as defined in the Nomenclature, are the same for each model, 

and βν2 and βt2, as given in Table 1.1, differ depending on the model. 
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Although previous studies have demonstrated the usefulness of second-order slip 

velocity boundary conditions with respect to evaluating experimentally determined mass 

flow rates and/or pressure distributions [28, 30] and numerically determined DSMC or 

Boltzmann equation velocity profiles and/or mass flow rates [1, 22-24, 29, 32-34], there 

is currently no consensus on which velocity slip/temperature jump boundary condition 

model is most accurate and widely applicable.  
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Table 1.1. Second-order boundary condition coefficients 

 Maxwell-Smoluchowski [16, 17],
Eqs. (1.1) and (1.2) 

Deissler [20], 
Eqs. (1.3) and (1.4)

Karniadakis and Beskok [1],
Eqs. (1.5) and (1.6) 

βν2 0  
8
9  
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1νβ−  
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γ
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2
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A conclusion regarding the usefulness of any particular second-order boundary condition 

model with respect to evaluating convective heat transfer rates within the slip flow and 

transition flow regimes requires comparison of analytical and numerical data produced 

using these models to experimental data. Currently, however, experimental measurements 

of local convective heat transfer rates within the slip flow regime do not exist, and 

analytical and numerical convective heat transfer solutions based on second-order slip 

boundary conditions models are limited [1, 20, 35-39]. 

 
1.2. Scaling and fabrication effects 

In addition to rarefaction effects, which are generally only significant for gaseous 

microflows, there are other effects that are a result of scaling and microfabrication 

techniques [2]. Scaling effects are not unique to microflows, but whereas in a 

macrosystem they are typically negligible, in a microsystem they become more 

prominent and may even dominate the flow characteristics. Many of the scaling effects in 

microfluidic systems are a consequence of the increased surface area to volume ratio. 

This results in increased surface forces, which may produce large pressure drops, 

compressibility effects, and viscous dissipation; decreased inertial forces, which allows 

diffusion and conduction processes to become relatively more significant; and increased 
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heat transfer, which may lead to variable fluid properties and creep flow. Furthermore, 

microfluidic systems are often manufactured by conventional microfabrication methods, 

i.e., lithography, bulk micromachining, surface micromachining, etc. These methods 

produce structures made of materials such as Si, SiO2, Si3N4, Pyrex glass, etc., which 

have properties, surface characteristics, and fluid-surface interactions that are not 

common in macroscale systems, and consequently are not accounted for in conventional 

correlations. Many microfabrication methods also produce large aspect ratio, planar, 

rectangular, and trapezoidal geometries that are not common in conventional systems. 

These geometries alter the typical flow characteristics, and may also intentionally or 

unintentionally result in components that deflect with the pressure of the fluid, thereby 

producing fluid-structure-interaction (FSI) effects. Any of these scaling or manufacturing 

effects could be either beneficial or detrimental to a microfluidic system, depending on its 

function, but in either case must be accounted for to accurately model the system. 

 
1.3. Research objectives  

Although there are many potential applications for microfluidic systems, and it is 

known that microflows are subject to rarefaction, scaling, and manufacturing effects, the 

significance of these effects on the system function is often unknown, and design data for 

microfluidic systems which include these effects are limited or nonexistent. Because 

microfluidic effects have proven difficult to isolate and study experimentally, and are 

often too complex to study analytically, the objective of this research is to contribute to 

the advancement of numerical modeling capabilities and methodologies for microfluidic 

systems, and numerically obtain design data for several common microsystem 

configurations and effects. The following studies have been selected based on the unique 
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numerical capabilities available, as well as the expected contribution to the advancement 

of these capabilities; the fundamental nature and general applicability of the results to be 

obtained; and the absence of these data in previous studies. 

1. The convective heat transfer rates and frictional losses of rarified, steady state, 

laminar, constant wall temperature and constant wall heat flux internal rectangular 

microchannel flows are investigated. Effects of aspect ratio, rarefaction, creep flow, 

viscous dissipation, axial conduction, and thermally/hydrodynamically developing 

flow are considered. These effects on frictional losses and convective heat transfer 

rates are given through the Poiseuille number, Po, and Nusselt number, Nu, 

respectively. 

2. The momentum and thermal energy exchange models of the fluid-structure-

interaction algorithm utilized for these studies are modified, such that the equivalent 

of first-order slip velocity and temperature jump boundary conditions are achieved at 

fluid-solid surfaces which may move and deform with time. The resulting modified 

algorithm is then verified for 1) velocity profiles of a rarified gas between parallel 

plates; 2) temperature profiles of a rarified gas between parallel plates; 3) drag 

coefficients, CD, and Nusselt numbers, Nu, for low Reynolds number rarified flow 

around a two-dimensional cylinder; and, 4) the transient, thermal and structural 

response of a damped-oscillatory three-dimensional finite cylinder subject to an 

impulsively started uniform rarified flow. 
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1.4. Chapter arrangement  

• Chapter 2 briefly describes the numerical algorithm, discusses the modifications 

required to accurately describe microfluidic systems, and presents results for several 

simple cases to support the algorithm’s use in the subsequent microscale studies. 

• Chapter 3 presents results and discussion for two-dimensional Po, and constant wall 

heat flux Nu, as functions of second-order slip boundary conditions, creep flow, 

viscous dissipation, and thermally/ hydrodynamically developing flow. These results 

have also been published in [40] and [41]. 

• Chapter 4 contains results and discussion for rectangular channel, constant wall heat 

flux and constant wall temperature Nu, as a function of second-order slip boundary 

conditions, viscous dissipation, and thermally/hydrodynamically developing flow. 

These results have also been published in [42], and in part in [43-45].  

• Chapter 5 gives results and discussion for rectangular channel, constant wall heat 

flux and constant wall temperature Po and Nu, as functions of second-order slip 

boundary conditions, creep flow, viscous dissipation, and axial conduction, for 

thermally/hydrodynamically fully developed flow. These results have also been 

published in [46], and in part in [44, 45]. 

• Chapter 6 presents the development, implementation, and verification of slip flow 

momentum and energy exchange models, such that the equivalent of first-order slip 

velocity and temperature jump boundary conditions are achieved at the fluid-solid 

surface of fluid-structure-interaction problems. 

• Chapter 7 is a summary and discussion of conclusions and recommendations for the 

results presented in Chapters 1-6. 
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1.5. Nomenclature 

CD drag coefficient 

cp specific heat at constant pressure 

cv specific heat at constant volume 

Dh hydraulic diameter 

f friction factor, 28 mm,w uρτ  

k thermal conductivity 

Kn Knudsen number, hDλ  

Nu Nusselt number, ( )( )mwh
"

m,w TTkDq −  

P pressure 

Po Poiseuille number,  Ref

Pr Prandtl number, kc pµ  

q” heat flux 

R gas constant 

Re Reynolds number, µρ hm Du  

T temperature 

u streamwise velocity 

uc creep velocity, ( )( )
0

43
=

∂∂
y

xTPRµ  

x,y, z Cartesian coordinates 

 
1.5.1. Greek symbols 

βt1 first-order temperature jump coefficient, ( )( ) ( )( )( )Prtt 1122 γγσσ +−  

βt2 second-order temperature jump coefficient 
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βν1 first-order velocity slip coefficient, ( ) vv σσ−2  

βν2 second-order velocity slip coefficient 

γ ratio of specific heats, vp cc  

λ molecular mean free path, πρµ wRT2  

µ dynamic viscosity 

ρ density 

σt thermal accommodation coefficient 

σv momentum accommodation coefficient 

τ shear stress 

 
1.5.2. Subscripts 

m mean value 

w wall value 
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CHAPTER 2 

 
ALGORITHM DESCRIPTION AND PRELIMINARY VERIFICATION 

 
MPM-ICE, an existing, continuum based, three-dimensional, unsteady, compressible 

fluid-structure-interaction algorithm has been selected to complete the studies outlined in 

Chapter 1. To accurately model microfluidic systems, several modifications to this 

algorithm, including slip velocity boundary conditions, temperature jump boundary 

conditions, creep flow boundary conditions, and viscous dissipation terms, are required. 

Following the implementation of these modifications, several basic configurations are 

examined to verify the algorithm’s use in the subsequent microscale studies.  

 
2.1. Algorithm description 

The computational algorithm selected to complete the studies outlined in Chapter 1 

is a three-dimensional, unsteady, continuum based Eulerian-Lagrangian methodology in 

which fluids, modeled using ICE (implicit, continuous fluid, Eulerian) and solid 

materials, modeled with MPM (the material-point-method), may be modeled either 

independently or simultaneously. ICE is a finite volume, cell-centered, multimaterial, 

compressible, computational-fluid-dynamics (CFD) algorithm that originated at Los 

Alamos National Laboratory [1, 2]. And, MPM is a particle based method for solid 

mechanics simulations [3, 4]. The development and documentation of the MPM-ICE 

implementation currently used by the University of Utah group is given in [5-8]. The 
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multimaterial conservation equations utilized by the algorithm, without effects that are 

not considered in the present research (chemical reactions, turbulence, multiphase 

Reynolds stress, gravity, etc.), are given in Eqs. (2.1) - (2.3) [8]. Equations (2.1) - (2.3) 

are the ensemble average, r-material, conservation of mass, momentum, and energy 

equations respectively, where there are N materials, θr is the r-material volume fraction, 

and  and  are models for the momentum and energy exchange between 

materials.  
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Equations (2.1) – (2.3), along with material constitutive or equation-of-state models, and 

models for  and , form a complete system of equations. The detailed 

numerical solution strategy utilized by the algorithm to solve this system of equations is 

well documented [2, 5-8], and consequently will not be duplicated here, aside from the 

context necessary to introduce subsequent modifications.  

∑ =

N

s rs1
f ∑ =

N

s rsq
1

Advancing the ability to numerically model microfluidic systems with the MPM-ICE 

algorithm, a continuum approach, rather than a molecular approach, such as the 

Boltzmann equation or direct-simulation-Monte-Carlo (DSMC), is significant for two 

reasons. First, the majority of existing microfluidic systems operate in the continuum, 

slip, or lower transition Knudsen number regimes; all regimes for which continuum 
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approaches have proven effective [9]. And second, with the goal of not only modeling 

simple configurations, but of eventually numerically designing and optimizing complex, 

multiscale, multiphysics, microsystems, the continuum based approach is currently the 

only feasible option. While molecular methods based on the Boltzmann equation or 

DSMC are accurate for all ranges of Knudsen number, they are generally 

computationally limited to very small, simple (one- or two-dimensional) configurations, 

and do not easily integrate with conventional continuum based computational fluid 

dynamic codes and design methods [10]. Although this research will not use all of the 

algorithm's described capabilities, its use is merited for several additional reasons. By 

developing and verifying the algorithm’s ability to model microflows, the algorithm may 

then potentially be used in future studies for even more complicated microscale systems, 

which, utilizing the code’s more advanced capabilities, would not be feasible with most 

commercial algorithms. Also, as a research code it is much more flexible in comparison 

to commercial codes and relatively easy to make customized changes to, such as slip 

boundary conditions. And finally, the code is supported by significant computing power 

and expertise.  

 
2.2. Microscale modifications 

To accurately model microflows using the MPM-ICE algorithm, several additional 

capabilities must be implemented and verified. Slip velocity, temperature jump, and creep 

flow boundary conditions must be implemented to account for the effects of rarefaction. 

These boundary conditions are implemented in the algorithm in two separate ways. The 

first approach, utilized for single fluid, internal flow problems is to apply slip flow 

boundary conditions at the boundaries of the computational domain within the ICE 
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algorithm. This approach is used for the studies presented in Chapters 3 - 5, where 

Maxwell-Smoluchowski, Eqs. (1.1) and (1.2), second-order Deissler, Eqs. (1.3) and (1.4), 

and second-order Karniadakis and Beskok, Eqs. (1.5) and (1.6), slip boundary conditions 

models have been implemented in the algorithm. The implementation of these boundary 

conditions is consistent with the existing code in being numerically second-order 

accurate. In addition to each of the three slip boundary condition models, conventional 

no-slip boundary conditions may also still be applied, such that the contribution of each 

boundary condition model may be observed in comparison.  

The second approach, applied to fluid-structure-interaction problems, is to 

implement slip flow boundary conditions at fluid-solid surfaces. This approach is used 

for the studies presented in Chapter 6. The MPM-ICE algorithm currently employs the 

scalar momentum and energy exchange models given in Eq. (2.4) and (2.5), respectively, 

to specify the rate at which momentum and thermal energy is transferred between 

materials for standard continuum conditions.  

 
( )∑∑ ==
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Eq. (2.4) models frs, the force per unit volume on material r, due to interaction with 

material s, as a function of the scalar momentum exchange coefficient, Krs, the material 

volume fractions, and the relative velocity between the two materials. Similarly, Eq. (2.5) 

models qrs, the thermal energy exchange rate per unit volume for material r, due to 

interaction with material s, as a function of the scalar energy exchange coefficient, Hrs, 

the material volume fractions, and the temperature difference between the two materials. 



 19

A very large momentum transfer rate between materials r and s, specified by a large Krs, 

forces the relative velocity of the two materials to zero, effectively, a no-slip velocity 

boundary condition. Similarly, a large Hrs produces a large thermal energy transfer rate 

between materials r and s, resulting in the equivalent of a thermal equilibrium boundary 

condition. In the current algorithm, Krs and Hrs values are typically specified as arbitrarily 

large, constant, scalar quantities (~ ), which, result in momentum and thermal 

energy transfer rates that are not directional relative to the fluid-solid surface, but produce 

the intended effect of conventional no-slip velocity and temperature jump boundary 

conditions. To achieve the equivalent of first-order slip velocity and temperature jump 

boundary conditions at the fluid-solid surface, slip flow momentum and energy exchange 

coefficients are first derived as functions of the local level of rarefaction. Then, the slip 

flow momentum and thermal energy exchange models, with a directional momentum 

exchange coefficient, is applied at fluid-solid surfaces. Because the implementation and 

verification of this interaction is the subject of Chapter 6, further details are reported 

there.  

15101×

As stated previously in Chapter 1, viscous dissipation effects are often significant for 

microflows. Calculation of the viscous dissipation term, ( ) ruτ ∇:rθ  in Eq. 2.3, however, 

is not included in the original ICE algorithm. For a single, compressible, Newtonian fluid 

system, viscous dissipation, commonly denoted as Φ, is given by Eq. (2.6) [11]. This 

viscous dissipation term has been added to the energy calculation in the algorithm, that is, 

the numerical implementation of Eq. 2.3, using central difference approximations for the 

derivatives. This calculation is numerically second-order accurate, and may be either 
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included or neglected with each simulation, such that its contribution to the numerical 

result may be observed. 
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2.3. Preliminary verification 

To verify that the modifications discussed above have been implemented correctly 

and that the resulting algorithm is capable of completing the research outlined in Chapter 

1, several preliminary algorithm verifications were completed. For each case, the 

numerical result is substantiated with comparison to either analytic solutions, 

fundamental numerical solutions, or experimental solutions. Because these results are 

presented primarily for the sake of verification, discussion of the meaning of the various 

parameters and physical effects is reserved for the associated references and later 

chapters. 

 
2.3.1. Poiseuille flow 

To verify the implementation of the first- and second-order velocity slip boundary 

conditions and the combined effects of rarefaction and compressibility, the two-

dimensional, fully developed, steady state, Newtonian, ideal gas, isothermal, pressure 

driven flow with constant properties and negligible inertial forces, depicted in Fig. 2.1(a), 

is numerically modeled. The analytic velocity solution is obtained by integrating the 

momentum equation, ( ) dxdPyu =∂∂ 22µ , twice and applying the general slip velocity 
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boundary condition given in Eq. (1.7) at y = 0 and h. The resulting analytic velocity 

profile, given by Eqs. (2.7) and (2.8), and the Boltzmann equation solution, as presented 

by [12] for comparable conditions (hard sphere molecules, diffuse reflection boundary 

condition, uniform pressure gradient, negligible inertial forces), are compared to the 

present numerical velocity solutions in Figs. 2.1(b) and 2.1(c) for the Knm, Mam, βυ1 and 

βυ2 values specified.  The average difference between all numerical and analytical data, of 

comparable boundary conditions, is 0.14%, and the maximum difference is 0.17%. 

Compared to the Boltzmann equation solution, the average numerical error is 3.55% for 

βν2 = 0.0, the Maxwell model [13], 7.50% for βν2 = 1.125, the Deissler model [14], and 

2.86% for βν2 =-0.5, the Karniadakis and Beskok model [9]. These results verify that the 

modified algorithm accurately represents the three slip velocity boundary condition 

models implemented. 
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The analytic, mean axial pressure distribution is derived by integrating, Eq. (2.8), along 

the length of the channel, and applying the specified inlet and outlet pressures, Pi and Po, 

at x = 0 and L, respectively [9]. For the first-order slip velocity boundary condition, 

βν2 = 0.0, the resulting analytic pressure distribution, given by Eq. (2.9), and 

experimentally measured pressure distribution data from [15], are compared to the 

numerical pressure distribution results, also obtained with βν2 = 0.0, in Fig. 2.1(d), for the 

outlet Knudsen number, Kno, and pressure ratios, Pi/Po, specified.  
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Fig. 2.1. Poiseuille flow: (a) configuration, (b) velocity profile, Knm = 0.0564, (c) velocity 

profile, Knm = 0.1128, (d) pressure distribution, Pi/Po = 2.28, 2.16, 1.94, 1.73. 
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The average absolute difference between numerical and analytical values is 0.14%, while 

the maximum difference is 1.3%. Between numerical and experimental values, the 

average difference is 1.64% and the maximum difference is 4.66%. These results verify, 

and validate, that the modified algorithm accurately represents the combined effects of 

rarefaction and compressibility. 
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2.3.2. Couette flow 

To further verify the implementation of first-order slip velocity boundary conditions, 

as well as the first- and second-order temperature jump boundary conditions and the 

viscous dissipation term, the two-dimensional, fully developed, steady state, Newtonian, 

ideal gas (Pr = 0.715, γ = 1.4), shear driven flow with constant properties, as shown in 

Figure 2.2(a), is numerically modeled. The analytic velocity solution is obtained by 

integrating the momentum equation, ( ) 022 =∂∂ yuµ , twice and applying the general slip 

velocity boundary condition given in Eq. (1.7) at 0=y  and  (because h 022 =∂∂ yu , the 

second-order slip velocity boundary condition term does not have an effect). The 

resulting analytic velocity solution, Eq. (2.10), and the Boltzmann equation solution, as 

presented by [16] for comparable conditions (hard sphere molecules, diffuse reflection 

boundary condition), are compared to the numerical velocity solutions in Fig. 2.2(b) and 

2.2(c) for the parameters specified. The average and maximum difference between 

analytic and numeric data is 0.09% and 0.44%, respectively, while the average difference 

between the analytic and the Boltzmann equation data is 2.27%. 
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Using the same assumptions as stated above, the analytic solution to the temperature 

profile is derived by substituting the velocity profile, Eq. (2.10), into the energy 

equation, ( ) ( )( )222 yukyT ∂∂−=∂∂ µ , integrating twice, and applying the general 

temperature jump boundary condition given in Eq. (1.8) at 0=y  and h . The resulting 

analytic temperature distribution, Eq. (2.11), is presented in terms of the Brinkman 

number, ( )wmw TTkuBr −= 2µ , which is the parameter typically used to quantify viscous 

dissipation effects. The DSMC solution presented by [17], Eq. (2.11), and the numerical 

temperature results are compared in Fig. 2.2(d) for each of the three temperature jump 

boundary condition models and the Br, Maw, and Knw values specified. The average 

difference between all numerical and analytical data of comparable boundary conditions 

is 0.84% while the maximum difference is 3.07%. Due to the statistical scatter, typical of 

DSMC data, the average error between analytic and DSMC data is 14.59% for βt2 = 0.0, 

the Smoluchowski model [18], 16.21% for βt2 = 3.012, the Deissler model [14], and 

16.18% for βt2 =-0.816, the Karniadakis and Beskok model [9]. However, the similar 

trends between the numerical data and the DSMC data, and the negligible errors between 

the analytic and numeric data presented in Fig. 2.2, verify that the modified algorithm 

accurately represents first- and second-order temperature jump boundary conditions with 

viscous dissipation effects. 
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Fig. 2.2. Couette flow: (a) configuration, (b) velocity profile, Knm = 0.0564, 

(c) velocity profile, Knm = 0.1128, (d) temperature profile, Knw = 0.0495. 



 26

2.3.3. Creep flow 

To verify the implementation of the creep flow boundary condition, the two-

dimensional, fully developed, steady state, Newtonian, ideal gas, temperature gradient 

driven flow with constant properties and negligible inertial forces, as shown in Fig. 

2.3(a), is numerically modeled. The analytic solution to the velocity profile, 

( )( )( )
0

43
=

∂∂=
yc xTPRu µ [13], and the Boltzmann equation solution, as presented by 

[12] for comparable conditions (hard sphere molecules, diffuse reflection boundary 

condition, uniform temperature gradient, negligible inertial forces), are compared to the 

numerical velocity solutions in Fig. 2.3(b) and 2.3(c) for the parameters specified. The 

average and maximum differences between analytical and numerical data are 0.77% and 

1.07%, while the average difference between the analytic solution and Boltzmann 

equation data is 16.77%. These results indicate that the numerical implementation of 

creep flow boundary conditions produces negligible error when compared to analytic 

data. The analytic solution, however, while accurate in predicting the overall mass flow 

rate for a thermally driven flow, is somewhat of a simplification with respect to the actual 

velocity profile that will, consequently, affect numerically predicted frictional and heat 

transfer values at high uc and Kn. 

The preceding verifications of the described microscale modifications to the 

algorithm support the use of the modified algorithm for the research outlined in Chapter 

1. As each of the studies outlined in Chapter 1 are completed, the resulting numerical 

data must be substantiated. To accomplish this, the numerical data are compared to 

analytical, and previously published numerical and experimental data for the cases in 

which  these  data  exist.  Generally, however,  the  research  studies  outlined  have  been 
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Fig. 2.3. Creep flow: (a) configuration, (b) velocity profile, 

Knm = 0.0564, (c) velocity profile, Knm = 0.1128. 
 

selected specifically because data for these configurations do not yet exist. As such, grid 

convergence studies are completed for each problem to verify that the solution converges 

as expected, and that a grid independent solution is approached. Additionally, general 

trends in the resulting numerical predictions, due to specific effects, such as rarefaction, 

viscous dissipation, geometry, etc., are compared to similar, simpler configurations for 

which results have been established, and physical explanations for trends are given.  
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2.4. Nomenclature  

Br Brinkman number, ( )wmw TTku −2µ  

cp specific heat at constant pressure 

cυ specific heat at constant volume 

Dh hydraulic diameter 

e internal energy per unit mass 

f force per unit volume 

Hrs energy exchange coefficient 

h channel height 

Krs momentum exchange coefficient 

k thermal conductivity 

Kn Knudsen number, hDλ  

L channel length 

Ma Mach number, ( )πγ2KnRe  

N number of materials 

P pressure 

Pr Prandtl number, kc pµ  

q thermal energy exchange rate 

R gas constant 

Re Reynolds number, µρ hm Du  

T temperature 

t time 

u velocity vector 
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u x velocity  

uc creep velocity, ( )( )
0

43
=

∂∂
y

xTPRµ  

v y velocity 

w z velocity 

x,y, z Cartesian coordinates 

 
2.4.1. Greek symbols 

βt1 first-order temperature jump coefficient, ( )( ) ( )( )( )Prtt 1122 γγσσ +−  

βt2 second-order temperature jump coefficient 

βν1 first-order velocity slip coefficient, ( ) vv σσ−2  

βν2 second-order velocity slip coefficient 

γ ratio of specific heats 

θ volume fraction 

λ molecular mean free path, πρµ wRT2  

µ dynamic viscosity 

ρ density 

σt thermal accommodation coefficient 

σv momentum accommodation coefficient 

τ shear stress 

υ specific volume 

Φ viscous dissipation 
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2.4.2. Subscripts 

i inlet property 

m mean value 

o outlet property 

r material index 

s material index 

w wall value 
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Abstract

Microchannel convective heat transfer and friction loss characteristics are numerically evaluated for gaseous, two-dimensional, steady state,
laminar, constant wall heat flux flows. The effects of Knudsen number, accommodation coefficients, second-order slip boundary conditions,
creep flow, and hydrodynamically/thermally developing flow are considered. These effects are compared through the Poiseuille number and the
Nusselt number. Numerical values for the Poiseuille and Nusselt numbers are obtained using a continuum based three-dimensional, unsteady,
compressible computational fluid dynamics algorithm that has been modified with slip boundary conditions. To verify the numerical results,
analytic solutions of the hydrodynamically and thermally fully developed momentum and energy equations have been derived subject to both
first- and second-order slip velocity and temperature jump boundary conditions. The resulting velocity and temperature profiles are then utilized
to obtain the microchannel Poiseuille and Nusselt numbers as a function of Knudsen number, first- and second-order velocity slip and temperature
jump coefficients, Brinkman number, and the ratio of the thermal creep velocity to the mean velocity. Excellent agreement between the numerical
and analytical data is demonstrated. Second-order slip terms and creep velocity are shown to have significant effects on microchannel Poiseuille
and Nusselt numbers within the slip flow regime.
© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Microchannel; Slip; Creep; Viscous dissipation; Nusselt number; Poiseuille number

1. Introduction

Convective heat transfer and friction losses of gaseous mi-
crochannel flows are important due to their applications in mi-
croscale heat exchangers, sensors, reactors, power systems, etc.
However, due to measurement and accuracy limitations there
are currently no experimental data on convective heat transfer
rates of gaseous microchannel flows in the slip regime. For this
reason, accurate numerical models, verified by analytical solu-
tions, are particularly important in the process of understanding
and designing these microfluidic systems.

Numerous studies on microchannel convective heat trans-
fer in the slip flow regime for both constant wall temperature
and constant wall heat flux have been conducted. The major-
ity of these studies have been analytical [1–8], although there
are also several numerical studies based on either direct sim-
ulation Monte Carlo, DSMC [9–11], or on continuum meth-

* Corresponding author. Tel.: +1 801 585 9730; fax: +1 801 585 9826.
E-mail address: ameel@mech.utah.edu (T. Ameel).

ods with slip boundary conditions [12,13]. Nearly all of these
studies have used the following simplifying assumptions: lam-
inar, steady state, hydrodynamically fully developed, constant
properties, no creep flow, and first-order accurate slip veloc-
ity and temperature jump boundary conditions with perfectly
accommodating walls. Parameters that have been found to af-
fect microchannel heat transfer rates and friction losses include
the Knudsen number, the momentum and thermal accommo-
dation coefficients, channel aspect ratio, compressibility, vis-
cous dissipation, and the Peclet number. However, many of the
simplifying assumptions and conclusions of these studies have
not yet been verified numerically or experimentally, nor have
the effects of creep, second-order accurate slip boundary con-
ditions, or combined hydrodynamic/thermal flow development
been fully investigated.

Theoretical studies within the slip flow regime (0.01 �
Kn � 0.1) typically use the continuum momentum and en-
ergy equations with the slip boundary conditions shown in
Eqs. (1) and (2) to account for rarefaction effects. The veloc-
ity slip boundary condition, Eq. (1), was first introduced by

1290-0729/$ – see front matter © 2007 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ijthermalsci.2007.04.007
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Nomenclature

Br Brinkman number, µu2
m/q ′′

o Dh

cp specific heat at constant pressure . . . . J kg−1 K−1

Dh hydraulic diameter, 2h . . . . . . . . . . . . . . . . . . . . . . m
f friction factor, 8τw/ρu2

m

h channel height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

Kn Knudsen number, λ/Dh

Ma Mach number, u/
√

kRT

Nu Nusselt number, q ′′
o Dh/k(Tw − Tm)

P fluid pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pe Peclet number, Pr · Re
Po Poiseuille number, f · Re
Pr Prandtl number, cpµ/k

q ′′
o wall heat flux, −k∂T /∂y|y=0 . . . . . . . . . . . W m−2

R gas constant . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

Re Reynolds number, ρumDh/µ

T fluid temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tm mixed mean temperature,

(1/hum)
∫ h

0 u(y) · T (y)dy . . . . . . . . . . . . . . . . . . K
Tw wall temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
u streamwise velocity . . . . . . . . . . . . . . . . . . . . . m s−1

uc creep velocity, (3/4)(µ/ρTw)∂T /∂x|y=0 . . m s−1

um mean velocity, (1/h)
∫ h

0 u(y)dy . . . . . . . . . . m s−1

us slip velocity, u|y=0 . . . . . . . . . . . . . . . . . . . . . . m s−1

x, y, z Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α thermal diffusivity, k/ρcp . . . . . . . . . . . . . . m2 s−1

βT 1 first-order temperature jump coefficient,
((2 − σT )/σT )(2γ /(γ + 1))(1/Pr)

βT 2 second-order temperature jump coefficient
βV 1 first-order velocity slip coefficient, (2 − σV )/σV

βV 2 second-order velocity slip coefficient
ε relative error
γ ratio of specific heat capacities
λ molecular mean free path, µ/ρ

√
2RTw/π . . . . m

µ viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−1 s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σT thermal accommodation coefficient
σV momentum accommodation coefficient
τw wall shear stress, µ∂u/∂y|y=0 . . . . . . . . . . . . . . . Pa

Maxwell [14], and the temperature jump boundary condition,
Eq. (2), was originally proposed by Smoluchowski [15].

u|y=0 =
(

2 − σV

σV

)
λ

∂u

∂y

∣∣∣∣
y=0

+3

4

µ

ρTw

∂T

∂x

∣∣∣∣
y=0

(1)

T |y=0 − Tw =
(

2 − σT

σT

)(
2γ

γ + 1

)
λ

Pr

∂T

∂y

∣∣∣∣
y=0

(2)

Values for the momentum and thermal accommodation coeffi-
cients range from 0 to 1, where these values represent complete
specular and diffuse reflections, respectively. The first term in
Eq. (1) is the velocity slip due to the wall shear stress, and the
second term is the thermal creep velocity, uc, due to the stream-
wise temperature gradient. Eqs. (1) and (2) are first-order ap-
proximations, in Kn, and only applicable in the slip flow regime.
However, in an effort to improve the slip flow model, and ex-
tend the continuum equations’ range of applicability into the
transition regime (0.1 � Kn � 1.0), several second-order slip
boundary condition models have been proposed. The bound-
ary conditions derived by Deissler [16] are given in Eqs. (3)
and (4), and the boundary conditions suggested by Karniadakis
and Beskok [17] are given in Eqs. (5) and (6).

u|y=0 =
(

2 − σV

σV

)
λ

∂u

∂y

∣∣∣∣
y=0

− 9λ2

8

[
∂2u

∂y2
+ 1

2

∂2u

∂x2
+ 1

2

∂2u

∂z2

]
y=0

+ uc (3)

T |y=0 − Tw =
(

2 − σT

σT

)(
2γ

γ + 1

)
λ

Pr

∂T

∂y

∣∣∣∣
y=0

− 9λ2

128

(
177γ − 145

γ + 1

)

×
[
∂2T

∂y2
+ 1

2

∂2T

∂x2
+ 1

2

∂2T

∂z2

]
y=0

(4)

u|y=0 =
(

2 − σV

σV

)[
λ

∂u

∂y
+ λ2

2

∂2u

∂y2

]
y=0

+ uc (5)

T |y=0 − Tw =
(

2 − σT

σT

)(
2γ

γ + 1

)
1

Pr

[
λ

∂T

∂y
+ λ2

2

∂2T

∂y2

]
y=0

(6)

In addition to these two sets of boundary conditions, many
other second-order boundary conditions have been proposed for
the slip velocity, without a complimentary temperature jump
boundary condition, and so will not be considered here. Al-
though there is currently no consensus on which set of second-
order boundary conditions is most accurate, it has been shown
experimentally that the use of second-order boundary condi-
tions does extend the range of the continuum approach when
modeling microchannel mass flow rates [17–19]. For this rea-
son, it is important that the effects of second-order slip bound-
ary conditions on convective heat transfer be evaluated as well.

This study will analytically and numerically evaluate two-
dimensional microchannel flows with constant wall heat flux
using the continuum conservation equations and the various
forms of the slip boundary condition models presented in
Eqs. (1)–(6). The effects of Knudsen number, accommodation
coefficients, and creep flow on microchannel friction losses and
convective heat transfer will be evaluated numerically through
the Poiseuille number, Po, and the Nusselt number, Nu. To val-
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idate the numerical model, analytic solutions for the hydrody-
namically and thermally fully developed values of Po and Nu,
which include the effects of second-order slip boundary condi-
tions, creep velocity, and viscous dissipation, will be derived.
With the numerical method verified, it will then be used to
evaluate the thermally and hydrodynamically developing flows
considered in this study, as well as more complex geometries
and heating configurations in future studies.

2. Analytic solution

The flow configuration for the analytical model is shown in
Fig. 1. The following simplifying assumptions are applied: two-
dimensional, steady state, incompressible, thermally and hy-
drodynamically fully developed, symmetrically isoflux, New-
tonian, ideal gas, constant properties, and laminar flow. With
these simplifications the momentum equation takes the form

∂2u

∂y2
= 1

µ

dP

dx
(7)

and the energy equation is

∂2T

∂y2
= u

α

∂T

∂x
− u

k

∂P

∂x
− µ

k

(
∂u

∂y

)2

(8)

where both the pressure and temperature gradients in the
x-direction are constants.

For two-dimensional, fully developed, planar flow all three
sets of slip boundary conditions, Eqs. (1)–(6), may be written
in the forms

u|y=0 =
[
βV 1λ

∂u

∂y
− βV 2λ

2 ∂2u

∂y2

]
y=0

+ uc (9)

T |y=0 = Tw +
[
βT 1λ

∂T

∂y
− βT 2λ

2 ∂2T

∂y2

]
y=0

(10)

Values for the first-order slip coefficient, βV 1, are typically near
unity while values for the first-order jump coefficient, βT 1, may
range from 0 to 100. The second-order slip and jump coeffi-
cients, βV 2 and βT 2, vary depending on the model selected and
are given in Table 1.

Using the general form of the slip velocity boundary condi-
tion, Eq. (9), and symmetry at the microchannel midplane, the
momentum equation, Eq. (7), may be integrated twice to obtain
the nondimensional velocity profile.

u(y)

um

= us

um

+ 6

(
1 − us

um

)(
y

h
− y2

h2

)
(11)

Fig. 1. Flow configuration.

Table 1
Second-order velocity slip and temperature jump coefficients

First-order [14,15] Second-order [16] Second-order [17]

βV 2 0 9
8 − βV 1

2
βT 2 0 9

128 (
177γ−145

γ+1 ) − βT 1
2

Where us/um is defined as

us

um

= 1 − (1 − uc/um)

(1 + 12βV 1Kn + 48βV 2Kn2)
(12)

The ratio uc/um may be calculated based on the known mass
flow rate, the flow properties, and the wall heat flux. With
the velocity profile defined, the Poiseuille number may be ex-
pressed as

Po = 96

(
1 − us

um

)
(13)

The velocity profile, Eq. (11), is substituted into the energy
equation, Eq. (8), which is then integrated twice. The general
form of the temperature jump boundary condition, Eq. (10), and
symmetry at the midplane, are then applied to obtain the nondi-
mensional temperature profile.

Tw − T (y)

q ′′
o Dh/k

=
(

1

2

)(
y

h
− y2

h2

){
1 +

[
1 + 12Br

(
3 − us

um

)(
1 − us

um

)]

×
(

1 − us

um

)(
y

h
− y2

h2

)}
+ βT 1Kn + 4βT 2Kn2

×
[

us

um

− 12Br

(
3 − us

um

)(
1 − us

um

)2]
(14)

Where the Brinkman number, Br, represents the effects of
viscous dissipation. Using the temperature profile in Eq. (14)
and the definitions of the mixed mean temperature, Tm, and the
Nusselt number, Nu, the final form for the Nusselt number is

Nu = 420

[
51 + 420βT 1Kn − 2

us

um

(
9 − us

um

− 840βT 2Kn2
)

+ 12Br

(
3 − us

um

)(
1 − us

um

)2

×
(

9 − 2
us

um

− 1680βT 2Kn2
)]−1

(15)

Nu presented in Eq. (15), with us/um defined in Eq. (12),
expresses the thermal energy exchange of a two-dimensional,
fully developed, isoflux microchannel in terms of the degree of
rarefaction (Kn); slip flow model parameters, βV 1, βV 2, βT 1,
and βT 2; creep flow (uc/um); and viscous dissipation (Br). For
continuum flow (Kn = 0), with negligible viscous dissipation
(Br = 0), Eq. (15) reduces to the continuum value of 8.235. For
continuum flow, with viscous dissipation, Eq. (15) reduces to
the Nu equation given in [20] for flow with viscous dissipa-
tion. For slip flow with no viscous dissipation, no creep flow
(uc/um = 0), and first-order slip terms only (βV 2 = βT 2 = 0),
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Eq. (15) reduces to the equation originally derived by Inman
[17] (with Kn = λ/h, rather than Kn = λ/2h used here). Al-
though it is expected that these solutions for Po and Nu, given
by Eqs. (13) and (15) respectively, are more accurate than
first-order models and models that do not include creep and
viscous dissipation effects they are still only applicable to sit-
uations of approximately the same conditions for which the
solutions were derived, that is two-dimensional, isoflux, nearly
incompressible, constant property flows within the slip flow
regime.

3. Computational model

The computational fluid dynamics (CFD) algorithm used
in this study is based on the ICE (Implicit, Continuous-fluid
Eulerian) method. ICE is a finite volume, multi-material CFD
algorithm that originated [21], and was subsequently devel-
oped, at Los Alamos National Laboratory [22]. The ICE imple-
mentation used in this study is well developed and documented
[23–25]. The code is three-dimensional, fully compressible, un-
steady, and capable of modeling variable fluid properties, fluid-
structure interactions, and chemical reactions. Although, the
present study will not use the majority of the algorithms de-
scribed capabilities, it has been selected for several reasons.
First, by developing and verifying the algorithm’s capability
to model slip flow in this study, it may then be used in future
studies for more complicated microscale flows which utilize the
code’s more advanced capabilities and would consequently not
be feasible with most commercial CFD algorithms. Second, as
an ‘open’ research code it is very flexible in comparison to com-
mercial codes and relatively easy to make customized changes
to, such as second-order slip boundary conditions. And finally,
when using this code there is significant computing power and
expertise available where the study is performed.

To accurately model microchannel flows using this algo-
rithm, several additional capabilities have been implemented
and verified. These modifications include slip flow with creep
velocity boundary conditions, temperature jump boundary con-
ditions, and viscous dissipation. The implementation of these
modifications is consistent with the existing code in being nu-
merically second-order accurate both spatially and temporally.
Any form of the slip boundary conditions presented in Eqs. (1)–
(6) may be numerically employed. Also, any of these modifica-
tions may be either included or neglected with each calculation,
such that each contribution to the numerical result may be ob-
served.

3.1. Model parameters and solution criteria

To decrease the computational time required to reach a solu-
tion only half of the symmetric microchannel, shown in Fig. 1,
is modeled. Two types of problems are numerically evalu-
ated, thermally developing flows and combined hydrodynam-
ically/thermally developing flows. For both cases the channel
outlet pressure is specified to obtain the desired flow Kn. For
thermally developing flows, the inlet pressure is specified to

obtain the desired flow Pe, while the inlet and outlet veloci-
ties are allowed to evolve to their fully developed profiles. For
hydrodynamically/thermally developing flows, a uniform inlet
velocity is specified to obtain the desired flow Pe, while the in-
let pressure and outlet velocity are allowed to evolve. For both
cases, a uniform inlet temperature is specified while the outlet
temperature is allowed to evolve to its fully developed profile;
and a uniform heat flux boundary condition and slip velocity
boundary condition, dependent on the flow Kn, are applied at
the channel wall.

Because the algorithm is unsteady the flow properties must
evolve from a set of initial conditions to steady state conditions
subject to the boundary conditions. For all of the data presented,
the initial velocity field is zero and the initial temperature field
is equal to the inlet temperature. The magnitude and number of
time steps required to reach steady state are dependent on the
grid resolution, Kn, and Pe for each flow. The convergence cri-
teria for each time step is a mass flux residual less than 10−8

for each control volume. The criterion used to establish that
the flow is steady state is, |(un+1 − un)/un+1| � 10−10 and
|(T n+1 − T n)/T n+1| � 10−10, for each control volume, where
n is the number of the time step.

For the numerical results to be comparable to the analytic
solutions, the flow must be fully developed, steady state, nearly
incompressible, and have constant properties. Given these stip-
ulations, the flow Pe, and wall heat flux are specified to be
small enough that the density and temperature changes within
the flow are less than a few percent and the flow Mach number
(Ma) is small. Using constant properties of air, Pe = 0.5, and
Kn = 0.01, 0.04, and 0.12 the resulting Ma = 0.005, 0.019, and
0.056, respectively. For the Pe values used in this study a chan-
nel length of 3h was found to be sufficient for the parameters
of interest, Po and Nu, to reach nearly constant, locally fully
developed values while avoiding significant compressibility ef-
fects due to a longer channel. (Evidence of this statement will
be seen shortly in the plots presented for developing Po and Nu
in Figs. 2, and 9–12.)

3.2. Grid dependence

The resulting numerical velocity and temperature fields may
be used to calculate Po and Nu along the length of the mi-
crochannel. The accuracy of the numerical solutions and the
time required to reach a steady-state solution are dependent
on the grid resolution. This is shown for thermally develop-
ing Nu with the conditions specified in Table 2 and Fig. 2.
These data indicate that the numerical solution converges to
the exact analytic solution with approximately second-order nu-
merical accuracy, and that the solution is sufficiently accurate at
the finest resolution that is practical due to computational time
limitations. Grid dependence studies have been completed with
similar results for each numerical solution presented in the re-
sults section, with only the results from the finest resolution
(40 × 120 for each case) being presented. It may also be ob-
served in Fig. 2, that as stated previously, Nu reaches a nearly
constant, locally fully developed state well before the end of the
channel at 3h.
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Fig. 2. Grid dependence data.

Table 2
Conditions for the grid dependence study

Grid Nu∞ εNu∞ Po∞ εPo∞ Time
resolution

Eq. (13) or (15) 5.550 – 61.287 – –
40 × 120 5.545 −0.08% 61.238 −0.08% 116 h
20 × 60 5.533 −0.31% 61.092 −0.32% 3.75 h
10 × 30 5.482 −1.23% 60.515 −1.26% 0.75 h

Fig. 3. Analytical and numerical velocity profiles.

3.3. Code verification

To verify that the numerical algorithm accurately models
the effects of the various slip boundary conditions, creep ve-
locity, and viscous dissipation the analytically and numeri-
cally computed fully developed velocity and temperature pro-
files are compared in Figs. 3 and 4 for the flow conditions
specified in Table 3. The nondimensional velocity profiles are
given in Fig. 3, where the symbols represent the numerically
computed values and the lines represent the analytic solution,
Eq. (11). The nondimensional temperature profiles are pre-

Fig. 4. Analytical and numerical temperature profiles.

Table 3
Conditions for comparison of analytical and numerical velocity and tempera-
ture profiles

Case Boundary condition βV 1 βT 1 Kn uc
um

Br
number

1 no slip 1.0 1.667 0.00 0.00 0.00
2 second-order [16] 1.0 1.667 0.01 0.00 0.05
3 second-order [16] 1.0 1.667 0.04 −0.25 0.00
4 second-order [17] 1.0 1.667 0.04 0.00 0.00
5 first-order [14,15] 1.0 1.667 0.12 0.00 0.00

sented in Fig. 4, where the lines again represent the analytic
solutions, Eq. (14). The differences between the numerically
and analytically computed values are negligible.

4. Results and discussion

In the following presentation of the numerical and ana-
lytical results Po and Nu are normalized by their continuum
values, which are 96 and 8.235, respectively. Also, to reduce
the number of variables involved, the nondimensional parame-
ters, βV 1Kn and βT 1/βV 1, introduced by Larrode et al. [4],
will be used. βV 1Kn represents the level of rarefaction, with
βV 1Kn = 0 corresponding to continuum conditions. The ratio
βT 1/βV 1 represents the gas-wall interactions, and may range
from 0 to more than 100. βT 1/βV 1 = 1.667 corresponds to
typical properties for air when σV = σT = 1. βT 1/βV 1 = 0 cor-
responds to the artificial condition of a no temperature jump
boundary condition while there is a slip velocity boundary
condition. It should be noted that when second-order Deissler
boundary conditions are used either analytically or numerically,
if βT 1 = 0 then βT 2 is also taken to be zero, although this is
not explicitly stated in the boundary conditions presented in
Eq. (4). Also, although it has been verified that the algorithm
accurately models flows with viscous dissipation (Table 3, case
number 2), by comparison to Eqs. (11) and (14), numerical re-
sults that include viscous dissipation will not be presented here
so that second-order effects and creep flow effects may be seen
more clearly.
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Fig. 5. Effect of slip boundary conditions on fully developed Po.

Fig. 6. Effect of slip boundary conditions on fully developed Nu.

4.1. Fully developed Po and Nu

The numerical results for fully developed flows are com-
pared to the analytically derived Po and Nu in Figs. 5–8. The
numerical data are given by the symbols, and the analytic solu-
tions are represented as lines. The average difference between
the analytic Po, Eq. (13), and the numerical Po is 0.06%, and
the maximum difference is 0.70%. The average difference be-
tween the analytic Nu, Eq. (15), and the numerical Nu is 0.33%,
and the maximum difference is 1.72%.

The comparison of the resulting Po, when using first-order
[14,15], second-order Deissler [16], or second-order Karni-
adakis and Beskok [17] boundary conditions is given in Fig. 5.
A similar comparison for Nu is given in Fig. 6. For these
data, creep flow and viscous dissipation effects are neglected,
and Pe = 0.5. The data in Fig. 5 illustrate that as rarefaction,
βV 1Kn, increases, the slip velocity increases, which results in
a flatter velocity profile with reduced wall velocity gradients
(as shown in Fig. 3) and consequently decreases Po. The in-
creased slip flow at the wall, due to increasing rarefaction also

Fig. 7. Effect of creep velocity on fully developed Po.

Fig. 8. Effect of creep velocity on fully developed Nu.

amplifies the energy exchange near the wall which tends to in-
crease Nu, as seen when βT 1/βV 1 = 0 in Fig. 6. However, when
βT 1/βV 1 �= 0, rarefaction increases the temperature jump at the
wall as well as the slip velocity, which reduces the energy ex-
change and results in a shift in the temperature distribution (as
shown in Fig. 4) which increases the mean temperature differ-
ence and consequently tends to decrease Nu. These results are
consistent with previous first-order slip results [4,8] and indi-
cate that slip decreases Po, and may either increase or decrease
Nu depending on the magnitude of βV 1Kn and βT 1/βV 1.

The results presented in Figs. 5 and 6 also indicate that
second-order slip terms become more significant as rarefac-
tion, βV 1Kn, increases. However, it is important to observe that
the two second-order models have opposite effects when com-
pared to the first-order boundary condition data. This result is
expected, due to the opposite signs of the second-order coeffi-
cients, given in Table 1. The second-order Deissler coefficients
are positive, which result in an increase in both the slip velocity
and the temperature jump for increasing rarefaction, while the
second-order Karniadakis and Beskok coefficients are negative,
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which result in a decrease for both the slip velocity and the tem-
perature jump for increasing rarefaction. At βV 1Kn = 0.12 and
βT 1/βV 1 = 1.667, the second-order Deissler boundary condi-
tions predict a 24.2% decrease in Po and a 28.0% decrease
in Nu, as compared to the first-order boundary conditions,
while the Karniadakis and Beskok boundary conditions predict
a 16.5% increase in Po and a 8.2% increase in Nu, as compared
to the first-order boundary conditions.

The effect of creep velocity on Po and Nu is shown in Figs. 7
and 8, respectively. For these data, viscous dissipation effects
are neglected, second-order Deissler boundary conditions are
used, and Pe = 0.5. The data in Fig. 7 indicate that creep flow in
the same direction as the mean flow, positive uc/um, increases
the total slip velocity, which flattens the velocity profile and
reduces Po. Conversely, creep flow in the opposite direction of
the mean flow, negative uc/um, decreases the total slip velocity
at the wall, which increases the wall velocity gradient, thereby
increasing Po.

There are several factors that contribute to the creep flow
effect on Nu, as presented in Fig. 8. Creep flow in the same di-
rection as the mean flow increases the total slip velocity, which
increases the energy exchange near the wall and tends to in-
crease Nu. Creep flow in the opposite direction of the mean
flow decreases the total slip velocity, which decreases the en-
ergy exchange near the wall and tends to decrease Nu. This
creep flow effect on Nu is seen most clearly for the lower βV 1Kn
values of Fig. 8. However, as rarefaction increases, the effect of
the increasing temperature jump at the wall (for βT 1/βV 1 �= 0),
and the decreasing velocity gradients decrease the energy ex-
change, which reduces Nu, as well as the effect of uc/um on
Nu. As rarefaction increases even further, the second-order ef-
fects become more significant. The second-order contribution
to the temperature distribution, the last term of Eq. (14), is a
function of the second-order temperature jump coefficient, βT 2,
rarefaction, Kn2, the total slip velocity, us/um, and the viscous
dissipation, Br (Br = 0 for these calculations). Creep flow in
the same direction as the mean flow increases the total slip
velocity, thereby increasing the second-order effect on the tem-
perature jump; whereas, creep flow in the opposite direction of
the mean flow decreases the overall slip velocity, thereby de-
creasing the second-order effect on the temperature jump. For
the second-order Deissler boundary conditions, which are used
for the analysis in Fig. 8, this causes the lines of positive and
negative uc/um to cross at high βV 1Kn (for βT 1/βV 1 �= 0).
While not shown, neither the first-order, nor the second-order
Karniadakis and Beskok boundary conditions with creep flow
result in this effect at high βV 1Kn.

4.2. Entrance Po and Nu

Comparisons of numerically computed Po and Nu for ther-
mally developing and combined hydrodynamically/thermally
developing flow for the various slip boundary condition models
and uc/um are given in Figs. 9–12. Each figure displays the flow
parameters used in the numerical model, with all of the hydro-
dynamically/thermally developing solutions represented by a
dashed line, and all of the thermally developing solutions repre-

sented with a solid line. For the thermally developing solutions,
the flow is hydrodynamically fully developed at the entrance,
which results in a constant Po through the length of the channel.
In general, all of the combined hydrodynamically/thermally
developing Po and Nu are initially larger than the thermally
developing Po and Nu, due to the larger velocities and veloc-
ity gradients at the wall. However, as the flows develop, the
thermally and the combined hydrodynamically/thermally de-
veloping values converge to the fully developed values of Po
and Nu which correspond to the data presented in Figs. 5–8.
The effects of βV 1Kn and βT 1/βV 1 on thermally developing
flow have been presented in previous studies [8], and so will not
be presented here. However, these results are as would be ex-
pected based on the fully developed results. Increasing βV 1Kn,
results in decreasing Po and Nu for both the entrance and the
fully developed values, and increasing βT 1/βV 1 results in de-
creasing Nu for both the entrance and fully developed values.

The data in Figs. 9 and 10 demonstrate the effect of the dif-
ferent slip boundary condition models through the thermal and
combined hydrodynamic/thermal entrance lengths of Po and
Nu, respectively. Just as in the fully developed case, Deissler
boundary conditions generally predict lower Po and Nu val-
ues compared to the first-order model, and Karniadakis and
Beskok boundary conditions predict higher Po and Nu values
compared to the first-order model. The differing second-order
effects, due to the opposite signs of the second-order coeffi-
cients given in Table 1, are even more significant at the channel
entrance than for the fully developed values, due to the large
first- and second-order velocity and temperature gradients at the
channel entrance.

The effects of creep velocity on the thermal and combined
hydrodynamic/thermal entrance length Po and Nu are shown
in Figs. 11 and 12, respectively. For these results second-order
Deissler boundary conditions are used. As in the fully devel-
oped case at βV 1Kn = 0.04, creep velocity in the same direction
as the mean velocity reduces Po and increases Nu, while creep
flow opposite to the mean flow increases Po and decreases Nu,
compared to the case where creep flow is not considered. Close
examination of Fig. 11 will reveal that the thermally developing
Po curves that include creep flow are not perfectly horizon-
tal; Po with negative creep flow decreases slightly, while Po
with positive creep flow increases slightly. This is because the
creep velocity contribution to the inlet flow is coupled to the
thermal development and as such cannot be truly hydrodynam-
ically fully developed until it is also thermally fully developed.
At the channel entrance, before the constant axial temperature
gradient is established, Nu for each of the three thermally devel-
oping flows is approximately the same value, and Nu for each of
the three hydrodynamically/thermally developing flows is ap-
proximately the same value. As the axial temperature gradient
and resulting creep velocity becomes constant, the Nu data that
include creep flow diverge from Nu with no creep flow and ap-
proach the fully developed Nu values which are dependent on
uc/um.
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Fig. 9. Effect of slip boundary conditions on entrance Po.

Fig. 10. Effect of slip boundary conditions on entrance Nu.

5. Conclusions

The Poiseuille and Nusselt numbers of two-dimensional
constant wall heat flux flows in the slip regime have been cal-
culated both analytically and numerically using second-order
slip and temperature jump boundary conditions. The analytical
equations for Po and Nu are expressed in terms of the degree
of rarefaction (Kn); the slip flow model parameters βV 1, βV 2,
βT 1, and βT 2; the creep flow (uc/um); and the amount of vis-
cous dissipation (Br). The analytic solutions are valid for nearly
incompressible, steady state, and hydrodynamically/thermally
fully developed flows. Numerical solutions for microchannel
Po and Nu are calculated using a continuum based three-
dimensional, unsteady, compressible, CFD algorithm modified
with slip boundary conditions. For fully developed flows the
differences between numerically and analytically computed Po
and Nu are negligible. With the numerical algorithm verified, it
is then used to evaluate hydrodynamically/thermally develop-
ing Po and Nu.

Fig. 11. Effect of creep velocity on entrance Po.

Fig. 12. Effect of creep velocity on entrance Nu.

Both analytical and numerical data indicate that second-
order terms and creep velocity effects are significant within
the slip flow regime. This study quantifies the effects of two
second-order models [16,17]; however, the analytic solutions
may be used for any second-order slip model with boundary
conditions of the same general form. This variability is im-
portant due to the lack of experimental data and agreement on
second-order boundary conditions. The significance of includ-
ing creep flow in the analytical or numerical analysis of Po and
Nu depends on the magnitude of the heat flux and the degree of
rarefaction.
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Abstract

The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer rates, as given by the Nusselt number, is
numerically evaluated subject to constant wall heat flux (H2) and constant wall temperature (T ) thermal boundary conditions. Numerical results
are obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid dynamics algorithm with slip velocity
and temperature jump boundary conditions applied to the momentum and energy equations, respectively. For the limiting case of parallel plate
channels, analytic solutions for the thermally and hydrodynamically fully developed momentum and energy equations are derived, subject to
both first- and second-order slip velocity and temperature jump boundary conditions, from which analytic Nusselt number solutions are then
obtained. Excellent agreement between the analytical and numerical results verifies the accuracy of the numerical algorithm, which is then
employed to obtain three-dimensional rectangular channel and thermally/hydrodynamically developing Nusselt numbers. Nusselt number data are
presented as functions of Knudsen number, Brinkman number, Peclet number, momentum and thermal accommodation coefficients, and aspect
ratio. Rarefaction and viscous dissipation effects are shown to significantly affect the convective heat transfer rate in the slip flow regime.
© 2008 Elsevier Masson SAS. All rights reserved.

Keywords: Microchannel; Nusselt number; Slip flow; Brinkman number; Viscous dissipation

1. Introduction

Many technological advances in computation speed, power
supply requirements, diagnostics, and control issues are con-
tingent on the reduction of thermal fluid systems to the mi-
croscale. However, as thermal fluid system sizes are reduced to
the microscale, effects that are negligible at a macroscale may
become significant, and thus change the predicted behavior of
these systems. For gaseous flows, some of these effects include
rarefaction, viscous dissipation, compressibility, and axial con-
duction, which may be characterized by the Knudsen number,
Kn, Brinkman number, Br, Mach number, Ma, and Peclet num-
ber, Pe, respectively. Fundamental to the design of many ther-
mal fluid systems is the accurate evaluation of convective heat
transfer rates, typically presented in the form of the Nusselt
number, Nu. Although, the assessment of gaseous microchan-

* Corresponding author. Tel.: +1 801 585 9730; fax: +1 801 585 9826.
E-mail address: ameel@mech.utah.edu (T. Ameel).

nel Nu, subject to effects of Kn, Br, Ma, and Pe, has been an
active area of research, there are currently no experimentally
determined values of local convective heat transfer rates, due
to measurement and accuracy limitations at the microscale, and
rarified microchannel Nu data must generally be acquired ana-
lytically or numerically.

The most common means of analytically or numerically
modeling a rarified flow within the slip regime, 0.01 � Kn �
0.1, is through the use of slip velocity and temperature jump
boundary conditions applied to the conventional continuum
momentum and energy equations. The original slip veloc-
ity boundary condition, given in Eq. (1), and temperature
jump boundary condition, given in Eq. (2), were derived by
Maxwell [1] and Smoluchowski [2], respectively.

u|y=0 − uw =
[(

2 − σν

σν

)
λ

µ
τ + 3

4

µR

P

∂T

∂x

]
y=0

(1)

T |y=0 − Tw =
[(

2 − σt

σ t

)(
2γ

1 + γ

)
λ

Pr

∂T

∂y

]
y=0

(2)
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Nomenclature

AR aspect ratio, b/h

b channel width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Br Brinkman number,

BrH2 = µu2
m/(qwDh),

BrT = µu2
m/(k(Ti − Tw))

cp specific heat at constant pressure . . . . . J kg−1 K−1

cv specific heat at constant volume . . . . . . J kg−1 K−1

Dh hydraulic diameter, 2bh/(b + h) . . . . . . . . . . . . . . m
e internal energy per unit mass . . . . . . . . . . . . . J kg−1

h channel height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

Kn Knudsen number, λ/Dh

L channel length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Ma Mach number,

(Kn Pe/Pr)
√

2/(πγ )

Nu Nusselt number,
qw,mDh/(k(Tw − Tm))

P pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pe Peclet number, Pr Re
Pr Prandtl number, cpµ/k

q heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−2

R gas constant . . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

Re Reynolds number, ρumDh/µ

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
u velocity in x-direction . . . . . . . . . . . . . . . . . . . m s−1

v velocity in y-direction . . . . . . . . . . . . . . . . . . . m s−1

v velocity vector . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

x, y, z Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

β gas–wall interaction parameter, βt1/βν1

βt1 first-order temperature jump coefficient,
((2 − σt )/σt )(2γ /(1 + γ ))(1/Pr)

βt2 second-order temperature jump coefficient
βν1 first-order velocity slip coefficient, (2 − σν)/σν

βν1Kn rarefaction parameter
βν2 second-order velocity slip coefficient
γ ratio of specific heats, cp/cv

λ molecular mean free path, µ/(ρ
√

2RT/π) . . . . m
µ dynamic viscosity . . . . . . . . . . . . . . . . . . kg m−1 s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σt thermal accommodation coefficient
σν momentum accommodation coefficient
τ shear stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Φ viscous dissipation term,

∇ · (v · τ) − v · (∇ · τ) . . . . . . . . . . . . . . . . J m−3 s−1

Subscripts

H2 constant wall heat flux condition
i inlet value
m mean value
o outlet value
T constant wall temperature condition
w wall value
∞ fully developed value

Superscripts

0 initial value

The first term in Eq. (1) is the velocity slip due to the shear
stress at the wall, and the second term is the thermal creep
velocity due to a temperature gradient tangential to the wall.
Eqs. (1) and (2), as well as subsequent equations, are pre-
sented in a format assuming a Cartesian coordinate system, a
wall normal direction (y), and a streamwise direction (x) (see
Fig. 1). To reduce the number of variables involved, the nondi-
mensional parameters βν1, βt1, βν1Kn, and β , as defined in the
nomenclature, are used hereafter, rather than the coefficients of
Eqs. (1) and (2). βν1Kn is representative of the level of rarefac-
tion, where βν1Kn = 0, corresponds to continuum conditions,
and βν1Kn ≈ 0.10, corresponds to the approximate upper limit
of the slip regime. β is representative of the gas–wall interac-
tions, where β = 0 corresponds to the artificial condition of
zero temperature jump with nonzero slip velocity, β ≈ 1.667
corresponds to typical values for air (γ = 1.4, Pr = 0.7) when
σν = σt = 1, and β values as high as 100 are possible (depend-
ing on the relative magnitudes of γ,Pr, σν and σt , where values
of σν and σt must be measured experimentally, and are pre-
sented for several common fluid-surface interactions in [3]).

In addition to the first-order slip model given by Eqs. (1)
and (2), numerous second-order models and modifications have
been proposed to improve the accuracy and range of applicabil-

Fig. 1. Two-dimensional channel configuration.

ity of the slip flow representation of rarefaction into the lower
transition regime [3]. These second-order boundary condition
models are often compared for two-dimensional, planar, con-
stant property flow, without creep flow. For this configuration,
many second-order models may be written in the format of
Eqs. (3) and (4), where values of βν2 and βt2 depend on the
second-order model.

u|y=0 − uw =
[
βν1λ

∂u

∂y
− βν2λ

2 ∂2u

∂y2

]
y=0

(3)

T |y=0 − Tw =
[
βt1λ

∂T

∂y
− βt2λ

2 ∂2T

∂y2

]
y=0

(4)

Currently, there is insufficient experimental data to establish
the use of any particular second-order model over another.
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Nonetheless, several evaluations have shown second-order
boundary conditions to be useful with respect to evaluating
microchannel mass flow rates [4,5], and as such, theoretical
convective heat transfer solutions with second-order terms may
prove valuable as additional experimental and theoretical re-
sults become available.

Viscous dissipation effects in macroscale systems are typi-
cally only significant for high velocity or highly viscous flows.
In microscale systems, however, large channel length to hy-
draulic diameter ratios result in large velocity and pressure gra-
dients, and consequently thermal energy generation due to vis-
cous dissipation. A slight increase in fluid temperature may be
significant relative to the small temperature gradients typically
present in microchannels, and as a result alter the convective
heat transfer rate and any temperature dependent fluid prop-
erties. Because the function of many microfluidic systems is
cooling, viscous dissipation becomes a limiting factor that must
be accurately represented. Recently, several theoretical studies
have focused specifically on the effects of viscous dissipation in
the slip flow regime [6–11]. All of these studies are for parallel
plate flow, except for [7], which examines the effect of viscous
dissipation for rectangular microchannels and the H1 thermal
boundary condition. Also, nearly all of these previous studies
evaluated the effect of viscous dissipation without also consid-
ering the related flow work and shear work effects, which for a
rarified gas flow are of the same order of magnitude as viscous
dissipation [6,12,13].

The significance of both compressibility and streamwise
conduction effects may be established by the magnitude of
Pe, which is directly related to Ma for a given Kn,Ma =
(Kn Pe/Pr)

√
2/(πγ ). Pe represents the ratio of thermal en-

ergy convected to the fluid to thermal energy axially conducted
within the fluid. A low Pe, corresponding to a low Ma, which is
common in micro flows, and generally indicates that compress-
ibility effects are less significant while streamwise conduction
effects are nonnegligible. Prior studies indicate that axial con-
duction effects at low Pe result in an increase in Nu for constant
wall temperature thermal boundary conditions [13,14]. Numer-
ical studies which have examined the effects of compressibility
in microchannels found that, although compressible flow never
reaches a fully developed state, compressible flow at low Mach
numbers, ‘nearly incompressible flow,’ may reach a ‘locally
fully developed’ state, for which the local values of wall friction
and heat transfer are approximately equivalent to incompress-
ible values [15,16].

The objective of this study is to numerically evaluate the
effects of rarefaction and viscous dissipation for nearly in-
compressible, rectangular microchannel convective heat trans-
fer rates in the slip flow regime, subject to constant wall
heat flux (H2) and constant wall temperature (T ) thermal
boundary conditions [13]. Numerical results are obtained us-
ing a three-dimensional, compressible, unsteady computational
fluid dynamics algorithm. Continuum based conservation equa-
tions, constitutive models (Newtonian–Fourier), and equation-
of-state model (ideal gas), with slip velocity and temperature
jump boundary conditions are utilized, based on the assump-
tion that these approximations are reasonably accurate within

the slip flow regime. To verify the numerical results, analytic
solutions for thermally and hydrodynamically fully developed
parallel plate constant wall heat flux and constant wall tem-
perature Nusselt numbers are derived as a function of rarefac-
tion (βν1Kn), viscous dissipation (Br), gas–wall interactions
(β), and second-order velocity slip and temperature jump terms
(βν1, βt2). Second-order terms are retained in this analytic anal-
ysis to provide a possible basis of comparison for future exper-
imental results, beyond this however, the effect of second-order
terms is not investigated in this study. Following the algo-
rithm verification, three-dimensional rectangular microchannel
and thermally/hydrodynamically developing Nusselt number
data are numerically evaluated and presented as functions of
βν1Kn, β,Br,Pe, and aspect ratio, AR. Viscous dissipation ef-
fects are examined in conjunction with flow work effects, which
previous studies have neglected. Compressibility, axial conduc-
tion, and creep flow effects are not directly considered in this
study, however, due to the low Ma (low Pe) utilized to achieve
nearly incompressible flow, axial conduction effects will be ev-
ident in the constant wall temperature Nu results.

2. Analytic solutions

The flow configuration that is analytically evaluated is
a two-dimensional parallel-plate microchannel of separation
distance h, as illustrated in Fig. 1. To obtain analytic solu-
tions, the following simplifying assumptions are applied: two-
dimensional, steady state, incompressible, thermally and hy-
drodynamically fully developed, Newtonian, ideal gas, constant
properties, laminar flow, and either symmetrically constant wall
heat flux or constant wall temperature. With these simplifi-
cations the momentum equation is given in Eq. (5) and the
energy equation, in terms of temperature, with viscous dissi-
pation, µ(∂u/∂y)2, and flow work, u∂P/∂x, terms is given in
Eq. (6).

µ
∂2u

∂y2
= dP

dx
(5)

k
∂2T

∂y2
= uρcp

∂T

∂x
− u

∂P

∂x
− µ

(
∂u

∂y

)2

(6)

With symmetry applied at the microchannel midplane, and
the general second-order slip velocity boundary condition,
Eq. (3), applied at the wall, the momentum equation, Eq. (5),
may be integrated twice to obtain the nondimensional velocity
profile given in Eq. (7), in terms of the slip velocity to mean
velocity ratio, us/um, Eq. (8).

u(y/h)

um

= us

um

+ 6

(
1 − us

um

)(
y

h
− y2

h2

)
(7)

us

um

= 1 − 1

1 + 12βν1Kn + 48βν2Kn2
(8)

The velocity profile, Eq. (7), is then substituted into the en-
ergy equation, Eq. (6). For the fully developed constant wall
heat flux case both the pressure and temperature gradients in the
x-direction are constants, and for the fully developed constant
wall temperature case the pressure gradient in the x-direction
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is constant, and the temperature gradient in the x-direction
approaches zero. In either case, the energy equation, Eq. (6),
may be integrated twice by applying the general second-order
temperature jump boundary condition, Eq. (4), at the wall and
symmetry at the midplane. The resulting nondimensional tem-
perature profile for constant wall heat flux is given in Eq. (9),
with the ensuing NuH2 given in Eq. (10), and the constant
wall temperature nondimensional temperature profile is given
in Eq. (11), with the subsequent NuT given in Eq. (12).

T (y/h) − Tw

qwDh/k
= −1

2

(
y

h
− y2

h2

)

×
{

1 +
[

1 + 12BrH2

(
3 − us

um

)(
1 − us

um

)]

×
(

1 − us

um

)(
y

h
− y2

h2

)}

− βt1Kn − 4βt2Kn2
[

us

um

− 12BrH2

(
3 − us

um

)(
1 − us

um

)2]
(9)

NuH2 = 420

[
51 + 420βt1Kn − 2

us

um

(
9 − us

um

− 840βt2Kn2
)

+ 12BrH2

(
3 − us

um

)(
1 − us

um

)2

×
(

9 − 2
us

um

− 1680βt2Kn2
)]−1

(10)

T (y/h) − Tw

Ti − Tw

= −6BrT

(
1 − us

um

)[
3

(
1 − y

h

)2
y2

h2

− 24βt2Kn2

+ us

um

{(
y

h
− y2

h2

)[
1 − 3

(
y

h
− y2

h2

)]

+ 2βt1Kn + 32βt2Kn2
}]

(11)

NuT = 420
us

um

[
27 − 5040βt2Kn2

+ (
9 + 420βt1Kn + 6720βt2Kn2) us

um

− u2
s

u2
m

]−1

(12)

NuH2, Eq. (10) and NuT , Eq. (12), with us/um defined in
Eq. (8), represent the energy exchange of constant wall heat
flux and constant wall temperature, thermally and hydrodynam-
ically fully developed parallel plate microchannel flows. These
interactions are a result of the combined effects of rarefaction
(Kn), the slip flow model parameters (βν1, βν2, βt1, and βt2),
and viscous dissipation, flow work, and shear work (Br). Vis-
cous dissipation acts as a distributed heat source, with the ma-
jority of the thermal energy generated near the wall, due to the
larger velocity gradients. Flow work acts as a distributed heat
sink, with the majority of the thermal energy absorbed near the
center of the flow, due to the larger velocity magnitudes. And,

shear work, u∂τ/∂y|y=0, acts as a heat source at the wall, due to
the thermal energy generated by the slipping flow. For fully de-
veloped, continuum flow there is no shear work at the wall, and
the thermal energy generated by viscous dissipation is exactly
equal to the thermal energy absorbed by flow work, regardless
of the magnitude of Br, as discussed in [12] and [13]. Within
the slip flow regime, the thermal energy generated by viscous
dissipation and shear work is exactly equal to the thermal en-
ergy absorbed by flow work, again regardless of the magnitude
of Br, as discussed in [6].

For continuum flow (Kn = 0), with negligible viscous dis-
sipation (BrH2 = 0), NuH2, Eq. (10), reduces to the conven-
tional value of 8.235. For continuum flow with viscous dissi-
pation, NuH2 reduces to the equation given by [13] for two-
dimensional flow with viscous dissipation. For slip flow with
first-order terms only (βν2 = βt2 = 0) and no viscous dissipa-
tion, NuH2 reduces to the equation originally derived by In-
man [17] (with Kn = λ/h, rather than Kn = λ/Dh used here).
When both viscous dissipation and flow work are considered in
the continuum flow regime, the energy added by viscous dissi-
pation is equal to the energy absorbed by flow work and, as a
result, the fully developed mean temperature is not a function
of BrH2. The temperature distribution and wall temperature,
however, do vary with BrH2, and as such, NuH2 is a function
of BrH2. If the flow work contribution to the energy exchange,
u∂P/∂x, is neglected in the previous analysis, both the wall
temperature and the mean temperature are shifted by equal
amounts [12] (from their values when both viscous dissipation
and flow work are considered), and as a result the nondimen-
sional temperature distribution and NuH2 remain the same as
given in Eqs. (9) and (10).

For continuum flow, NuT , Eq. (12), reduces to zero, which
is consistent with results presented in [12] and [13]. NuT = 0
is notably different from 7.54, the typical NuT value reported
for constant wall temperature parallel plate flow without ax-
ial conduction effects. This is, again, a result of the competing
effects of viscous dissipation and flow work, which result in
∂Tm/∂x = 0, ∂T /∂y|y=0 = 0, and consequently NuT = 0, re-
gardless of the magnitude of BrT or Pe. The temperature profile,
however, is not uniform, and for BrT �= 0 the fully developed
mean temperature, Tm, is always less than the wall tempera-
ture, Tw , by an amount dependent on the magnitude of BrT .
If the flow work term, u∂P/∂x, is neglected in the preceding
derivation, Tm is always greater than Tw by an amount depen-
dent on the magnitude of BrT , and the resulting NuT is given
by Eq. (13).

NuT = 140

(
8 + 140βt1Kn + 1680βt2Kn2 − us

um

)−1

(13)

For continuum flow, Eq. (13) reduces to 17.5, which is consis-
tent with results presented in [8,9,11]. However, rarified flows
are generally gaseous, and flow work in gaseous flows is of the
same order of magnitude as viscous dissipation. For this reason,
it is expected that Eq. (12) is a more accurate representation of
the energy exchange in the slip flow regime than Eq. (13).
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Fig. 2. Rectangular channel configuration.

3. Numerical model

The computational fluid dynamics (CFD) algorithm used
for this study has been described and verified for previous
microchannel investigations [18–21]. The algorithm is a fi-
nite volume, multi-material CFD code based on the ICE (Im-
plicit, Continuous-fluid, Eulerian) method. The ICE implemen-
tation used in this study is well developed and documented
[22–24]. The code is three-dimensional, fully compressible,
unsteady, and capable of modeling variable fluid properties,
fluid-structure interactions, and chemical reactions. To accu-
rately model microchannel flows, the algorithm has been mod-
ified to selectively model first- or second-order slip boundary
conditions, creep flow, and viscous dissipation. The implemen-
tation of these modifications is consistent with the original code
in being numerically second-order accurate both spatially and
temporally.

3.1. Model parameters and criteria

The flow configuration that is numerically analyzed is illus-
trated in Fig. 2, and is modeled assuming laminar flow of a
Newtonian, ideal gas, with constant properties of air (γ = 1.4,
Pr = 0.7), and a uniformly spaced computational grid. For this
flow, the governing mass, momentum, and energy equations
that are numerically solved are given in Eqs. (14), (15), and (16)
respectively.

∂ρ

∂t
+ ∇ · (ρv) = 0 (14)

∂(ρv)

∂t
+ ∇ · (ρ v v) = −∇P + ∇ · τ (15)

∂(ρe)

∂t
+ ∇ · (ρve) = −P(∇ · v) + ∇ · (k∇T ) + Φ (16)

To decrease the computational time required to reach a solution,
only one quarter of the symmetric microchannel is modeled.
(For parallel plate flows, the model is two-dimensional, and one
half of the microchannel is modeled.) Two types of problems
are numerically evaluated, thermally developing flows and ther-
mally/hydrodynamically developing flows. For both cases the
outlet pressure, along with either the inlet pressure or the in-
let velocity, are specified to obtain a given flow Pe, Br and Kn.
At the channel wall, either a uniform heat flux or a constant
wall temperature is specified. For thermally developing flows
a inlet pressure and a uniform inlet temperature are specified
while the outlet temperature and the inlet and outlet veloci-
ties are allowed to evolve to their fully developed profiles. For
combined thermally/hydrodynamically developing flows both a
uniform inlet temperature and a uniform inlet velocity are spec-
ified while the outlet temperature and velocity are allowed to
evolve to their fully developed profiles. An example of the re-
quired numerical parameters, and the resulting nondimensional
parameters, is given in Table 1 for one set of conditions – a ther-
mally/hydrodynamically developing, constant wall temperature
flow.

For the numerical results to be comparable to the analytic so-
lutions, the flow must be locally fully developed, steady state,
nearly incompressible, and have constant properties. Given
these stipulations, the flow Pe and wall heat flux, or wall tem-
perature, are specified such that the total density change within
the flow is less than a few percent, and the Ma is generally
less than approximately 0.05. For the low Pe values used in this
study, channel lengths of 4h for parallel plate channels, and 6h

for rectangular channels, were found to be sufficient for the flow
to develop while avoiding significant compressibility effects
due to a longer channel. Because the algorithm is unsteady,
flow properties must evolve from a set of initial conditions to
steady state conditions subject to the boundary conditions. For
all of the data presented, the initial velocity field is zero and the

Table 1
Example computational and nondimensional problem specification for a thermally/hydrodynamically developing, constant wall temperature flow

Computational problem specification

Inlet boundary Outlet boundary Wall boundary

∂P/∂x|x=0 = 0.0 (Pa m−1) Po = 82745.4329 (Pa) ∂P/∂y|y=0 = 0.0 (Pa m−1)

∂ρ/∂x|x=0 = 0.0 (kg m−4) ∂ρ/∂x|x=L = 0.0 (kg m−4) ∂ρ/∂y|y=0 = 0.0 (kg m−4)

Ti = 300.155907 (K) ∂T /∂x|x=L = 0.0 (K m−1) T |y=0 = Tw + βt1λ∂T/∂y|y=0 (K)

Tw = 300 (K), σt = 1.0
ui = 6.68919094 (m s−1) ∂u/∂x|x=L = 0.0 (m s−1) u|y=0 = uw + βν1(λ/µ)τ |y=0 (m s−1)

uw = 0.0 (m s−1), σν = 1.0

Initial conditions Grid parameters Fluid properties

ρ0 = 0.96103871 (kg m−3) b = ∞ (m) (symmetry) cν = 717.5 (J kg−1 K−1)

T 0 = 300.155907 (K) h/2 = 0.5 · 10−6 (m) k = 0.02583 (W m−1 K−1)

u0 = 0.0 (m s−1) L = 4.0 · 10−6 (m) γ = 1.4
�x = �y = (h/2)/40 (m) µ = 1.8 · 10−5 (kg m−1 s−1)

Nondimensional problem specification

AR = ∞, βν1Kn = 0.04, β = 1.667, Pe = 0.5, BrT = 0.2
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initial temperature field is equal to the inlet temperature. The
magnitude and number of time steps required to reach steady
state are dependent on the grid resolution, Kn, and Pe. The con-
vergence criteria for each time step is a mass flux residual less
than 10−9 for each control volume. The criterion used to estab-
lish that the flow is steady state is |(un+1 − un)/un+1| � 10−10

and |(T n+1 − T n)/T n+1| � 10−10, for each control volume,
where n is the number of the time step.

3.2. Model verification and grid resolution

The algorithm’s ability to model the effects of the first- and
second-order slip boundary conditions and creep flow, for two-
dimensional constant wall heat flux flows was demonstrated
in [18]. To establish that the algorithm also accurately models
the effects of viscous dissipation, numerically and analytically
computed nondimensional temperature profiles are compared in
Fig. 3, for several representative cases. The numerically com-
puted values, presented as symbols, are the result of thermally
developing parallel plate flow at x = 3.75h and Pe = 0.5. The
analytically computed values, Eq. (9) in Fig. 3(a), and Eq. (11)
in Fig. 3(b), are presented as lines. Based on this comparison,
the differences between the analytically and numerically com-
puted temperature profiles are negligible, thereby verifying the
ability of the algorithm to model viscous dissipation effects.

To verify that the algorithm is capable of modeling con-
vective heat transfer in rectangular microchannels, and to de-
termine the grid resolution required to do so, grid resolution
studies for fully developed, continuum flow NuH2 and NuT are
presented in Table 2. These data are obtained for Pe = 0.5,
without viscous dissipation effects. The numerical NuH2 are
compared to the analytically determined values given by [13].
At Pe = 0.5 axial conduction effects in NuT are nonnegligi-
ble and analytic solutions are unavailable; NuT data are instead
compared to the correlation values given by [14], which are
reported to include axial conduction effects and to be within
8% of accurate. The data in Table 2 indicate that the numerical
algorithm converges with approximately second-order numeri-
cal accuracy, and that at the highest grid resolution NuH2 are
within 0.1% of analytic solutions, and NuT are within 2.2% of
correlation values. This indicates that the finest grid resolution
for each AR is sufficiently accurate and, consequently, all of the
following numerical results are obtain at this resolution (equiv-
alently, for AR = ∞ the grid is 320 × 40 × 1).

4. Results and discussion

4.1. Locally fully developed Nu

Locally fully developed values of NuH2 and NuT are pre-
sented in Fig. 4 for the specified AR, βν1Kn, β,Br, and Pe
values. NuH2 and NuT for AR = ∞, 5, 2, and 1 are given in
Figs. 4(a), 4(b), 4(c), and 4(d), respectively, and although each
data set exhibits similar trends in βν1Kn, β , and Br, the effect of
AR is significant, and the scaling of each plot should be noted.
For these data, first-order slip boundary conditions, without
creep flow, are used. Numerically computed values are given by

Fig. 3. Comparison of analytical and numerical temperature profiles: (a) con-
stant wall heat flux, Eq. (9), (b) constant wall temperature, Eq. (11).

Table 2
Grid resolution and numerical accuracy study, Kn = 0, Pe = 0.5, Br = 0

Grid NuH2,
present

NuH2,
[13]

NuT ,
present

NuT ,
[14]

AR = 1 120 × 10 × 10 3.175 3.09 3.404 3.293
240 × 20 × 20 3.108 3.372
480 × 40 × 40 3.092 3.364

AR = 2 120 × 10 × 20 3.070 3.02 3.853 3.849
240 × 20 × 40 3.031 3.835
480 × 40 × 80 3.022 3.831

AR = 5 120 × 10 × 50 2.964 2.93 5.455 5.405
240 × 20 × 100 2.936 5.447
480 × 40 × 200 2.929 5.445

symbols, with the connecting lines representing the data trend;
except in the case of parallel plate flow, AR = ∞, for which the
lines are the previous derived analytic Nu solutions, Eqs. (10),
(12), and (13). For AR = ∞, Fig. 4(a), the average difference
between the analytic and numeric NuH2 is 0.35%, and the max-
imum is 1.43%. The average difference between the analytic
and numeric NuT is 0.28%, and the maximum in 1.03%. Also,
in Fig. 4(a), NuT derived with viscous dissipation effects, but

48



J. van Rij et al. / International Journal of Thermal Sciences 48 (2009) 271–281 277

Fig. 4. Effect of viscous dissipation and rarefaction on fully developed NuH2 and NuT : (a) AR = ∞, (b) AR = 5, (c) AR = 2, (d) AR = 1.

without flow work effects, Eq. (13), serves as a comparison
to NuT given by Eq. (12), which includes both viscous dissi-
pation and flow work effects and is assumed to be the more
accurate representation of the thermal energy exchange in con-
stant wall temperature rarified flows.

The NuH2 and NuT data in Fig. 4 without viscous dissipa-
tion effects, Br = 0, demonstrate that as rarefaction, βν1Kn,
increases, Nu may increase or decrease, depending on β . In-
creasing rarefaction increases the slip velocity, which increases
the energy exchange near the wall and tends to increase Nu, as
displayed when β = 0, for all AR. However, for β �= 0, an in-
crease in rarefaction also increases the temperature jump at the
wall. An increase in the temperature jump reduces the energy
exchange, increases the mean temperature difference |Tw −Tm|,
and tends to decrease Nu, particularly for large β . These trends
are consistent with previously reported slip flow Nu data, with-
out viscous dissipation effects [25].

The NuH2 data in Fig. 4 with viscous dissipation effects,
Br �= 0, indicate that for all AR and βν1Kn values investigated,
positive BrH2, heating, decreases NuH2, and negative BrH2,
cooling, increases NuH2. As discussed previously, viscous dis-
sipation generates thermal energy predominantly near the wall.
This results in an increase in the fluid temperature at the

wall, which for heating, increases the difference between the
mixed mean fluid temperature and the average wall tempera-
ture, thereby reducing NuH2; while for cooling, this decreases
the difference between the mixed mean fluid temperature and
the average wall temperature, thereby increasing NuH2 (see
Fig. 3(a)). The data in Fig. 4 also indicate that viscous dissipa-
tion effects are reduced for increasing βν1Kn. For AR = ∞ and
βν1Kn = 0.00, a BrH2 of ±0.05 will produce a 24.1% decrease
in NuH2 for heating, and a 46.6% increase in NuH2 for cool-
ing, while at βν1Kn = 0.12 (β = 1.667) the same BrH2 results
in a 1.5% decrease in NuH2 for heating, and a 1.5% increase
in NuH2 for cooling. This reduced effect of BrH2 on NuH2
with increasing βν1Kn is due to the reduced velocity gradients
caused by increasing slip at the wall. Although trends in NuH2
due to viscous dissipation and rarefaction are the same for all
AR investigated, these effects are more significant for AR = ∞
than for AR = 1, 2, and 5. This is because the parallel plate
channel has larger velocity gradients, resulting in increased vis-
cous dissipation, and with no side wall heat flux contribution,
the thermal energy generated by viscous dissipation is relatively
more significant.

The NuT data presented in Fig. 4 with viscous dissipation
effects, BrT �= 0 were obtained for Pe = 0.5 and BrT = −0.2;
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Fig. 5. Thermally and hydrodynamically developing NuH2: (a) effect of βν1Kn and BrH2, (b) effect of β and BrH2.

however, for a given βν1Kn, β,AR, and slip boundary condition
model, all flows with viscous dissipation and flow work result
in the same fully developed value of NuT , regardless of the
magnitude of Pe or BrT . As discussed previously, for contin-
uum flow, the thermal energy generated by viscous dissipation,
predominantly near the walls due to the larger velocity gradi-
ents, is equal to the thermal energy absorbed by flow work,
predominantly near the center of the flow due to the larger ve-
locity magnitudes. This energy balance results in ∂Tm/∂x = 0,
a net wall heat flux of zero, and therefore NuT = 0 for the
constant wall temperature boundary condition. Within the slip
flow regime, the slip flow at the wall reduces both the aver-
age cross sectional velocity gradients and the maximum core
velocity. Although this results in a decrease in both the ther-
mal energy generated by viscous dissipation, and the thermal
energy absorbed by flow work, the decrease in viscous dissi-
pation is more significant. The difference, however, is exactly
equal to the thermal energy generated by shear work at the wall
due to the slipping flow – meaning that, viscous dissipation,
flow work, and shear work are still balanced energy sources
and sinks, i.e. ∂Tm/∂x = 0, regardless of the magnitude of BrT

or Pe [6]. However, the shear work at the wall creates a nonzero
wall heat flux and therefore a nonzero NuT . The shear work,
u∂τ/∂y|y=0, is a function of both the slip velocity and the wall
normal velocity gradients. As βν1Kn increases, the slip velocity
increases, and for the lower slip flow regime this increases the
shear work and therefore increases NuT . However, as the slip
velocity increases the velocity gradients throughout the flow de-
crease, and for the upper end of the slip regime this leads to a
decrease in the shear work (for AR = ∞, the point of maxi-
mum shear work is βν1Kn = 0.083). These effects, combined
with the effect of AR and temperature jump (β �= 0), which, de-
creases the energy exchange with increasing βν1Kn, result in
the NuT trends displayed in Fig. 4.

4.2. Thermally and hydrodynamically developing Nu

Numerical results for thermally and hydrodynamically de-
veloping parallel plate NuH2 and NuT are presented in Figs. 5

and 6 as functions of x/PeDh (the nondimensional axial dis-
tance), βν1Kn, β,Br, and Pe. For these data, first-order slip
boundary conditions, without creep flow, are used. Thermally
developing flow is represented by the solid lines, and ther-
mally/hydrodynamically developing flow, ‘combined’ flow, is
represented by the dotted lines. To verify the accuracy of the
numerical data, and that the flow has reached a locally fully
developed state, analytic solutions for fully developed Nu,
Eq. (10) for NuH2, and Eq. (12) for NuT , are displayed as
solid symbols at x/PeDh = 4, the channel outlet. Also, con-
ventional fully developed parallel plate Nu, without rarefaction
or viscous dissipation effects, NuH2 = 8.2353 in Fig. 5 and
NuT = 8.0582 (Pe = 0.5) in Fig. 6, are displayed as circles
at x/PeDh = 4 to serve as a point of reference for changes
in Nu due to rarefaction, viscous dissipation, and developing
flow effects. Additionally, to demonstrate the basis of the ther-
mally/hydrodynamically developing NuH2 and NuT results pre-
sented in Figs. 5 and 6, velocity profiles and temperature pro-
files (relative to Tw) for several cases are illustrated in Fig. 7.

Thermally and hydrodynamically developing NuH2, with
viscous dissipation effects, are given in Fig. 5 for various lev-
els of βν1Kn, Fig. 5(a), and β , Fig. 5(b). Temperature profiles
for thermally/hydrodynamically developing flow, with constant
wall heat flux thermal boundary conditions, β = 1.667, Pe =
0.5, βν1Kn = 0.00 and 0.04, and BrH2 = ±0.05 are illustrated
in Fig. 7(b). Again, negative BrH2 indicates cooling, positive
BrH2 denotes heating and BrH2 = 0 signifies no viscous dis-
sipation effect. For the flows examined in Fig. 5, the average
NuH2 entrance length (i.e., distance from the channel entrance
where Nu(x) = 0.99Nu∞) is roughly 1.0PeDh, and varies lit-
tle for each of the parameters varied – entrance length increases
slightly for combined developing flow, lower values of βν1Kn,
lower values of β , and negative BrH2. As may be expected
based on the fully developed NuH2 results presented previously,
these results indicate that increasing βν1Kn, Fig. 5(a), or in-
creasing β , Fig. 5(b), result in a decrease in NuH2 for both
developing and fully developed flow. The effect of BrH2 on
hydrodynamically fully developed flow, shown previously in
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Fig. 6. Thermally and hydrodynamically developing NuT : (a) effect of Pe and
BrT , (b) effect of βν1Kn and BrT , (c) effect of β and BrT .

Figs. 3(a) and 4, is to increase the wall temperature, which,
for heating, increases the wall-mean temperature difference and
decreases NuH2, and for cooling, decreases the wall-mean tem-
perature difference and increases NuH2. This BrH2 effect is also
evident in the developing NuH2 presented in Figs. 5 and 7(b).
Developing NuH2 are larger at the channel inlet, compared to

fully developed values, due to the initially small wall-mean
temperature difference |Tw − Tm|, as illustrated in Fig. 7(b).

Thermally/hydrodynamically developing flows also have
large velocities near the wall at the channel inlet, which tends to
increase NuH2 beyond that of thermally developing flow alone,
as evident in Fig. 5 for BrH2 = 0. Thermally/hydrodynamically
developing flows with BrT �= 0, additionally, have viscous dis-
sipation and flow work effects that are a function of the hydro-
dynamic flow development, which, as may be surmised from
the velocity profiles in Fig. 7(a), are initially concentrated im-
mediately next to the channel wall at the inlet. For continuum
flow, βν1Kn = 0, at 0.01 PeDh, the dominant effect, moving
from the wall to the center of the flow, is first viscous dissi-
pation, then flow work, followed by viscous dissipation again.
At 0.01 PeDh heat conducted at the wall does not yet have a
significant effect through the center of the flow, and changes
in the temperature profile are primarily due to viscous dissipa-
tion and pressure flow effects. As a result of the counteracting
viscous dissipation and flow work effects closest to the wall,
Tw is slightly decreased, compared to thermally developing
flow, and due to the viscous dissipation effect nearest to the
center of the flow, the temperature at the center of the flow
is slightly increased, compared to thermally developing flow.
Because |Tw − Tm| is initially very small, this results in an
increase in NuH2 for heating, and decrease in NuH2 for cool-
ing, compared to thermally developing flow, as displayed in
Fig. 5(a), for βν1Kn = 0 and 0.01 PeDh. As the velocity profile
develops, the large viscous dissipation and flow work effects
near the wall are distributed through the channel and the sec-
ond region of viscous dissipation is eliminated. As this occurs,
viscous dissipation and flow work create a temperature gradi-
ent that is conducive to heating, but has an insulating effect
for cooling. This results in an accelerated temperature pro-
file development for heating, and a slowed temperature profile
development for cooling, as displayed in Figs. 5(a) and 7(b)
for βν1Kn = 0, BrH2 = ±0.05, and ∼0.032–0.32 PeDh. In a
rarified flow, βν1Kn �= 0, slip flow significantly reduces the ve-
locity and pressure gradients at the channel inlet. Compared
to continuum flow, this both reduces the magnitude, and alters
the distribution of the viscous dissipation and flow work ef-
fects. With increased slip near the inlet, flow work is the most
significant effect immediately next to the wall (for the βν1Kn
values examined here). This results in a decrease in |Tw − Tm|
for heating, an increase in |Tw − Tm| for cooling, and conse-
quently an increase in NuH2 for +BrH2, and a decrease in NuH2
for −BrH2, compared to flows that are only developing ther-
mally, as displayed in Fig. 5, for βν1Kn �= 0 and ±BrH2. As the
flow develops hydrodynamically, viscous dissipation and flow
work effects are distributed throughout the cross section of the
flow, with viscous dissipation acting predominantly at the walls
and flow work acting predominantly at the center of the flow,
and the fully developing NuH2 values discussed previously are
achieved.

Thermally and hydrodynamically developing NuT , with vis-
cous dissipation effects, are given in Fig. 6 for various levels of
Pe, Fig. 6(a), βν1Kn, Fig. 6(b), and β , Fig. 6(c). Temperature
profiles for thermally/hydrodynamically developing flow, with
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Fig. 7. Thermally/hydrodynamically developing flow: (a) u(x, y) and v(x, y), (b) TH2(x, y), (c) TT (x, y).

constant wall temperature boundary conditions, β = 1.667,
Pe = 0.5, βν1Kn = 0.00 and 0.04, and BrT = ±0.20 are illus-
trated in Fig. 7(c). Negative BrT indicates heating, positive BrT

denotes cooling, and BrT = 0 signifies no viscous dissipation
effect. For the flows examined in Fig. 6, NuT entrance lengths
are between approximately 0.5 PeDh and 4 PeDh, where the
entrance length increases for BrT �= 0 (most significantly for
positive BrT ), higher values of Pe, lower values of βν1Kn, lower
values of β , and thermally/hydrodynamically developing flow.
The data in Fig. 6(a) demonstrate the effect of Pe and BrT

on thermally developing NuT , for continuum flow, βν1Kn = 0.
For cases when viscous dissipation is negligible, BrT = 0, the
developing mean fluid temperature approaches the wall temper-
ature, for either heating or cooling, and fully developed NuT is a
function of Pe. When viscous dissipation and flow work effects
are considered (BrT �= 0), the developing mean fluid tempera-
ture, for either heating or cooling, approaches a constant that is
less than the wall temperature by an amount dependent on the
magnitude of BrT . The resulting fully developed NuT , as pre-
dicted by Eq. (12), and discussed previously, is not a function
of the magnitude of BrT or Pe. These developing NuT results
are most comprehendible when viewed in conjunction with the
temperature profiles illustrated in Fig. 7(c) for βν1Kn = 0 (al-
though, these are for hydrodynamically developing flow). De-

veloping NuT are larger at the channel entrance, due to the large
temperature gradients at the wall. As the temperature profile de-
velops, NuT initially decreases for both heating and cooling.
NuT for cooling however, reaches a minimum at the axial loca-
tion were the heat conduction from the wall reaches the center
of the flow [12]. As the mean fluid temperature of the cooling
flow continues to decrease, due to the effect of flow work, NuT

exhibits a singularity point where Tm = Tw , and is negative just
after this when Tm < Tw (qw is still negative). For continuum
non-slip flow, qw for both heating and cooling, approaches zero,
resulting in a fully developed NuT value of zero. For slip flow,
the fully developed qw is positive, not zero, due to the effect
of shear work at the wall. This results in a positive, nonzero
fully developed NuT , which for a given value of βν1Kn and β ,
is the same for either heating or cooling, and does not depend
on the magnitude of BrT , as has been discussed previously with
the fully developed NuT results presented in Fig. 4. Many of the
effects of hydrodynamically developing flow on NuT , displayed
in Figs. 6(a) and 6(b), are similar to those discussed previously
for hydrodynamically developing NuH2. For BrT = 0, hydro-
dynamically developing flow initially increases NuT , compared
to thermally developing NuT . For BrT �= 0 and βν1Kn = 0, NuT

initially increases, followed by an accelerated thermal develop-
ment for heating, and for cooling NuT initially decreases fol-
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lowed by a slowed thermal development (this effect however, is
much less significant for NuT , than for NuH2, and consequently
is not displayed in Fig. 6). For BrT �= 0 and βν1Kn �= 0, hydro-
dynamically developing slip flow results in flow work adjacent
to the wall that initially increases NuT for heating and decreases
NuT for cooling, compared to thermally developing NuT .

5. Summary and conclusions

The effect of viscous dissipation and rarefaction on rect-
angular microchannel convective heat transfer is numerically
evaluated subject to constant wall heat flux (H2) and constant
wall temperature (T ) thermal boundary conditions in the slip
flow regime. NuH2 and NuT are presented in terms of the de-
gree of rarefaction (βν1Kn); the gas–wall interaction parame-
ter (β); viscous dissipation (BrH2 or BrT ); and axial conduction
(Pe). These results are valid for nearly incompressible, steady
state flows. Numerical results are obtained using a continuum
based, three-dimensional, compressible, unsteady CFD algo-
rithm, modified with slip velocity and temperature jump bound-
ary conditions. To verify the numerical results, analytic solution
for thermally and hydrodynamically fully develop NuH2 and
NuT are derived for the limiting case of parallel plate channels.

Both analytical and numerical data indicate that effects of
viscous dissipation, flow work, and axial conduction are all
significant within the slip flow regime for thermally/hydro-
dynamically developing and locally fully developed Nusselt
numbers. The significance of each of these terms depends on the
degree of rarefaction, the gas–wall interactions, and the heating
configuration. Viscous dissipation effects may either increase
or decrease Nu depending on the heating configuration, and
are reduced with increasing rarefaction. Viscous dissipation in-
creases NuH2 for cooling, and decreases NuH2 for heating as
a function of BrH2, βν1Kn, β , and AR. The combined effects
of viscous dissipation, flow work, and shear work within the
slip flow regime cause NuT to increase, from zero for con-
tinuum flow, with increasing βν1Kn by an amount dependent
on AR and β but not on the magnitude of BrT or Pe. Based
on the results presented for rarified, constant wall temperature
flows, the effects of flow work and shear work may not be as-
sumed to be negligible when viscous dissipation is a significant
parameter.
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a b s t r a c t

The frictional and convective heat transfer characteristics of rarified flows in rectangular microchannels,
with either isoflux or isothermal boundary conditions, are evaluated subject to second-order slip bound-
ary conditions, creep flow, viscous dissipation, and axial conduction effects. Numerical results are
obtained using a continuum based, three-dimensional, compressible, unsteady computational fluid
dynamics algorithm with first- and second-order slip velocity and temperature jump boundary condi-
tions applied to the momentum and energy equations, respectively. The results, reported in the form
of Poiseuille and Nusselt numbers, are found to be significant functions of aspect ratio, Knudsen number,
slip model parameters, Brinkman number, and Peclet number.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The heat transfer and friction losses of steady state gaseous
flows in microchannels are important due to their applications in
microscale heat exchangers, sensors, reactors, power systems,
etc. For this reason, there have been numerous studies on slip flow
frictional losses and convective heat transfer for constant wall tem-
perature and constant wall heat flux boundary conditions within
parallel plate, cylindrical, rectangular, and trapezoidal microchan-
nels. Because conventional micro fabrication methods often pro-
duce planar and rectangular channel geometries, an accurate
evaluation and understanding of the flow and heat transfer charac-
teristics for rectangular microchannels is particularly important.
The majority of previous studies have been analytical, although
there are also several numerical studies based on either statistical
or continuum methods. Nearly all theoretical studies have as-
sumed first-order accurate slip velocity and temperature jump
boundary conditions, laminar, steady state, hydrodynamically fully
developed, constant property flow with negligible creep flow, vis-
cous dissipation, and axial conduction effects. However, the accu-
racy of these simplifications, and consequently the results of
these studies, have not yet been verified numerically or
experimentally.

There are several factors that cause microscale fluid systems to
behave differently than standard macroscale fluid systems. For mi-
cro systems with gaseous flows, rarefaction effects may be consid-
erable. Rarefaction takes place as either the size or the pressure of a
fluid system decreases, resulting in a mean free path of the fluid

molecules that is comparable to the characteristic length of the
system itself. When this occurs, discontinuities between the fluid
and the solid surface, as well as other noncontinuum behaviors be-
gin to develop. Typically, the Knudsen number, Kn, is used to rep-
resent the degree of rarefaction, or noncontinuum effects present.
The Knudsen number is defined as the ratio of the fluid’s molecular
mean free path to the characteristic length of the flow. Empirically,
the Knudsen number has been used to classify flows into four dif-
ferent regimes [1]. While in the continuum flow regime
(Kn 6 0.01), conventional continuum conservation of momentum
and energy methods, such as the Navier–Stokes equations, may
be used. For the free molecular flow regime (KnP 10), free molec-
ular models such as the Boltzmann equation must be solved. In the
transition flow regime (0.1 6 Kn 6 10), either numerical solutions
of the Boltzmann equation or direct-simulation-Monte-Carlo
(DSMC) methods are commonly used. For the slip flow regime
(0.01 6 Kn 6 0.1), it has been determined experimentally that the
deviation of molecular motion from the continuum distribution
is small enough that models based on the continuum equations
may be used, but with ‘slip velocity’ and ‘temperature jump’
boundary conditions that take into account the incomplete
momentum and energy exchange between the fluid molecules
and the solid surface.

The original slip velocity boundary condition, given in Eq. (1),
and temperature jump boundary condition, given in Eq. (2), were
derived by Maxwell [2] and Smoluchowski [3], respectively.
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Eqs. (1) and (2), as well as subsequent equations, are presented in a
format assuming a Cartesian coordinate system, a wall normal
direction (y), and a streamwise direction (x). The first term in Eq.
(1) is the slip velocity due to the shear stress at the wall, and the
second term is the thermal creep velocity, uc, due to a temperature
gradient tangential to the wall. Values for the momentum accom-
modation coefficient, rm, and the thermal accommodation coeffi-
cient, rt, range from zero to one, where rm = 0 represents
completely specular reflection, rm = 1, represents completely diffuse
reflection, and rt = 1 corresponds to a perfect energy exchange.

Eqs. (1) and (2) are a result of a first-order expansion, in Kn, of
the Boltzmann equation, and understood to be applicable only in
the slip flow regime. However, in an effort to extend the range of
applicability of slip flow boundary conditions to higher Knudsen
number flows, specifically the transition regime, many ‘second-or-
der’ modifications and methods have been proposed [1,4–9]. The
boundary conditions derived by Deissler [4], given in Eqs. (3) and
(4), and the boundary conditions suggested by Karniadakis and
Beskok [1], given in Eqs. (5) and (6), are two of the more commonly
applied second-order slip boundary condition models, as well as
the only prevalent second-order models that provide temperature
as well as velocity boundary conditions.
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Although many second-order models have been proposed, and
some have proven useful in increasing the range and accuracy of
the slip boundary condition representation of rarefaction, either
experimentally [10,11], or numerically [1], there is currently insuf-
ficient experimental data to validate the use of any particular sec-
ond-order model over another. Nonetheless, as additional
experimental and theoretical results become available, convective
heat transfer solutions with second-order terms may prove useful.
Presently, however, there are few analytical or numerical convec-
tive heat transfer solutions based on second-order slip boundary
condition models [1,4,12–17], and these are often presented for
limited values of Knudsen number, momentum and thermal accom-
modation coefficients, geometry, etc., and consequently have lim-
ited applicability.

In addition to rarefaction effects, there are other effects that are
often a result of ‘scaling.’ Scaling effects are not unique to micro
flows, but where in a macro system they are typically negligible,
in a micro system they become more prominent and may even
dominate the flow characteristics. Many of the scaling effects in
micro fluidic systems are a consequence of the increased surface
area to volume ratio. This results in increased surface forces, which
may produce large pressure drops, compressibility effects, and vis-
cous dissipation; decreased inertial forces, which allows diffusion
and conduction processes to become relatively more significant;
and increased heat transfer, which may lead to variable fluid prop-
erties and creep flow.

While creep flow is typically negligible for large scale flows and
fully developed, constant wall temperature flows, creep flow ef-
fects may become significant for constant wall heat flux flows
within the slip regime. The effect of creep flow has been shown
to significantly alter the pressure losses and convective heat trans-
fer rates from that predicted when creep flow is neglected for sev-
eral geometries [13,16,17]. However, the effect of creep flow on
fully developed, constant wall heat flux, rectangular microchannel
pressure losses and convective heat transfer rates, calculated in
conjunction with slip velocity and temperature jump boundary
conditions, has not yet been examined.

Nomenclature

AR aspect ratio, b/h
b one-half the channel width
Br Brinkman number, BrH2 ¼ lu2

m=ðqwDhÞ;
BrT ¼ lu2

m=ðkðTi � TwÞÞ
cp specific heat at constant pressure
cm specific heat at constant volume
Dh hydraulic diameter, 4hb/(h + b)
f friction factor, 8sw;m=ðqu2

mÞ
h one-half the channel height
k thermal conductivity
Kn Knudsen number, k/Dh

L channel length
Ma Mach number, ðPeKn=PrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðpcÞp
Nu Nusselt number, qw,mDh/(k(Tw � Tm))
Pe Peclet number, Pr Re
Po Poiseuille number, f Re
Pr Prandtl number, cpl/k
q heat flux
R gas constant
Re Reynolds number, qumDh/l
T temperature
u streamwise velocity
uc creep velocity, (3/4)(lR/P)(@T/@x)|y=0
x, y, z Cartesian coordinates

Greek symbols
b gas–wall interaction parameter, bt1/bv1
bt1 first-order temperature jump coefficient,

((2 � rt)/rt)(2c/(1 + c))(1/Pr)
bt2 second-order temperature jump coefficient
bv1 first-order velocity slip coefficient, (2 � rv)/rv

bv2 second-order velocity slip coefficient
bm1Kn rarefaction parameter
e relative error
c ratio of specific heat capacities, cp/cm
k molecular mean free path, l=ðq ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2RT=p
p Þ

l dynamic viscosity
q density
rt thermal accommodation coefficient
rm momentum accommodation coefficient
s shear stress

Subscripts
H2 constant wall heat flux condition
i inlet value
m mean value
o nominal continuum value
T constant wall temperature condition
w wall value
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In macroscale systems, viscous dissipation effects are only sig-
nificant for high velocity or highly viscous flows. However, in
microscale systems large channel length to hydraulic diameter ra-
tios result in large velocity and pressure gradients, and conse-
quently thermal energy generation due to viscous dissipation. A
slight increase in fluid temperature may be significant relative to
the small temperature gradients typically present in microchan-
nels, and as a result alter the convective heat transfer rate and
any temperature dependant fluid properties, particularly viscosity,
which further changes the convective heat transfer rate, as well as
the frictional losses. Because the function of many micro fluidic
systems is cooling, viscous dissipation becomes a limiting factor
that must be accurately represented. Effects of viscous dissipation
are characterized by the Brinkman number, Br, where Br � 0 indi-
cates that viscous dissipation effects are negligible. Recently, sev-
eral studies have focused specifically on viscous dissipation
effects for slip flow convective heat transfer [18–26]. However,
most of these studies evaluated the effect of viscous dissipation
without also evaluating the effects of flow work and shear work,
which for gaseous flows are of the same order of magnitude as vis-
cous dissipation; and, viscous dissipation effects in rectangular
microchannels with constant wall temperature (T) and constant
wall heat flux (H2) thermal boundary conditions have not yet been
evaluated.

The significance of streamwise conduction is generally estab-
lished by the magnitude of the flow Peclet number. The Peclet
number, Pe, represents the ratio of the thermal energy convected
to the fluid, to the thermal energy axially conducted within the
fluid. A low Pe, which is common for micro flows, generally indi-
cates that streamwise conduction effects must be considered. Pre-
vious studies have established correlations for the convective heat
transfer rate for both continuum and slip flows in parallel plate and
circular duct channels with Pe as a parameter [25,27–30]. How-
ever, axial conduction effects have been neglected in studies on
rectangular channel, constant wall temperature flows, and conse-
quently there is an absence of Nu data for fully developed condi-
tions at low Pe in both the continuum and slip flow regimes.

Based on the preceding review, it is evident that theoretical re-
sults for microchannel frictional and convective heat transfer char-
acteristics are generally obtained assuming first-order accurate slip
boundary conditions, while second-order slip boundary conditions,
creep flow, viscous dissipation, and axial conduction are consid-
ered negligible secondary effects. However, the accuracy of these
assumptions, and consequently the results of these studies, have
not yet been verified numerically or experimentally. The intent
of this study is to numerically evaluate the significance of sec-
ond-order slip boundary conditions, creep flow, viscous dissipa-
tion, and axial conduction on the convective heat transfer rate
and frictional losses of steady state, laminar, nearly incompress-
ible, locally fully developed, constant wall temperature (T) and
constant wall heat flux (H2) rectangular microchannel flows in
the slip flow regime.

2. Numerical algorithm

The computational fluid dynamics (CFD) algorithm used for this
study has been described, and verified in previous microchannel
investigations [17,31–33]. The algorithm is based on ICE (Implicit,
Continuous-fluid Eulerian), which is a finite volume, multi-mate-
rial CFD method. The ICE implementation used in this study is well
developed and documented [34–37]. The code is three-dimen-
sional, fully compressible, unsteady, and capable of modeling var-
iable fluid properties, fluid–structure interactions, and chemical
reactions. To accurately model microchannel flows, the algorithm
has been modified to model any of the first- or second-order slip
boundary conditions models presented in Eqs. (1)–(6), creep flow,

and viscous dissipation. Slip velocity, temperature jump, creep
flow, and viscous dissipation effects may be either included or ne-
glected with each computation. The implementation of these mod-
ifications is consistent with the original code in being numerically
second-order accurate both spatially and temporally.

Numerical results are obtained for the three-dimensional, con-
tinuum, momentum and energy equations with both first- and sec-
ond-order slip velocity and temperature jump boundary conditions
for the flow configuration illustrated in Fig. 1. The flow is modeled
assuming laminar flow of a Newtonian, ideal gas, with constant
properties (cp, k, l) of air. To decrease the computational time re-
quired to reach a solution, only one quarter of the symmetric
microchannel is modeled. The resulting velocity field is then eval-
uated to obtain the Poiseuille number, Po, which is an indication of
the pressure drop characteristics and the temperature field is eval-
uated to obtain the Nusselt number, Nu, which represents the con-
vective heat transfer characteristics.

2.1. Solution criteria

For the numerical solutions to be comparable to previous first-
order analytic solutions, the flow must be nearly incompressible.
To achieve this criterion, a low Mach number, Ma ¼ ðPeKn=PrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpcÞp

, is maintained, generally 0.05 or less. For these low Pe
flows, a channel length of 12h is found to be sufficient for Po and
Nu values to become locally fully developed while avoiding signif-
icant compressibility effects due to a longer channel. For all cases, a
uniform inlet velocity and temperature are specified while the
outlet temperature and velocity profiles are allowed to evolve to
their locally fully developed profiles. The inlet velocity, inlet
temperature, outlet pressure, and wall temperature or wall heat
flux are specified to obtain the intended flow Pe, uc/um, BrH2 or
BrT, and Kn.

Because the algorithm is unsteady, all of the flow properties
must evolve from a set of initial values to steady state conditions
subject to the boundary conditions. The initial velocity field is zero
and the initial temperature field is equal to the inlet temperature.
The convergence criterion for each time step is a mass flux residual
less than 10�9 for each control volume. The criterion used to estab-
lish that the flow is steady state is |(un+1 � un)/un+1| 6 10�10 and
|(Tn+1 � Tn)/Tn+1| 6 10�10, for each control volume, where n is the
number of the time step. The magnitude and number of time steps
required to reach steady state are dependent on the grid resolution,
bm1Kn, and Pe.

2.2. Grid convergence and code verification

To assure that each numerical result is sufficiently accurate and
converges to a grid independent solution, grid resolution studies
have been completed for each Po and Nu reported. Table 1 presents
the grid resolution studies for NuH2 with bm1Kn = 0, and AR = 1, 2,
and 5. For each aspect ratio, the relative change in NuH2 is less than
0.5% between the two highest grid resolutions. These data indicate
that the numerical algorithm converges with approximately sec-
ond-order numerical accuracy, and that the highest grid resolution

2h

2b
L

xy

z

Fig. 1. Rectangular channel configuration.

2794 J. van Rij et al. / International Journal of Heat and Mass Transfer 52 (2009) 2792–2801

57



tested for each AR, is sufficiently accurate when compared to the
analytic solutions of [19,27,29,38]. Based on these data, all of the
following results are obtained using the finest grid resolution given
in Table 1.

The algorithm’s ability to model first- and second-order velocity
slip and temperature jump boundary conditions, as well as creep
flow and viscous dissipation has been verified previously for
two-dimensional flows with both constant wall heat flux and con-
stant wall temperature boundary conditions [17,31]. Prior to con-
ducting the current study, it must also be verified that the
algorithm is capable of accurately modeling axial conduction ef-
fects, and three-dimensional, rectangular microchannel pressure
losses and convective heat transfer with first-order slip boundary
conditions. To establish that the algorithm is accurate in modeling
axial conduction effects, numerical and analytical NuT [29], as a
function of Pe, for parallel plate continuum flow are compared in
Table 2. These data indicate that the code accurately models axial
conduction effects, with an average difference between numeri-
cally and analytically computed NuT of 0.10%, and a maximum dif-
ference of 0.35%.

To verify that the algorithm accurately models first-order slip
flow pressure losses in rectangular microchannels, numerically
computed Po, for the parameters given in Fig. 2(a), are compared
to the analytically computed values of [39]. The analytical and
numerical Po in this comparison do not differ by more than
0.14% and, on average, by only 0.04%, thereby verifying that the
algorithm is capable of modeling first-order slip flow pressure
losses. To verify that the algorithm accurately models first-order
convective heat transfer in rectangular microchannels, numerically
computed NuH2, for the parameters given in Fig. 2(b), are compared
to the analytically computed values of [19,29]. This comparison
demonstrates that the numerically computed NuH2 values closely
agree with the analytically computed values of [29], but the ana-
lytic values are an average of 1.26% higher. Although this discrep-
ancy is minor, it may be noted that the values of [29], presented in
Table 2 for continuum flow, are also slightly higher, 1.39% on aver-
age, than all other references [19,27,38]. The analytically computed
values of [19] for AR = 1 are all within 0.5% of the present numer-
ical data. At AR = 5, there are more significant differences, nearly

10% in some cases, however, the predicted tends due to rarefaction,
remain comparable. The excellent agreement of the present NuH2
data and the analytic data of [29], as well as the general agreement
in trends of [19], indicates that the code is capable of accurately
modeling first-order slip flow convective heat transfer rates for
rectangular microchannels.

3. Results and discussion

An evaluation and summary of the effects of first- and second-
order slip boundary condition models, creep flow, viscous dissipa-
tion, and axial conduction on rectangular microchannel pressure
drop and convective heat transfer characteristics are presented in
Figs. 3–8. All Po and Nu are normalized by nominal continuum val-
ues without creep flow, or viscous dissipation effects, Poo and Nuo,
respectively. All numerically computed values are specified by
symbols, with the connecting lines representing the data trend.
All other relevant flow parameters are indicated in the Figures.

3.1. Second-order slip boundary condition effects

Fully developed Po/Poo, for the different slip flow boundary con-
dition models, are presented in Fig. 3 for AR = 1, 2, 5, and 1. The
boundary conditions are first-order slip, Eqs. (1) and (2), second-
order Deissler slip, Eqs. (3) and (4), and second-order Karniadakis
and Beskok slip, Eqs. (5) and (6). For these data Pe = 0.5, Br = 0,
and uc/um = 0. The data in Fig. 3 indicate that Po/Poo decreases with
bm1Kn for all AR, and that the effect of AR on Po is significant in both
the continuum and slip flow regimes. Within the continuum flow
regime, Poo decreases from 96, for AR =1, to 56.9, for AR = 1, due
to the reduced average wall shear stress caused by the proximity
of the corners. Within the slip flow regime, increasing rarefaction,
bm1Kn, increases the slip velocity at the walls, which results in a
flatter velocity profile with reduced wall velocity gradients and

Table 1
Grid resolution effects on rectangular channel, continuum flow NuH2, with compar-
ison to analytic solutions.

AR Grid NuH2,
present

NuH2
[19]

NuH2
[27]

NuH2
[29]

NuH2
[38]

1 10 � 10 � 120 3.175 3.10 3.09 3.135 3.091
20 � 20 � 240 3.108
40 � 40 � 480 3.092

2 10 � 20 � 120 3.070 3.03 3.02 3.065 3.022
20 � 40 � 240 3.031
40 � 80 � 480 3.022

5 10 � 50 � 120 2.964 2.90 2.93 2.961 2.922
20 � 100 � 240 2.936
40 � 200 � 480 2.929

Table 2
Comparison of numerically and analytically computed NuT for parallel plate,
continuum flow with axial conduction.

Pe NuT, present NuT [29] e (%)

0.005 8.117 8.119 �0.02
0.05 8.111 8.111 0.00
0.5 8.050 8.058 �0.10
5.0 7.720 7.747 �0.35

50 7.563 7.562 0.01
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Fig. 2. Comparison of numerically and analytically computed: (a) Po, (b) NuH2.
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consequently reduces Po/Poo for all AR. Although Po/Poo decreases
with bm1Kn for all AR, the slip velocity is a function of both bm1Kn
and the average wall velocity gradients, which are larger for higher
AR flow, and as a result Po/Poo decreases more significantly for
higher AR flows.

The data in Fig. 3 also illustrate that second-order slip terms be-
come more significant as bm1Kn increases. However, the two sec-
ond-order models have opposite effects when compared to the
first-order boundary condition data. This result is expected, due
to the opposite signs of the second-order coefficients, given in
Eqs. (3) and (5). As compared to the first-order boundary condition
data, the second-order Deissler boundary conditions result in an
increase in the slip velocity and consequently reduces Po/Poo with
bm1Kn, while the second-order Karniadakis and Beskok boundary
conditions result in a decrease in the slip velocity and conse-
quently increases Po/Poo with bm1Kn. Second-order effects are more
significant for larger AR due, again, to the larger average wall veloc-
ity gradients.

Fully developed NuH2 and NuT are presented in Fig. 4 for the
same slip flow boundary condition models, Pe, Br, uc/um, and AR
values as the Po/Poo data in Fig. 3. The data in Fig. 4 indicate that
both NuT and NuH2 may increase or decrease with bm1Kn, depending
on b, for all AR investigated, and that the effect of AR on NuT is more
significant in both the continuum and the slip flow regimes than it
is for NuH2. Within the continuum flow regime, NuT increases sig-
nificantly from 3.36, at AR = 1, to 8.06, at AR =1 (Pe = 0.5). This is
due to the varying wall heat flux, which is maximum at the mid-
point of the longest side and zero at the corners, resulting in a low-
er average wall heat flux at lower AR. NuH2, however, is nearly
constant with respect to AR – it decreases approximately 6% from
3.09, at AR = 1, to 2.91, at AR = 10, and does not approach the
AR =1 value of NuH2 = 8.235 [27]. This behavior is due to the H2
boundary condition, for which the heat flux is constant both axially
and peripherally (the nondimensional wall temperature is maxi-
mum at the corners and minimum at the midpoint of the long
side), and as such the heat flux on the two side walls will always
have an effect, even at large AR.

The data trends in Fig. 4 for the slip flow regime are related
to the fact that as rarefaction, bm1Kn, increases, both the slip
velocity and the temperature jump at the wall increase, for
b– 0. An increase in the slip velocity enhances the energy ex-
change near the wall, which tends to increase both NuT and
NuH2, as displayed when b = 0. However, for b– 0, increasing
bm1Kn also increases the temperature jump, which reduces the
energy exchange, increases the difference between the mixed
mean fluid temperature and the wall temperature, and tends
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Fig. 3. Effect of second-order slip boundary conditions on fully developed Po/Poo.
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Fig. 4. Effect of second-order slip boundary conditions on fully developed Nu/Nuo:
(a) AR = 1, (b) AR = 2, (c) AR = 5, (d) AR =1.
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to decrease both NuT and NuH2. While the wall heat flux is inde-
pendent of AR and bm1Kn for the H2 boundary condition, the
average wall heat flux for the constant wall temperature bound-
ary condition is reduced for both decreasing AR, and increasing
bm1Kn. These effects result in a less significant increase in NuT
due to slip, when b = 0, and a more significant decrease in NuT
with bm1Kn, when b– 0, compared to NuH2.

The results in Fig. 4 also indicate that second-order tempera-
ture jump terms become more significant as bm1Kn increases. For
the constant wall temperature boundary condition the average
wall normal first-order and second-order temperature gradients
are of opposite sign for all AR, b, and bm1Kn evaluated. When
b– 0, this causes the second-order Deissler boundary conditions
to predict an increase in the temperature jump (decrease in NuT),
compared to the first-order boundary condition data; while the
second-order Karniadakis and Beskok boundary conditions pre-
dict a decrease in the temperature jump (increase in NuT), com-
pared to the first-order boundary conditions. For the constant
wall heat flux boundary condition, the average wall normal
first-order and second-order temperature gradients are of the
same sign for lower AR and bm1Kn values, and of opposite sign
for increasing AR and bm1Kn values. This causes the second-order
Deissler boundary conditions to predict a decrease in tempera-
ture jump (increase in NuH2) for lower AR and bm1Kn, and an in-
crease in temperature jump (decrease in NuH2) for higher AR and
bm1Kn, compared to first-order boundary condition data, when
b– 0; while the second-order Karniadakis and Beskok boundary
conditions predict an increase in temperature jump (decrease in
NuH2) for lower AR and bm1Kn, and a decrease in temperature
jump (increase in NuH2) at higher AR and bm1Kn, compared to
first-order boundary condition data, when b– 0.

3.2. Creep flow effects

The effect of creep flow on fully developed Po/Poo and Nu/Nuo is
presented in Figs. 5 and 6, respectively, for creep velocity to mean
velocity ratios, uc/um, of �0.25, 0.00, and 0.25, and for AR = 1, 2, 5,
and1. For these data first-order slip boundary conditions are used,
Pe = 0.5, and viscous dissipation effects are neglected. NuT data are
not presented, as creep flow is negligible for thermally fully devel-
oped constant wall temperature boundary conditions. Also, be-
cause creep flow is zero at Kn = 0.00, creep flow effects on Po/Poo
and Nu/Nuo are not presented for bm1Kn less than 0.01. Positive
uc/um, creep flow in the same direction as the mean flow, is the re-
sult of heating; while negative uc/um, creep flow in the opposite
direction of the mean flow, is the result of cooling.
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Fig. 7. Effect of viscous dissipation on fully developed Nu/Nuo: (a) AR = 1, (b) AR = 2,
(c) AR = 5, (d) AR =1.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.25

0.50

0.75

1.00

1.25

1.50

β
V1Kn

β
V1Kn

β
V1Kn

β
V1Kn

β = 0

β = 1.667

β = 10

AR = 1, Nuo  = 2.98

uc /um = 0

BrT = 0

Eqs. (1) & (2)

Pe
0.05
0.50
5.00
∞

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
u T

/ N
u o

N
u T

/ N
u o

N
u T

/ N
u o

N
u T

/ N
u o

β = 0

β = 1.667

β = 10

AR = 2, Nuo = 3.39

uc/um  = 0

Br T  = 0

Eqs. (1) & (2)

Pe
0.05
0.50
5.00
∞

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.25

0.50

0.75

1.00

1.25

1.50

β = 0

β = 1.667

β = 10

AR = 5, Nuo = 4.83

uc /um = 0

BrT = 0

Eqs. (1) & (2)

Pe
0.05
0.50
5.00
∞

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.25

0.50

0.75

1.00

1.25

1.50

β = 0

β = 1.667

β = 10

AR = ∞ ,Nuo = 7.54

uc /um  = 0

BrT  = 0

Eqs. (1) & (2)

Pe
0.05
0.50
5.00
∞

a

b

c

d

Fig. 8. Effect of axial conduction on fully developed NuT/Nuo: (a) AR = 1, (b) AR = 2,
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The data in Fig. 5 demonstrate that in addition to the AR and
bm1Kn effects previously discussed, positive uc/um, heating, de-
creases Po/Poo for all AR, while negative uc/um, cooling, increases
Po/Poo for all AR. Positive uc/um increases the total slip velocity,
which decreases the average wall shear stress and reduces Po/
Poo. Conversely, negative uc/um decreases the total slip velocity at
the wall which increases the average wall shear stress, thereby
increasing Po/Poo. Also, because positive uc/um reduces the average
wall shear stress there is less of a decrease in Po/Poo with bm1Kn,
and because negative uc/um increases the average wall shear stress
there is more of a decrease in Po/Poo with bm1Kn.

There are several factors that contribute to the creep flow ef-
fect on NuH2, as presented in Fig. 6. Creep flow in the same
direction as the mean flow, heating, increases the total slip
velocity, which increases the energy exchange near the wall
and tends to increase NuH2. Creep flow in the opposite direction
of the mean flow, cooling, decreases the total slip velocity, which
decreases the energy exchange near the wall and tends to de-
crease NuH2. However, as rarefaction increases, the effect of the
increasing temperature jump at the wall, for b– 0, and decreas-
ing velocity gradients decrease the energy exchange, which in-
creases the mean temperature difference (Tw � Tm) and reduces
NuH2, as well as the effect of uc/um on NuH2. Although NuH2 for
AR =1 follows the same general trends as NuH2 for AR = 1, 2,
and 5 the effects of creep flow are reduced without the heat flux
and creep flow contribution from the two side walls.

3.3. Viscous dissipation effects

The effect of viscous dissipation, and the related effects of flow
work and shear work, on fully developed NuH2 and NuT are given in
Fig. 7 for AR = 1, 2, 5, and 1. For these data, first-order slip bound-
ary conditions are used, Pe = 0.5, and uc/um = 0. Because l is as-
sumed to be constant, viscous dissipation has no additional effect
on Po/Poo. The Po/Poo data corresponding to the data in Fig. 7 are
the same as that given in Fig. 3 for first-order slip boundary condi-
tions. The NuH2 and NuT data presented in Fig. 7 are a result of the
combined effects of rarefaction (bm1Kn), the gas–wall interactions
(b), and viscous dissipation, flow work, and shear work (Br). Vis-
cous dissipation acts as a distributed heat source, with the majority
of the thermal energy generated near the wall, due to the larger
velocity gradients. Flow work acts as a distributed heat sink, with
the majority of the thermal energy absorbed near the center of the
flow, due to the larger velocity magnitudes. And, shear work, uos/
oy|y=0, acts as a heat source at the wall, due to the thermal energy
generated by the slipping flow.

The NuH2 data in Fig. 7 demonstrate that in addition to the AR
and bm1Kn effects discussed previously, positive BrH2, heating, de-
creases NuH2, and negative BrH2, cooling, increases NuH2. This is
because viscous dissipation results in an increase in the fluid
temperature at the wall, which for heating, increases the differ-
ence between the mixed mean fluid temperature and the aver-
age wall temperature, thereby reducing NuH2; while for cooling,
this decreases the difference between the mixed mean fluid tem-
perature and the average wall temperature, thereby increasing
NuH2. For the constant wall heat flux boundary condition, flow
work decreases the wall temperature and the mixed mean fluid
temperature by equal amounts, and consequently NuH2 is unaf-
fected by the flow work contribution [40]. The data in Fig. 7 also
indicate that the effect of viscous dissipation is reduced for
increasing rarefaction. The reduced effect of BrH2 on NuH2 with
increasing bm1Kn is due to the reduced velocity gradients caused
by increasing slip at the wall. Although trends in NuH2 due to
viscous dissipation and rarefaction are the same for all AR inves-
tigated, these effects are more significant for AR =1 than for
AR = 1, 2, and 5. This is because the parallel plate channel has

larger velocity gradients, resulting in increased viscous dissipa-
tion, and with no side wall heat flux contribution the thermal
energy generated by viscous dissipation is relatively more
significant.

The NuT data presented in Fig. 7 with viscous dissipation ef-
fects, BrT – 0 were obtained for Pe = 0.5 and BrT = �0.2. However,
as will be explained, for a given bm1Kn, b, AR, and slip boundary
condition model, all flows with viscous dissipation and flow
work result in the same fully developed value of NuT, regardless
of the magnitude of Pe or BrT. For fully developed continuum
flow, the thermal energy generated by viscous dissipation, is
equal to the thermal energy absorbed by flow work. This energy
balance results in oTm/ox = 0, a net wall heat flux of zero, and
therefore NuT = 0, as discussed by [40,27]. Within the slip flow
regime, the slip flow at the wall reduces the average cross sec-
tional velocity gradients as well as the maximum core velocity.
Although this results in a decrease in both the thermal energy
generated by viscous dissipation, and the thermal energy ab-
sorbed by flow work, the decrease in viscous dissipation is more
significant. The difference, however, is exactly equal to the ther-
mal energy generated by shear work at the wall by the slipping
flow - meaning that, for a given velocity profile (which depends
on bm1Kn and AR), viscous dissipation, flow work, and shear work
are still balanced energy sources and sinks, i.e. oTm/@x = 0,
regardless of the magnitude of BrT or Pe [20]. However, the shear
work at the wall creates a nonzero wall heat flux and therefore a
nonzero NuT. The shear work, uos/oy|y=0, is a function of both the
slip velocity and the wall normal velocity gradients. As bm1Kn in-
creases, the slip velocity increases, and for the lower slip flow
regime this increases the shear work and therefore increases
NuT. However, as the slip velocity increases the velocity gradi-
ents throughout the flow decrease, and for the upper end of
the slip regime this leads to a decrease in the shear work. These
effects, combined with the effect of AR and temperature jump
(b– 0), which, decreases the energy exchange at the wall with
increasing bm1Kn, result in the NuT trends displayed in Fig. 7.

3.4. Axial conduction effects

Fully developed, slip flow NuT, computed using Pe = 0.05, 0.50,
and 5.0, are presented in Fig. 8 for AR =1, 5, 2, and 1. Using the
present compressible flow algorithm, NuT can not be computed
at large Pe without introducing variation due to compressibility.
For this reason, NuT presented at Pe =1 are the analytic solu-
tions of [29], for which compressibility and axial conduction ef-
fects have been neglected. NuH2 data are not presented, as axial
conduction effects are negligible for thermally fully developed
constant wall heat flux boundary conditions. Again, because l
is assumed to be constant, axial conduction has no additional ef-
fect on Po/Poo. The Po/Poo data corresponding to the data in
Fig. 8 are the same as that given in Fig. 3 for first-order slip
boundary conditions.

For continuum flow, bm1Kn = 0, the trends of the Nu(Pe) data pre-
sented in Fig. 8, for rectangular microchannels, are consistent with
those previously presented for parallel plate channels in Table 2.
These results indicate that axial conduction effects become signif-
icant as Pe decreases, and result in an increase in NuT. For the range
of Pe investigated, the average absolute change in NuT, is 0.53, for
continuum flow. This is equivalent to 7.6% and 15.0% differences,
for parallel plate and square channel flows, respectively. NuT de-
creases considerably, approximately 60% of the overall change,
from Pe = 0.5 to Pe = 5.0. This result is expected, as the thermal en-
ergy exchange transitions from being dominated by axial conduc-
tion, Pe < 1, to convection, Pe > 1.

The numerical data in the slip flow regime, are consistent with
the trends and magnitudes of the data without axial conduction
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NuT increases with AR, and may increase or decrease with bm1Kn
depending on b. The data in Fig. 8 illustrate that for decreasing
Pe, axial conduction effects increase NuT, however this effect is re-
duced as bm1Kn increases. The reduced axial conduction effects cor-
respond to increased convection at the walls caused by the slip
velocity for increasing bm1Kn, and the decrease in the total energy
exchange due to the temperature jump, for b– 0.

4. Summary and conclusions

The Poiseuille and Nusselt numbers for rectangular microchan-
nels with both constant wall heat flux and constant wall tempera-
ture thermal boundary conditions in the slip regime have been
numerically calculated. The resulting Po, NuH2, and NuT include
the effects of second-order velocity slip and temperature jump
boundary conditions, creep flow, and viscous dissipation with flow
work. The numerical results for Po, NuH2, and NuT are presented in
terms of the degree of rarefaction (bm1Kn); the gas–wall interaction
parameter (b); creep flow (uc/um); viscous dissipation (BrH2 or BrT);
and axial conduction (Pe). These results are valid for incompress-
ible or nearly incompressible, locally fully developed, steady state
flows. The numerical solutions for microchannel Po, NuH2, and NuT
have been calculated using a continuum based three-dimensional,
unsteady, compressible, CFD algorithm modified with slip bound-
ary conditions.

The results of this study indicate that the effects of second-
order slip boundary conditions, creep flow, viscous dissipation
with flow work, and axial conduction are all significant within
the slip flow regime for rectangular microchannel pressure losses
and convective heat transfer rates. The significance of each of
these terms depends on the degree of rarefaction, the gas–wall
interactions, and the thermal boundary conditions. Effects of sec-
ond-order boundary conditions increase as rarefaction increases,
with the two models studied having opposite effects when com-
pared to first-order boundary conditions. The accuracy of solu-
tions generated with the second-order boundary conditions
requires comparison with experimental data, which does not
currently exist. Creep flow results in an increase in NuH2 for
heating and decrease in NuH2 for cooling by an amount depen-
dant on uc/um, bm1Kn, b, and AR. The effects of creep flow, for a
given uc/um, are decreased with increasing bm1Kn. Viscous dissi-
pation increases NuH2 for cooling and decreases NuH2 for heating
as a function of BrH2, bm1Kn, b, and AR. The combined effects of
viscous dissipation, flow work, and shear work within the slip
flow regime cause NuT to increase with increasing bm1Kn, by an
amount dependent on AR and b, but independent of BrT and
Pe. Axial conduction effects are significant for flow with low Pec-
let number, and may increase the Nusselt number by up to 15%,
for the aspect ratios studied, compared to NuT without axial con-
duction effects. Effects of axial conduction increase with decreas-
ing Pe, and are decreased with increasing bm1Kn.
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CHAPTER 6 

 
SLIP FLOW FLUID-STRUCTURE-INTERACTION 

 
While many microscale systems are subject to both rarefaction and fluid-structure-

interaction (FSI) effects, most commercial algorithms cannot model both, if either, of 

these effects for general applications. This study modifies the momentum and thermal 

energy exchange models of an existing, continuum based, multi-field, compressible, 

unsteady, Eulerian-Lagrangian FSI algorithm, such that the equivalent of first-order slip 

velocity and temperature jump boundary conditions are achieved at fluid-solid surfaces, 

which may move with time. Following the development and implementation of the slip 

flow momentum and energy exchange models, several basic configurations are 

considered and compared to established data to verify the resulting algorithm’s 

capabilities. These verifications include: 1) velocity profiles of a rarified gas between 

parallel plates; 2) temperature profiles of a rarified gas between parallel plates; 3) drag 

coefficients, CD, and Nusselt numbers, Nu, for low Reynolds number rarified flow around 

an infinite cylinder; and, 4) the transient, thermal/structural response of a damped-

oscillatory three-dimensional finite cylinder subject to an impulsively started uniform, 

rarified flow. 
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6.1. Background 

Both rarefaction and fluid-structure-interaction (FSI) effects are significant for many 

microscale systems. Examples include micro valves, pumps, actuators, particulate flows, 

porous flows, two-phase flows, micro-air-vehicles, combustion, and heat exchangers. 

Rarefaction, typically quantified by the Knudsen number, Kn, which is the ratio of the 

fluid’s mean free path to the characteristic length of the system, becomes significant for 

gaseous systems at the microscale. Rarefaction results in discontinuities of the velocity 

and temperature at fluid-solid boundaries, which, for the slip flow regime, 0.01 ≤ Kn ≤ 

0.1, are typically modeled with first-order slip velocity [1] and temperature jump [2] 

boundary conditions applied to the continuum based conservation of momentum and 

energy equations, respectively. FSI effects are significant for any system in which the 

thermal-fluid and structural dynamics are coupled, and consequently can not be 

considered independently. As listed previously, there are already many microsystems that 

operate with FSI effects; and, as many microfabrication technologies evolve towards the 

use of more flexible materials than those historically used in the microelectronics 

industry, such as with printing and molding [3], FSI effects may become an even more 

significant microsystem design consideration. However, while there are many microscale 

systems that are subject to both rarefaction and FSI effects, currently available 

computational algorithms do not, typically, have the ability or versatility required to 

accurately model these effects for a generic microsystem, and as a result there are few 

studies which have considered FSI for microsystems [4-18], and no widely available 

studies that have numerically considered both FSI and rarefaction in a microsystem.  
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The primary objective of this study is to modify the momentum and energy exchange 

models of an existing FSI algorithm, such that the equivalent of first-order slip velocity 

and temperature jump boundary conditions are achieved at fluid-solid boundaries, which 

may move and deform arbitrarily with time. The FSI algorithm that is utilized is a three-

dimensional, unsteady, continuum based Eulerian-Lagrangian methodology in which 

fluids, modeled using ICE (implicit, continuous fluid, Eulerian) and solid materials, 

modeled with MPM (the material-point-method), may be modeled either independently 

or simultaneously. ICE is a finite volume, cell-centered, multimaterial, compressible, 

computational-fluid-dynamics (CFD) algorithm that originated at Los Alamos National 

Laboratory [19, 20]. And, MPM is a particle based method for solid mechanics 

simulations [21, 22]. The development and documentation of the MPM-ICE 

implementation currently utilized is given in [23-26]. The MPM-ICE FSI algorithm 

utilizes a statistically averaged, or ‘multifield,’ approach, where, each material is 

continuously defined (ρ, u, e, T, υ, θ, σ, P), with some probability, over the entire 

computational domain. This approach differs from the, perhaps more common, separate 

domain methodology, in which, fluid and solid materials are defined separately, with 

only one material at each point, and interaction only occurs at material boundaries. The 

multifield approach is advantageous for the current application, because it tightly couples 

fluid-structure-interactions through the conservation equations, rather than explicitly 

though specified boundary conditions, which allows arbitrary distortion of material and 

material surfaces without explicit surface tracking, passing of boundary conditions, and 

excessive stability and convergence issues. Use of the MPM-ICE algorithm to evaluate 

rarefaction with FSI is further merited, as rarefaction effects have already been 
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successfully studied utilizing the independent CFD (ICE) portion of the algorithm, with 

slip boundary conditions implemented at the computational domain boundaries [27-29].  

The multimaterial governing conservation equations employed by the MPM-ICE 

algorithm, without effects that are not considered in the present research (chemical 

reactions, turbulence, multiphase Reynolds stress, gravity, etc.), are given in 

Eqs. (6.1) - (6.3) [26].  
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Equations (6.1) - (6.3) are the ensemble average, r-material, conservation of mass, 

momentum, and energy equations respectively, where there are N materials, θr is the r-

material volume fraction, and ∑ =

N

s 1 rsf  and ∑ =

N

s rsq
1

 are models for the momentum and 

energy exchange between materials. Equations (6.1) – (6.3), along with individual 

material constitutive or equation-of-state models, and models for ∑ =

N

s 1 rsf  and ∑ =

N

s rsq
1

, 

form a complete system of equations. The detailed numerical solution strategy utilized by 

the MPM-ICE algorithm to solve this system of equations is presented in [26], and 

consequently will not be duplicated here. However, in a few words, the numerical 

approach involves operator splitting. For each timestep, the quantities on the right-hand-

side of Eqs. (6.1) - (6.3) are computed first - this is the Lagrangian phase of the timestep. 

The conserved quantities, that is, mass, momentum, and energy, for fluid materials are 
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accounted for at the cell centers; while, the conserved quantities for solid materials are 

accounted for at the material particles. Consequently, during the Lagrangian phase, which 

is executed primarily within the cell-centered ICE framework, the solid materials are 

dually represented, both, at the particles, and at the cell centers, where the solid material 

conservation quantities are interpolated. In the second phase of the timestep, the Eulerian 

phase, the contribution due to advection, that is, the second term on the left of 

Eqs. (6.1) - (6.3), is added to the Lagrangian phase values, where the advected 

contributions are computed for fluid materials by ICE, and for solid materials by MPM. 

As such, during the Lagrangian phase, models for both the momentum and energy 

exchange between materials, ∑ =

N

s 1 rsf  and ∑ =

N

s rsq
1

, respectively, are utilized, while 

during the Eulerian phase, only the momentum exchange model is utilized.  

 The momentum and energy exchange models currently employed by the MPM-ICE 

algorithm to model FSI for standard continuum conditions (Kn ≈ 0), are given in 

Eqs. (6.4) and (6.5). 

 
( )∑∑ ==

−=
N

s rssrrs
N
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11
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Eq. (6.4) models frs, the force per unit volume on material r, due to interaction with 

material s, as a function of the scalar momentum exchange coefficient, Krs, the material 

volume fractions, and the relative velocity between the two materials. Similarly, Eq. (6.5) 

models qrs, the thermal energy exchange rate per unit volume for material r, due to 

interaction with material s, as a function of the scalar energy exchange coefficient, Hrs, 
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the material volume fractions, and the temperature difference between the two materials. 

To avoid stability and convergence restrictions, the momentum and thermal energy 

exchange between materials is calculated within each cell implicitly, for each timestep, as 

shown in Eqs. (6.6) and (6.7). 

 
( )∑ =

++−+ −+=
N

s rssrrsrrrr θθK∆tρρ
1

uuuu  (6.6)
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N

s rssrrsr,rrr,rr TTθθH∆tTcρTcρ
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The ‘-’ and ‘+’ superscripts in Eqs. (6.6) and (6.7) indicate values before and after the 

momentum and thermal energy exchange between materials, respectively, at the point in 

the timestep that the exchange contributions are calculated. It is assumed with the 

calculation of Eqs. (6.6) and (6.7) that the material masses, volume fractions, and specific 

heats are not modified by the momentum and energy exchange between materials. (The 

exchange of mass, momentum, and energy due to a chemical reaction, although not 

consider in this study, would be modeled with additional terms in the governing 

equations, not Eqs. (6.4) and (6.5), as discussed in [26].) It is also necessary with the 

implementation of Eqs. (6.6) and (6.7) to specify momentum and energy exchange 

coefficients for all possible material pairs. However, Krs must equal Ksr, and Hrs must 

equal Hsr, since the force, and heat transferred, from material r due to material s is equal 

and opposite the force, and heat transferred, from material s due to material r. And, Krr = 

Hrr = 0, because the stress and heat flux within the same material are already considered 

in other terms of the momentum and energy conservation equations. A very large 

momentum transfer rate between materials r and s, specified by a large Krs value, forces 

the relative velocity of the two materials to zero, consistent with a no-slip velocity 
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boundary condition. Similarly, a large Hrs value produces a large thermal energy transfer 

rate between materials r and s, resulting in the equivalent of a thermal equilibrium 

boundary condition. In the current algorithm, Krs and Hrs values are typically specified as 

arbitrarily large, constant, scalar quantities (~ ), which results in momentum and 

thermal energy transfer rates that are not directional relative to the fluid-solid surface, but 

produce the intended effect of conventional no-slip velocity and thermal equilibrium 

boundary conditions.  

15101×

The objective of this study, as stated previously, is to modify the momentum and 

energy exchange models in the FSI algorithm, such that the equivalent of first-order slip 

velocity and temperature jump boundary conditions are achieved at fluid-solid surfaces 

for a rarified gas in the slip flow regime. To accomplish this, momentum and energy 

exchange coefficients,  and , which result in tangential slip velocity and 

temperature jump values that correspond to values predicted by the standard first-order 

slip boundary conditions [1, 2], are derived as a function of the level of rarefaction. Then, 

because the slip flow momentum exchange coefficient is only applicable in the fluid-solid 

surface tangential direction, while a no-slip momentum exchange coefficient must still be 

applied in the fluid-solid surface normal direction, the momentum exchange coefficient 

can no longer be treated as a scalar quantity. Meaning that, the momentum exchange 

between materials must be calculated in fluid-solid surface normal and tangential 

coordinate directions, rather than the arbitrary global coordinate directions. Following the 

development and implementation of the slip flow momentum and energy exchange 

models, several basic configurations are considered and compared to established data to 

verify the resulting algorithm’s capabilities. These verifications include: 1) velocity 

slip
rsK slip

rsH
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profiles of a rarified gas between parallel plates; 2) temperature profiles of a rarified gas 

between parallel plates; 3) drag coefficients, CD, and Nusselt numbers, Nu, for low 

Reynolds number rarified flow around an infinite cylinder; and, 4) the transient, 

thermal/structural response of a damped-oscillatory three-dimensional finite cylinder 

subject to an impulsively started uniform, rarified flow. 

 
6.2. Slip flow modifications 

Several modifications to the momentum and energy exchange models in the MPM-

ICE FSI algorithm must be implemented to correctly model the momentum and energy 

exchange between a rarified gas and a moving, deforming solid surface. First, slip flow 

momentum and energy exchange coefficients must be derived as a function of the level of 

rarefaction. Then, the slip flow momentum and thermal energy exchange models, with a 

tensor momentum exchange coefficient, must be applied at fluid-solid surfaces.  

 
6.2.1. Slip flow momentum and energy exchange coefficients 

The tangential momentum exchange between a rarified gas, denoted as material r, 

and a solid material, material s, is described by the first-order slip velocity boundary 

condition, Eq. (6.8) [1]. To obtain the force per unit volume on the rarified gas due to 

interaction with the solid, frs, the shear stress on the gas, -τ from Eq. (6.8), is multiplied 

by the fluid-solid surface area in the cell, A, as well as the gas volume fraction, θr, and 

then divided by the cell volume, V, as shown in Eq. (6.9). For frs in Eq. (6.9) to be 

equivalent to the momentum exchange model utilized by the algorithm, Eq. (6.4), the slip 

flow tangential momentum exchange coefficient, , must be that given by Eq. (6.10).  slip
rsK
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In a similar fashion, using the first-order temperature jump boundary condition, 

Eq. (6.11) [2], and the energy exchange model, Eq. (6.5), the slip flow energy exchange 

coefficient is obtained in Eqs. (6.12) - (6.13).  
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slip
rsK , Eq. (6.10), and , Eq. (6.13), are functions of the rarified gas viscosity, µslip

rsH r, 

thermal conductivity, kr, and mean free path, λr; the solid material volume fraction, θs; the 

first-order slip velocity and temperature jump coefficients, βν and βt, respectively; and, 

the individual cell fluid-solid surface area, A, and volume, V.  Values for µr, kr, θs, and V 

are available within the unmodified algorithm, and A may be approximated as the area of 

the cell face that is most tangential to the fluid-solid surface within the cell. Values for βν, 

βt, and λr are calculated according to Eqs. (6.14) - (6.16), respectively [1, 2].   
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The momentum accommodation coefficient, σν in Eq. (6.14), and the thermal 

accommodation coefficient, σt in Eq. (6.15), must be measured experimentally. Values 

for σν and σt range from zero to one, where σν = 0 represents completely specular 

reflection, σν = 1 represents completely diffuse reflection, and σt = 1 corresponds to a 

perfect energy exchange. Experimentally measured values for σν and σt are, however, 

typically near unity, and consequently, are approximated as such for all calculations 

presented within this study. With σν = σt = 1, and using typical properties for air, γ = 1.4 

and Pr = 0.7, βυ = 1.0 and βt = 1.667. The rarified gas mean free path, λr, Eq. (6.16), is 

calculated for each cell of the computational domain, at the beginning of each timestep, 

as a function of µr, ρr, cυ,r, γr, and Tr. 

 
6.2.2. Slip flow momentum and thermal energy exchange between materials 

The original slip velocity and temperature jump boundary conditions given in 

Eqs. (6.8) and (6.11) [1, 2], were derived with the assumption that a rarified gas flow 

within the slip flow regime may be accurately approximated as a continuum, everywhere, 

except at the fluid-solid boundaries. Likewise, for the numerical algorithm, in which all 

materials are continuously defined, to accurately model a flow within the slip flow 

regime, the algorithm must produce approximately equivalent velocities for all materials, 
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and approximately equivalent temperatures for all materials within the same cell, 

everywhere, except at the fluid-solid boundaries, where discontinuities in the velocity and 

temperature between the fluid and solid materials may occur. Therefore, the unmodified 

 and , i.e. the arbitrary large, constant, scalar values that result in negligible 

velocity and temperature differences between materials within the same cell, are applied 

in the usual manner, everywhere, except at the fluid-solid surface. At the fluid-solid 

surface, slip flow momentum and energy exchange coefficients,  and , 

respectively, must be applied, once the fluid-solid surface is identified. In the MPM 

algorithm, solid materials are modeled with material particles, typically eight particles 

per cell. As such, a surface is identified as a cell that has material particles of the 

specified solid material, but with less than eight particles. Because the surface may be in 

motion, and surfaces are not explicitly tracked, it is necessary with this approach to test 

each cell of the computational domain, with each timestep, to determine if it is a surface 

cell. If a surface cell is identified,  and , as defined in Eqs. (6.10) and (6.13), 

are then calculated for that cell.  

rsK rsH

slip
rsK slip

rsH

slip
rsK slip

rsH

Temperature is a scalar quantity, and consequently, once a surface cell is identified, 

and  is calculated, calculation of the thermal energy exchange between materials in 

that cell may precede using the usual algorithm, that is, the numerical implementation of 

Eq. (6.7), with rather than . Velocity, however, is a vector quantity, and the 

momentum exchanged between materials must take place with respect to the coordinate 

system in which the velocity components are defined. In the unmodified algorithm,  

does not change with direction, and so, the exchange of momentum between materials 

slip
rsH

slip
rsH rsH

rsK
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may be executed in the arbitrary global Cartesian coordinate system, ( , in which, 

the velocities are originally defined. However, because  is only applicable in the 

fluid-solid surface tangential direction, while the standard no-slip  must be applied in 

the fluid-solid surface normal direction, the momentum exchange between materials for 

slip flow must be executed in a coordinate system defined by the fluid-solid surface. The 

surface coordinate system , as illustrated by a hypothetical surface in Fig. 6.1, 

is defined by rotating (  by φ about z, and then ψ about y, such that y’ is the 

outward unit normal direction of the solid surface. Where y’ is calculated using the 

density gradient of the solid material particles within the surface cell, as shown in 

Eq. (6.17).  

)

)

)

zyx ,,

slip
rsK

rsK

( ',',' zyx

zyx ,,

 
ss' ρρ ∇∇−=y  (6.17)

 

 

 

Fig. 6.1. Global and surface coordinate systems. 
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The material velocities in terms of ( )',',' zyx  are obtained by applying the rotation 

matrix Q, given in Eq. (6.18), to u as shown in Eq. (6.19). By definition, Q is a real, 

orthogonal, special matrix (QT = Q-1, det(Q) = 1), in which the rows represent the 

 unit vectors as defined in the original ( ',',' zyx ) ( )zyx ,,  system. Once the velocities are 

defined in terms of the  coordinates, the momentum exchange between 

materials is calculated for each surface coordinate direction, utilizing the numerical 

implementation of Eq. (6.6), with  in the x’ and z’ directions, and the no-slip  in 

the y’ direction.  Following the exchange of momentum between materials in the 

 system, the material velocities are then returned to the (  description 

utilizing Q

( ',',' zyx )

) )

slip
rsK rsK

( ',',' zyx zyx ,,

T as shown in Eq. (6.20). 
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As described previously, the models for momentum and thermal energy exchange 

between materials, and consequently the slip flow modifications made to these models, 

are implemented in the MPM-ICE algorithm to calculate both the momentum and thermal 

energy change during the Lagrangian phase of the timestep, as well as the fluid advection 

velocity during Eulerian phase of the timestep. 
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6.3. Numerical results  

To verify the methodology and implementation of the modifications described for 

the slip flow momentum and energy exchange models, several basic configurations, as 

outlined previously, are numerically evaluated. For each configuration, the numerical 

results are substantiated with grid convergence and order-of-accuracy studies, as well as 

comparison to analytical, experimental, or previously established numerical data. The 

MPM-ICE algorithm, and therefore each of the following studies, is explicit with time. 

Consequently, the maximum stable timestep for each simulation is limited by either 

diffusion (∆t  ≤  0.5·∆x2/ν, ∆t  ≤  0.5·∆x2/α) or the speed-of-sound (∆t  ≤  cfl·∆x/(|u| + c)) 

for each material [30]. The cfl utilized for all of the following studies is between 0.4 and 

0.6. Aside from the three-dimensional, flexible cylinder study, the speed-of-sound in the 

solid material produces the limiting timestep. (Although, the ability to implicitly evaluate 

pressure exists in ICE, this does not increase the maximum timestep based on the speed-

of-sound within the explicit MPM algorithm, and consequently, has not been utilized.) To 

obtain slow transient and steady state data, this acoustic timestep is very limiting, 

particularly for refined grid resolutions, and as a result, the relatively simple 

configurations, require significant computing resources, which are only feasible due to 

the massively parallel computing infrastructure for which the MPM-ICE algorithm was 

developed [31]. The first two studies, which are the evaluation of velocity and 

temperature profiles of a rarified gas between parallel plates, utilize 1 CPU for 

approximately 0.05 - 8h, depending on the grid resolution. The third study, rarified flow 

around a two-dimensional cylinder, utilizes 72 CPUs for approximately 12 - 400h, 

depending on the grid resolution. And, the final study, the three-dimensional, flexible 
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cylinder, utilizes 150 CPUs for about 10 - 240h, again, depending on the grid resolution. 

The MPM-ICE algorithm is nondimensional, and so to reduce some of the numerical 

round-off error incurred with long computation times, each of the microscale problems 

are evaluated in terms of µm, µs, fg, and K. It should be noted that this is not ‘scaling’ the 

problem in an attempt to reduce the number of required timesteps. If the problem were 

scaled, all of the nondimensional variables that describe the physical process, such as Re, 

Ma, Pr, etc., must remain constant, and therefore the corresponding nondimensional 

timeframe required for the physical process to occur, such as the Fourier number, Fo, will 

also remain constant. Thus, unless the problem of interest is changed, i.e. changing Re, 

Ma, Pr, etc., scaling ∆x may increase ∆t, but will also proportionally increase the total 

time required to reach a specified point in the physical process, such as steady state, and 

the total number of explicit timesteps will remain the same. 

 
6.3.1. Pressure driven flow between parallel plates 

A pressure driven, fully developed, steady state, Newtonian, rarified ideal gas flow 

between parallel plates with constant properties and negligible inertial forces, as specified 

in Fig. 6.2(a), is modeled to verify the accuracy and implementation of the slip flow 

momentum exchange modifications in the MPM-ICE algorithm.  The analytic velocity 

solution used to verify the numerical data, Eq. (6.21), is obtained by integrating the 

momentum equation, ( ) dxdPyu =∂∂ 22µ , twice and applying the slip velocity boundary 

condition at the wall, ( ) 00 ==
∂∂= yvy
yuβu λ , and symmetry at the midplane, 

( ) 02 =∂∂ =hyyu , and then normalizing by the resulting mean velocity, um. 
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Equation (6.21), as well as the Boltzmann equation solution presented by [32], for 

comparable conditions (hard sphere molecules, diffuse reflection, uniform pressure 

gradient, negligible inertial forces), are compared to the numerical data at steady-state 

(t = 0.05µs) in Figs. 6.2(b)-(c) for the parameters specified.  

Grid convergence, order-of-accuracy, and conservation of momentum exchange data 

for this configuration, as well as the total number of timesteps required to reach 

t = 0.05µs, are reported in Table 6.1. The data in Table 6.1 for no-slip flow, Knm = 0, are 

produced using the original algorithm, while the data reported for Knm = 0.0564 and 

0.1128 are obtained using the algorithm with the slip flow momentum exchange model. 

The L2 norm error in Table 6.1 refers to the difference between the normalized numerical 

and analytical velocity profiles. The order-of-accuracy [30], p, computed with the L2 

norm errors, indicate that both the original and modified algorithm converge with 

increasing grid resolution with an order-of-accuracy of approximately one. It may also be 

noted in Figs. 6.2(b)-(c) that, although the error between the numerical and analytical 

data increase slightly near the wall, the numerical data agree well with the Boltzmann 

data, which are generally considered to be the more accurate representation of a rarified 

flow. Although not explicitly stated previously, the momentum exchange model must 

conserve momentum - meaning that, while, momentum is exchanged between materials, 

the net momentum of all the materials must be the same before and after the momentum 

exchange model is applied.  
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Fig. 6.2. Steady state (t = 0.05µs) pressure driven flow between parallel plates: (a) problem 

specification, (b) velocity profile, Knm = 0.0564, (c) velocity profile, Knm = 0.1128. 
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Table 6.1. Grid resolution, order-of-accuracy, and conservation of momentum exchange 
for steady state (t = 0.05µs) pressure driven flow between parallel plates. 

RMS (exchange error/total) Knm ∆y (=∆x) u(y/h)/um
L2 error 

p timesteps
x-momentum y-momentum

0.0000 h/10 0.387  7,077 6.90x10-13 2.81x10-5

 h/20 0.217  28,305 5.60x10-14 4.50x10-7

 h/40 0.134 1.017 113,220 6.01x10-15 1.69x10-7

0.0564 h/10 0.154  7,077 4.86x10-12 1.15x10-10

 h/20 0.088  28,305 1.09x10-13 1.81x10-9

 h/40 0.054 0.955 113,220 5.13x10-15 1.15x10-10

0.1128 h/10 0.093  14,153 7.23x10-12 7.61x10-11

 h/20 0.052  56,611 4.16x10-14 1.29x10-10

 h/40 0.032 1.000 226,443 2.20x10-15 8.64x10-11

 
 
The root-mean-square (RMS) x- and y- momentum exchange error reported in Table 6.1 

is the RMS, for all timesteps, of the ratio of the net momentum exchange error to the net 

momentum. The data in Fig. 6.2 and Table 6.1 indicate that the modified slip flow 

momentum exchange model accurately represents slip velocity boundary conditions 

compared to first-order boundary conditions, converges with the same order-of-accuracy 

as the original algorithm, and conserves the exchanged momentum. 

 
6.3.2. Thermal conduction between parallel plates 

The steady state thermal conduction of a stationary, constant property, rarified ideal 

gas between two parallel plates of different temperatures, as specified in Fig. 6.3(a), is 

modeled with the MPM-ICE algorithm to verify the accuracy and implementation of the 

slip flow thermal energy exchange modifications.  The analytic temperature profile used 

to verify the numerical data, Eq. (6.22), is derived by integrating the energy equation, 

022 =∂∂ yT , twice and applying temperature jump boundary conditions at each wall,  

( ) 00 ==
∂∂+−= ytwy
yTβTTT λ∆  and  ( ) hytwhy

yTβTTT ==
∂∂−+= λ∆ .  
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Equation (6.22) is compared to the steady state (t = 0.05µs) numerical data in Fig. 6.3(b) 

for the parameters specified.  

Grid convergence, order-of-accuracy, and conservation of energy exchange data for 

this configuration, as well as the total number of timesteps required to reach t = 0.05µs, 

are reported in Table 6.2. Once again, the data in Table 6.2 for continuum flow, Kn = 0, 

are produced using the original algorithm, while the data reported for Knm = 0.0564 and 

0.1128 are obtained utilizing the slip flow energy exchange model.  
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Fig. 6.3. Steady state (t = 0.05µs) thermal conduction between parallel plates: (a) problem 

specification, (b) temperature profiles, Knm = 0.0000, Knm = 0.0564, Knm = 0.1128. 
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Table 6.2. Grid resolution, order-of-accuracy, and conservation of energy exchange 
for steady state (t = 0.05µs) thermal conduction between parallel plates. 

Kn ∆y (=∆x) (T(y/h)-Tw)/∆T 
L2 error 

p timesteps RMS (exchange error/total) 
thermal energy 

0.0000 h/10 0.176  9,435 4.63x10-13

 h/20 0.111  37,740 1.54x10-12

 h/40 0.074 0.794 150,960 4.57x10-12

0.0564 h/10 0.097  14,153 5.61x10-13

 h/20 0.060  56,610 1.56x10-12

 h/40 0.040 0.813 226,440 2.63x10-12

0.1128 h/10 0.063  14,153 5.74x10-13

 h/20 0.038  56,610 0.53x10-12

 h/40 0.025 0.833 226,440 3.22x10-12

 

The L2 norm error in Table 6.2 refers to the difference between the normalized numerical 

and analytical temperature profiles. The order-of-accuracy, computed with the L2 norm 

errors, indicate that both the original and modified algorithm converge with increasing 

grid resolution with an order-of-accuracy of approximately 0.81. To ensure that the 

modified energy exchange model conserves energy, the RMS, for all timesteps, of the 

ratio of the net energy exchange error to the net energy is reported in Table 6.2. The data 

in Fig. 6.3 and Table 6.2 indicate that the modified slip flow energy exchange model 

accurately represents temperature jump when compared to first-order temperature jump 

boundary conditions, converges with the same order-of-accuracy as the original 

algorithm, and conserves the exchanged energy. 

 
6.3.3. Low Reynolds number, infinite cylinder CD and Nu 

To verify that the MPM-ICE algorithm, with the slip flow momentum and energy 

exchange modifications, accurately represents a rarified gas flow for a more complex 

geometry than those evaluated in sections 6.3.1 and 6.3.2, flow around an infinite circular 

cylinder is evaluated. The flow behavior, drag coefficient, CD, and Nusselt number, Nu, 
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for flow around an infinite cylinder are well known for continuum conditions. At very 

low Reynolds numbers, Re ≈ 0 - 5, viscous forces dominate and the flow is attached, 

steady, and symmetric. As Re increases, Re ≈ 5 - 47, the boundary layer separates and 

forms a pair of steady, symmetric, counter-rotating vortices in the cylinder wake. As Re 

increases further, the vortices grow and are alternately shed from either side of the 

cylinder, resulting in asymmetries and unsteady flow [33]. CD and Nu are evaluated at 

very low Re in this study for several reasons. Most significantly, typical microfluidic 

system Re are very small, due to the small length scales. Additionally, the symmetry 

present at low Re may be utilized to reduce the computational problem size. Also, 

without flow separation, effects due to rarefaction only should be more evident. And, 

furthermore, some slip flow CD and Nu data are available for comparison to numerical 

results at low Re, while none exists at higher Re. These data include an analytic CD 

solution for creeping slip flow around a sphere [34], for which the rarefaction effects are 

expected to be comparable in magnitude to creeping slip flow around a cylinder; and, 

experimentally determined Nu for low Re slip flow around a cylinder [35]. 

The numerical problem specification and flow parameters utilized to model flow 

around an infinite cylinder are presented in Fig. 6.4 and Table 6.3. The numerical CD, per 

unit length, are obtained utilizing the standard definition, ( ) DuFC DD
221 ∞∞= ρ , where 

(1/2)FD is first computed via an integral x-momentum analysis around the symmetric 

cylinder. Similarly, the numerical Nu are calculated with the usual definition, 

( )∞−= TTkDqNu sr
"
cyl , where ( )2Dq "

cyl π , one-half of the thermal energy exchange 

rate, per unit length, due to the cylinder, is first obtained via an integral thermal energy 

analysis around the symmetric cylinder.  
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Fig. 6.4. Problem specification for low Reynolds number, infinite cylinder CD and Nu. 

 
 

Table 6.3. Grid resolution, order-of-accuracy, and comparison to reference 
values for steady state (t = 60µs) infinite cylinder CD and Nu. 

Kn Re ∆x CD p CD [37] CD [36] Nu p Nu [39] σ±Nu  
  (=∆y)   (Kn = 0) (Kn = 0)   (Kn = 0) [35] 

0.000 0.10 D/4 102.83    0.52    
  D/8 95.43    0.50    
  D/16 90.73    0.49    
  extrap. 82.59 0.66 54.42 58.39 0.45 0.44 0.45 - 

0.042 0.10 D/4 99.39    0.51    
  D/8 93.19    0.49    
  D/16 89.07    0.48    
  extrap. 80.97 0.59 54.42 58.39 0.45 0.55 0.45 - 

0.076 0.10 D/4 97.74    0.50    
  D/8 92.21    0.48    
  D/16 88.50    0.47    
  extrap. 80.85 0.57 54.42 58.39 0.45 0.58 0.45 - 

0.000 1.37 D/4 11.45    1.03    
  D/8 10.50    0.99    
  D/16 9.91   - 0.95    
  extrap. 8.90 0.67 9.62  0.75 0.26 0.87 - 

0.042 1.77 D/4 9.33    1.08    
  D/8 8.63    1.03    
  D/16 8.17   - 0.99    
  extrap. 7.36 0.64 8.41  0.90 0.47 0.94 0.81±0.04

0.076 0.98 D/4 13.72    0.88    
  D/8 12.84    0.84    
  D/16 12.25   - 0.82    
  extrap. 11.13 0.60 11.63  0.77 0.57 0.78 0.63±0.07
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The resulting, steady state (t = 60µs) CD and Nu for each of the three gird resolutions 

examined, are presented in Table 6.3, and the highest grid resolution CD and Nu are also 

plotted and compared to reference values in Figs. 6.5 and 6.6, respectively. The grid 

resolution order-of-accuracy is approximately 0.6 for CD and 0.5 for Nu. For each set of 

Kn and Re conditions Richardson extrapolation [30] is used to approximate the grid 

independent CD and Nu, which are then compared to reference values in Table 6.3. 

The numerically determined infinite cylinder CD reported in Table 6.3 and Fig. 6.5, 

for continuum flow, Kn = 0.0, are within approximately 3.0% of the reference value [37] 

at Re ~1.0 (∆x = ∆y = D/16), but are roughly 50% larger than the reference values 

[36, 37] at Re = 0.1. A likely cause of this discrepancy is that the reference CD values are 

for an unconfined cylinder, which cannot be exactly numerically simulated. The effect of 

the computational boundaries, which is reduced by increasing the distance of the 

boundaries from the cylinder, is to increase CD, particularly at low Re, by creating a 

blockage effect with the upper boundary condition, and by not allowing viscous effects to 

extend infinitely [38]. The effect of rarefaction, quantified by Kn, on the numerically 

determined cylinder CD is comparable to, although less than, the analytically predicted 

effect of Kn on sphere CD. The sphere CD is reduced 6.71% for Kn = 0.042, and 10.44% 

for Kn = 0.076, for βν = 1 and all Re [34]. The numerically determined cylinder CD is 

roughly 1-2% less for Kn = 0.042, and 2-3% less for Kn = 0.076. It is likely that an 

increase in both the computational domain boundaries, and the grid resolution, will 

improve the comparison between the numerical and reference CD data, particularly at 

Re = 0.1, however, this creates an inhibitively large computational problem.
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Fig. 6.5. Steady state (t = 60µs) low Reynolds number, infinite cylinder CD. 
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Fig. 6.6. Steady state (t = 60µs) low Reynolds number, infinite cylinder Nu. 
(Error bars for [35] data are one-standard-deviation.) 
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Consequently, the agreement between the numerical CD data and the reference values at 

Re ~1.0, and the agreement in tends due to rarefaction for the cylinder and sphere CD, are 

considered sufficient verification of the algorithm’s ability to model a rarified flow 

around an infinite circular cylinder. 

The numerically determined infinite cylinder Nu data reported in Table 6.3 and Fig. 

6.6 are in reasonable agreement with both the continuum correlation [39] and the 

experimental slip flow data [35]. For the highest grid resolution, the numerical Nu for 

continuum flow, Kn = 0.0, are within 8% of the correlation values. There are no 

comparable experimental data at Re = 0.1; however, the numerical data exhibit the same 

trend as the experimental data, that is, for decreasing Re there is a reduced effect of Kn on 

Nu. At Re ~ 1.0 the numerical slip flow Nu are somewhat higher than the experimental 

values. The numerical slip flow Nu at Re ~ 1 are likely higher than the experimental slip 

flow Nu, due to the approximation of the numerical thermal accommodation coefficient, 

σt = 1. Experimentally measured σt are often near unity, but may be any value between 

zero and one. A value of σt less than one will result in an increase in the temperature 

jump at the surface, which will then produce a decrease in Nu. Overall, the agreement 

between the numerical Nu data, the correlation data [39] and the experimental data [35], 

validate that the MPM-ICE algorithm, with the slip flow momentum and energy 

exchange modifications, adequately represents the thermal/hydrodynamic flow behavior 

of a rarified gas around an infinite circular cylinder. 

 
6.3.4. Unsteady slip flow fluid-structure-interaction 

The studies presented in sections 6.3.1 - 6.3.3 verify that, for the configurations 

evaluated, the MPM-ICE algorithm, with the slip flow momentum and energy exchange 
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modifications, is able to model the steady state thermal and hydrodynamic interaction of 

a rarified gas with a stationary solid. To verify that the algorithm is capable of accurately 

predicting unsteady fluid-structure-interaction with a rarified flow, the thermal/structural 

response of a damped-oscillatory three-dimensional cylindrical fin, subject to an 

impulsively started uniform, rarified flow, as illustrated in Fig. 6.7, is evaluated. This 

particular configuration is evaluated because there are several similar microscale 

applications, including, atomic force microscope measurements [5, 7, 16], heat 

exchangers [4], and bio-sensors and actuators [11, 12, 15]. In this evaluation, the fin 

initially has zero displacement, ( ) 00 =t,δ , zero velocity, ( ) 00 =∂∂ yt,δ , and a uniform 

temperature equal to the constant fin base temperature, ( ) ( ) bTt,T,yT == 00 . The rarified 

gas initially has a uniform velocity, , and a uniform temperature, , that is less than 

the fin base temperature. As the system is set in motion, the sudden fluid force on the fin 

results in its displacement and subsequent damped oscillation while it simultaneously 

transfers heat to the fluid. 

∞u ∞T

To verify the numerical simulation of this system, comparisons to analytic solutions  
 
are necessary. The governing equation for beam vibration, the Euler-Bernoulli equation  
 
[40], may be solved with the force of the fluid modeled as a Stokes drag force, 
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FD(y,t)/L = Cµ(u∞ - ∂δ(y,t)/∂t), which is accurate for very low Re flow. The Stokes drag 

coefficient, C, is related to the typical drag coefficient as CD = 2C/Re. The Euler-

Bernoulli equation, boundary conditions, initial conditions, and resulting analytic fin 

displacement solution, δ(y,t), as obtain by the standard solution methods of separation-of-

variables and orthogonality, are summarized in Table 6.4.  

The governing energy equation for the fin, boundary conditions (with a convective 

tip condition), initial conditions, and resulting analytic transient temperature distribution, 

obtained, again, by the standard solution methods of separation-of-variables and 

orthogonality, are summarized in Table 6.5. To derive the unsteady, normalized, analytic 

temperature distribution, Θ(y,t), it is assumed that the transient fin temperature varies 

only axially and that the convective heat transfer coefficient, h, is uniform and constant. 

In reality, however, h varies both spatially and temporally, and the fin cross sectional 

temperature will also vary slightly (BiD ~ 0.1). Consequently, the analytic Θ(y,t) solution 

presented in Table 6.5, may only be expected to provide an approximate comparison to 

the numerical data. 

The problem specification and flow parameters utilized to model the transient fin 

displacement and temperature are given in Fig. 6.7 and Table 6.6. As specified in Table 

6.6, both continuum flow, Kn = 0, and rarified flow, Kn = 0.042, are evaluated for both a 

flexible, E = 5x106 Pa, and a less flexible, E = 5x109 Pa, fin. The transient numerical 

solution is obtained for t = 0 - 80µs, with data recorded every 0.5µs. For each timestep 

recorded, the fin cross sectional average material particle displacement and temperature 

are obtained at 40 equally spaced axial intervals (for both grid resolutions evaluated). 
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Table 6.4. Analytic solution for transient fin displacement. 
 
problem specification 
 boundary conditions initial conditions 

( ) ( ) ( )
cscscs A

uC
y

t,y
A

EI
t

t,y
A

C
t

t,y
ρ
µδ

ρ
δ

ρ
µδ ∞=

∂
∂

+
∂

∂
+

∂
∂

4

4

2

2

 
( ) 00 =t,δ  
( ) 00 =∂∂ yt,δ  
( ) 022 =∂∂ yt,Lδ  
( ) 033 =∂∂ yt,Lδ  

( ) 00 =,yδ  
( ) 00 =∂∂ t,yδ  

problem solution 

( ) ( ) ( ) ( ) ( )( )tsintcostexpAyYyt,y n,dn,dnnn,d
n

nnnnp ωωωςωωςδδ +−+= ∑
∞

=1
 

 
n Lnβ  

EILuC
An

244
∞µ

 

 1 1.8751 -1.5201·100

 2 4.6941 -2.1450·10-2

 3 7.8548 -1.6041·10-3

 4 10.9955 -2.9866·10-4

 5 14.1372 -8.5002·10-5

 6 17.2788 -3.1166·10-5

 7 20.4204 -1.3518·10-5

 8 23.5619 -6.6098·10-6

( ) ( )( )222 4624 yLyLEIyuCyp +−= ∞µδ  
( ) ( ) ( ) ( ) ( )ysinysinhycosycoshyY nnnnnnn βσβσββ +−−=  

( ) ( ) ( ) ( )LcosLcoshLsinLsinh nnnnn ββββσ +−=  
( ) ( ) 1−=LcosLcosh nn ββ  

( ) ( ) ( )dyyYdyyYyA
L

n

L

npn ∫∫−= 0

2

0
δ  

csnn AEI ρβω 2=  
( ) EIAAC csncsn ρβρµς 22=  

21 nnn,d ςωω −=  
 9 26.7035 -3.5351·10-6

 

Table 6.5. Analytic solution for transient fin temperature distribution. 
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Table 6.6. Problem specification, error evaluation, and CD and Nu results  
for the transient, flexible fin displacement and temperature response. 

case Kn Re E (Pa) ∆y (=∆x) CD ( ) Dt,yδ  Nu ( )t,yΘ  
      L2 error  L2 error
1 0.000 0.10 5.0x106 D/4 183.256 0.823 0.566 2.861 
    D/8 162.716 0.741 0.551 2.552 
2 0.042 0.10 5.0x106 D/4 180.206 0.866 0.562 2.780 
    D/8 160.406 0.763 0.546 2.478 
3 0.000 0.10 5.0x109 D/4 - 0.035 0.577 2.735 
    D/8 - 0.031 0.560 2.501 
4 0.042 0.10 5.0x109 D/4 - 0.034 0.570 2.621 
    D/8 - 0.031 0.554 2.417 

 
 
The normalized numerical fin displacement, δ(y,t)/D, for the higher grid resolution 

data (∆x = ∆y = D/8), is presented and compared to the analytic solution in Fig. 6.8, for 

several axial locations, y/L = 0.3, 0.6, 0.9. All of the parameters required to calculate the 

analytic fin displacement (Table 6.4), are specified in Fig. 6.7, except the Stokes drag 

coefficient, C = ReCD/2, which is unknown. Therefore, for cases 1 and 2, which are the 

more flexible fins, the CD that results in the smallest L2 norm error between the analytic 

and numeric δ(y,t)/D data is utilized to obtain the analytic solution. 

The resulting CD values and L2 norm errors, for cases 1 and 2, are reported in Table 

6.6, for each grid resolution evaluated. Cases 3 and 4, the more rigid fins, are intended to 

simulate the fin with zero displacement. Consequently, the L2 norm error given in Table 

6.6 for cases 3 and 4 is the error of the numerical δ(y,t)/D data compared to δ(y,t)/D = 0, 

and because CD is calculated from the fin deflection, no CD is reported for cases 3 and 4. 

The expected CD for an unconfined, infinite cylinder, at Re = 0.1 is 58.39 [36]. The 

numerical finite, cylindrical fin CD reported in Table 6.6 for cases 1 and 2, are much 

larger than 58.39, due to the effects of flow around the tip of the fin [33], the course grid 

resolution, and the proximity of the computational boundaries to the fin [38], as discussed 
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Fig. 6.8. Comparison of analytic and numeric transient fin displacement, δ(y,t)/D. 
 

previously in section 6.3.3. CD for Kn = 0.042 are approximately 1.5% less than CD for 

Kn = 0.0. Correspondingly, the amplitude of the fin’s displacement is slightly lower for 

Kn = 0.042, compared to Kn = 0.0, and the time required to reach steady state is slightly 

longer for Kn = 0.042 compared to Kn = 0.0. Although this reduction in CD due to 

rarefaction is slight, it is consistent in magnitude with the reduction in CD due to 

rarefaction for the infinite cylinder, as presented previously in Fig. 6.5. 

All of the parameters required to calculate the analytic transient temperature 

distribution (Table 6.5), are specified in Fig. 6.7, except the heat transfer coefficient, 

h = Nukr/D, which is unknown. Consequently, the Nu that results in the minimum L2 

norm error between the analytic and numeric normalized temperature distribution, Θ(y,t), 

is utilized to obtain the analytic solution. The resulting Nu and L2 norm errors for each 

case and grid resolution are reported in Table 6.6. The numeric and analytic Θ(y,t), for 

case 2 are compared at several axial locations,  y/L = 0.15, 0.30, 0.90, in Fig. 6.9, for the  
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Fig. 6.9. Comparison of analytic and numeric transient fin temperature distribution, Θ(y,t).

 

higher grid resolution data (∆x = ∆y = D/8). Only data for case 2 are presented in Fig. 

6.9, as the data for each of the other three cases evaluated are very similar. The numeric 

and analytic Θ(y,t) in Fig. 6.9 are comparable, but not identical, likely because the 

numerical h is not uniform or constant.  

Differences between the transient thermal data for each of the numerically evaluated 

cases are more evident by comparing the transient average Num. Using the fin cross 

sectional average material particle temperature at 40 axial locations, the transient local 

Nusselt number, Nu(y,t), may be approximated with an energy balance. For each of the 

four cases evaluated, the transient average Num (the average of the 40 local Nu(y,t)) are 

presented in Fig. 6.10. In all four cases, Num is initially approximately 1.0, and as time 

progress, Nu decreases and approaches, although within the time period numerically 

evaluated, does not reach, a thermally steady state value. 
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Fig. 6.10. Comparison of axial average transient numeric Nu. 

 

For the more flexible fins, cases 1 and 2, Num decreases when the fin’s motion decreases 

the relative velocity between the fin and the fluid, and Num increases when the fin’s 

motion increases the relative velocity between the fin and the fluid. Num for the rigid fins, 

cases 3 and 4, are generally larger than Num for the flexible fins, cases 1 and 2, likely due 

to the flexible fin’s deformed geometry. The expected steady state Nu for an unconfined, 

infinite cylinder, at Re = 0.1 is 0.45 [39]. Although, for each of the four cases evaluated, 

the numerical Nu data are not thermally steady state, the fin is finite in length, and 

confined by computational boundaries, the minimum L2 norm error Nu, reported in Table 

6.6, and the transient axial average Nu, present in Fig. 6.10, are still comparable to the 

reference value of 0.45. 

The data presented in Fig. 6.8 – 6.10 indicate that the MPM-ICE algorithm, with the 

slip flow momentum and energy exchange modifications, is capable of accurately 

predicting the unsteady fluid-structure-interaction of a damped-oscillatory three-
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dimensional cylindrical fin, subject to an impulsively started uniform, rarified flow, as 

compared to the analytically predicted displacement and temperature solutions as well as 

steady state reference CD and Nu data. 

 
6.4. Summary 

This study modifies the momentum and thermal energy exchange models of an 

existing, continuum based, multifield, compressible, unsteady, Eulerian-Lagrangian FSI 

algorithm, such that for a rarified gas in the slip flow regime the equivalent of first-order 

slip velocity and temperature jump boundary conditions are achieved at fluid-solid 

surfaces, which may move and deform with time. The momentum and thermal energy 

exchange models are modified by utilizing slip flow momentum and energy exchange 

coefficients that are derived as a function of the level of rarefaction from the original 

first-order slip velocity and temperature jump boundary conditions. The momentum and 

energy exchange models with the slip flow momentum and energy exchange coefficients 

are then applied at fluid-solid surfaces such that momentum is exchanged between the 

rarified gas and the solid material in the fluid-solid surface normal and tangential 

coordinate directions, rather than arbitrary global coordinates, and slip flow in the surface 

tangential direction, is realized.  

Following the development and implementation of the slip flow momentum and 

energy exchange modifications, several basic configurations are considered to verify the 

resulting algorithm’s capabilities. The configurations include the velocity profiles of a 

rarified gas between parallel plates; temperature profiles of a rarified gas between parallel 

plates; drag coefficients, CD, and Nusselt numbers, Nu, for low Reynolds number rarified 

flow around an infinite cylinder; and, the transient, thermal/structural response of a 
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damped-oscillatory three-dimensional finite cylinder subject to an impulsively started 

uniform, rarified flow. For each configuration, the numerical results are evaluated with 

grid convergence and order-of-accuracy studies, as well as comparison to analytical, 

experimental, or previously established reference data. Results of these evaluations 

indicate that the slip flow momentum and energy exchange models conserve exchanged 

momentum and energy, respectively, and that with these models, the algorithm is capable 

of modeling steady and unsteady fluid-structure-interaction with rarefaction effects, with 

accuracy approximately equivalent to the first-order slip velocity and temperature jump 

boundary conditions.  

There are many microscale systems for which both rarefaction and fluid-structure-

interaction effects are significant. Based on the modifications and verifications presented 

in this study it is expected that the MPM-ICE algorithm, with the slip flow momentum 

and energy exchange modifications, has the unique ability to accurately model and 

evaluate these systems, where other FSI algorithms can not. Even so, there are potential 

improvements and additional verifications of the algorithm that would be beneficial. If 

experimental, or DSMC data for a microsystem with both FSI and rarefaction effects 

becomes available, the numerical algorithm should be further validated/verified by 

comparison to these data. Also, the verifications present in this study are fairly basic, and 

consequently the slip flow momentum and energy exchange modifications have not yet 

been verified in conjunction with many of the algorithm’s more advanced capabilities, 

such as, adaptive-mesh-refinement, implicit pressure calculation, variable fluid 

properties, viscous dissipation, and an increased number of materials. Additionally, 

refinement of the slip flow momentum and energy exchange models could potentially 
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include a more accurate numerical approximation for the fluid-surface area in each 

surface cell (used to calculate the slip flow momentum and energy exchange 

coefficients), and possibly the inclusion of creep flow and/or higher order slip boundary 

conditions at the fluid solid surface. 

 
6.5. Nomenclature 

A cell fluid-solid surface area 

Ac fin cross sectional area 

BiD Biot number, skhD  

C Stokes drag coefficient, 2ReCD  

c speed of sound 

CD drag coefficient, ( )DLuFD
22 ∞∞ρ  

cfl Courant–Friedrichs–Lewy number 

cp specific heat at constant pressure 

cυ specific heat at constant volume 

D diameter or characteristic length  

e internal energy per unit mass 

E Young’s modulus of elasticity, ( )KGGK 39 +  

f force per unit volume 

FD drag force 

Fo Fourier number, 2Dtα  

G shear modulus of elasticity 

rsH  thermal energy exchange coefficient 
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slip
rsH  slip flow thermal energy exchange coefficient 

h heat transfer coefficient 

h channel height 

I moment of inertia 

K bulk modulus of elasticity 

rsK  momentum exchange coefficient 

slip
rsK  slip flow momentum exchange coefficient 

k thermal conductivity 

Kn Knudsen number, Dλ  

Knm Knudsen number based on mean ρm, Pm, Tm

L fin length 

L2
 norm, ∑ =

=
n

i ixx
1

2
2

 

Ma Mach number, ( )πγ2KnRe  

N number of materials 

Nu Nusselt number, rkhD  

P pressure 

p order-of-accuracy 

Pr Prandtl number, kc pµ  

Q rotation matrix 

q thermal energy exchange rate per unit volume 

q” heat flux 

R gas constant 
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Re Reynolds number, µρ Du∞∞  

RMS root-mean-square, ( )∑ =
=

n

i irms xnx
1

21  

T temperature 

t time 

Tb fin base temperature 

u velocity vector 

V cell volume 

x, y, z Cartesian coordinate directions 

x', y’, z’ surface coordinate directions 

 
6.5.1. Greek symbols  

α thermal diffusivity, pck ρ  

βt first-order temperature jump coefficient 

βν first-order velocity slip coefficient 

γ ratio of specific heats, pccυ  

δ fin deflection 

θ volume fraction 

Θ nondimensional temperature, ( ) ( )∞∞ −− TTTT b  

λ mean free path, πρµ RT2  

µ dynamic viscosity 

ν kinematic viscosity, ρµ  

ρ density 

σ stress 
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σ standard deviation 

σt thermal accommodation coefficient 

σν momentum accommodation coefficient 

τ shear stress 

υ specific volume 

φ rotation angle about z-axis 

ψ rotation angle about y-axis 

  
6.5.2. Subscripts  

∞ free stream value 

i inlet value 

m mean value   

o outlet value 

r material index 

s material index 

w wall value 

x, y, z Cartesian coordinate directions 

  
6.5.3. Superscripts  

- before exchange contribution 

+ after exchange contribution 

0 initial value 
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CHAPTER 7 

 
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 
The preceding chapters introduce various microscale effects, means of analyses, and 

results for flow and heat transfer in the slip flow regime. A summary of these results, 

conclusions, and recommendations for the continuation and advancement of this research 

are given in the present chapter.  

 
7.1. Summary 

There are many current and potential applications for microfluidic systems in 

electronics, instrumentation, bioengineering, medicine, communications, and advanced 

energy systems. Microfluidic systems, however, often exhibit noncontinuum flow 

behaviors, scaling effects, and manufacturing effects that cannot be predicted with the 

extrapolation of macroscale models to the microscale. As a result, microscale flow 

characteristics are often not well understood, reliable microfluidic design data are limited, 

and the parameters and computational methods used to model microfluidic systems are 

not well established. In response to these deficiencies, the research herein has contributed 

to the advancement of the numerical modeling capabilities and methodologies for 

microfluidic systems and numerically obtained design data for several common 

microfluidic configurations and effects.  
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MPM-ICE, a continuum based, three-dimensional, unsteady, compressible fluid-

structure-interaction (FSI) algorithm, introduced in Chapter 2, was utilized to complete 

the studies presented in Chapters 2 - 6. To accurately model microfluidic systems, several 

modifications to this algorithm were implemented, including slip velocity, temperature 

jump, and creep flow boundary conditions, and viscous dissipation terms. Slip velocity 

and temperature jump boundary conditions were applied utilizing two separate 

approaches, the first for single fluid internal flow problems, and the second for FSI 

problems. 

For single fluid internal flow problems (Chapters 3 - 5), various slip velocity and 

temperature jump boundary condition models [1-4] were applied at the fluid 

computational boundaries. Utilizing this approach, the frictional losses and convective 

heat transfer rates, presented in terms of the Poiseuille and Nusselt Number, Po and Nu, 

respectively, of rarified, steady state, laminar, constant wall temperature (T) and constant 

wall heat flux (H2) rectangular microchannel flows were investigated. The numerical 

results for Po, NuH2, and NuT are given in terms of the aspect ratio (AR), degree of 

rarefaction (βν1Kn), the gas-wall interaction parameter (β), slip boundary condition model 

(βν2, βt2), creep flow (uc/um), viscous dissipation (BrH2 or BrT), axial conduction (Pe), and 

thermally/hydrodynamically developing flow (x/PeDh). As a means of verifying the 

numerical Po, NuH2, and NuT results, analytic solutions for Po, NuH2, and NuT, Eqs. 

(3.13), (4.10), and (4.12), respectively, were derived for nearly incompressible, steady 

state, and thermally/hydrodynamically fully developed parallel plate flow and include 

effects of first- and second-order boundary conditions, creep flow and viscous dissipation 

with pressure and shear work.  
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For fluid-structure-interaction problems (Chapter 6) the momentum and thermal 

energy exchange models of the MPM-ICE FSI algorithm were modified, such that for a 

rarified gas in the slip flow regime the equivalent of first-order slip velocity and 

temperature jump boundary conditions were achieved at the fluid-solid surfaces, which 

may move and deform with time. The momentum and thermal energy exchange models 

were modified utilizing slip flow momentum and energy exchange coefficients, which 

were derived from the original first-order slip velocity and temperature jump boundary 

conditions as functions of the level of rarefaction. The momentum and energy exchange 

models, with the slip flow momentum and energy exchange coefficients, were then 

applied at fluid-solid surfaces such that momentum is exchanged between the rarified gas 

and the solid material in the fluid-solid surface normal and tangential coordinate 

directions, rather than arbitrary global coordinate directions, and slip flow in the surface 

tangential direction is realized. Following the development and implementation of the 

slip flow momentum and energy exchange modifications, several basic configurations 

were evaluated and compared to analytical, experimental, or previously established 

reference data. The configurations include velocity profiles of a rarified gas between 

parallel plates; temperature profiles of a rarified gas between parallel plates; drag 

coefficients, CD, and Nusselt numbers, Nu, for low Reynolds number, rarified flow 

around an infinite cylinder; and, the transient, thermal/structural response of a damped-

oscillatory three-dimensional finite cylinder subject to an impulsively started uniform, 

rarified flow. To verify the numerical results of the transient FSI study, analytic solutions 

for the finite, flexible cylinder displacement, δ(y,t), Table 6.4, and temperature 

distribution, Θ(y,t),  Table 6.5, were derived. 
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7.2. Conclusions 

General conclusions from the first set of studies, the evaluation of rarified, single 

fluid, rectangular microchannel Po, NuH2 and NuT, are as follows. 

• Based on the verifications and data presented in Chapters 2-5, ICE, with the single 

fluid microscale modifications discussed, was capable of accurately assessing the effects 

of rarefaction with first- or second-order slip boundary condition models, creep flow, 

viscous dissipation, and axial conduction. 

• The data presented in Chapters 3-5 indicate that many of the microscale effects 

previously considered negligible, with respect to the resulting microchannel Po, NuH2, 

and NuT, such as, second-order slip boundary conditions, creep flow, viscous dissipation 

with pressure and shear work, axial conduction, and thermally/hydrodynamically 

developing flow, are in fact significant within the slip flow regime. Depending on the 

flow parameters (x/PeDh, βν1Kn, β, Pe, AR, Br, etc.), these effects may change the 

resulting Po, NuH2, and NuT as much as an order of magnitude.  

• The assumption of thermally and hydrodynamically fully developed flow is 

generally well founded for low Pe, and microchannel lengths that are considerably larger 

that the hydraulic diameter, as shown in Chapters 3-4.  

• Po decreases with βν1Kn for all AR investigated. For example, using first-order slip 

boundary conditions, Po for AR = ∞ and β = 1.667 decreases by 59% from βν1Kn = 0.00 

to βν1Kn = 0.12. 

• NuT and NuH2 may either increase or decrease with βν1Kn, depending on β. However, 

for β = 1.667, the β value typically assumed for air, NuT and NuH2 decrease with βν1Kn for 

all AR investigated. For instance, with first-order slip boundary conditions, β = 1.667, and 
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AR = ∞, NuH2 and NuT decrease by 59% and 58% from βν1Kn = 0.00 to βν1Kn = 0.12, 

respectively. 

• Effects of second-order boundary conditions increase as rarefaction increases, with 

the two models studied [3, 4] having opposite effects on Po, NuH2, and NuT, when 

compared to first-order boundary conditions [1, 2]. For AR = ∞, βν1Kn = 0.12, and 

β = 1.667 the second-order Deissler boundary conditions [3] predict a 24% decrease in 

Po and a 28% decrease in NuH2, compared to the first-order boundary conditions, while 

the Karniadakis and Beskok boundary conditions [4] predict a 17% increase in Po and a 

8% increase in NuH2, compared to the first-order boundary conditions. 

• The Po, NuH2, and NuT data obtained with the second-order boundary conditions 

models of [3] and [4], are expected to be useful as additional experimental and theoretical 

results become available such that the accuracy of the data may be assessed. Currently, 

however, there are many proposed second-order models and methodologies and none are 

widely accepted or validated. Consequently, until a particular second-order model or 

methodology is extensively substantiated, theoretically and experimentally, further 

production of data with a specific second-order model will not be particularly beneficial. 

• In the slip flow regime, creep flow results in a decrease in Po and an increase in NuH2 

for heating, and an increase in Po and a decrease in NuH2 for cooling, by an amount 

dependant on uc/um, βν1Kn, β, and AR. For instance, for AR = 1, β = 1.667, and 

βν1Kn = 0.01 a uc/um = ±0.25 will produce a 25% decrease in Po and a 14% increase in 

NuH2 for heating, and a 25% increase in Po and a 13% decrease in NuH2 for cooling, 

compared to Po and NuH2 without creep flow effects (uc/um = 0.0). The effects of creep 

flow, for a given uc/um, decrease with increasing βν1Kn. The significance of including 
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creep flow in the numerical analysis of Po and Nu depends on the magnitude of the heat 

flux and the degree of rarefaction. 

• Viscous dissipation increases NuH2 for cooling, and decreases NuH2 for heating as a 

function of BrH2, βν1Kn, β, and AR. For example, with AR = ∞ and βνKn = 0.00 a 

BrH2 = ±0.05 will produce a 47% increase in NuH2 for cooling, and a 24% decrease in 

NuH2 for heating, The effects of viscous dissipation, for a given BrH2, decrease with 

increasing βν1Kn. 

• The combined effects of viscous dissipation, flow work, and shear work within the 

slip flow regime cause NuT to increase, from zero for continuum flow, with increasing 

βν1Kn by an amount dependent on AR and β but not on the magnitude of BrT or Pe.  

• As discussed in Chapters 4-5, viscous dissipation in rarified flows should not be 

considered without the related effects of pressure work and shear work, since the 

contribution of these effects considerably alters the predicted NuT. 

• Axial conduction effects are significant for flow with low Pe, and may increase NuT 

by up to 15%, for the AR studied, compared to NuT without axial conduction effects. 

Effects of axial conduction increase with decreasing Pe, and decrease with increasing 

βν1Kn. 

• For these evaluations, the ICE algorithm was run implicitly, such that the required 

computation time and accumulation of numerical error were reduced. Consequently, the 

use of ICE for these computational studies was very advantageous.  

• One disadvantage of using ICE was that, the computational domain utilized by the 

algorithm was limited to rectangular geometries, and as a result, the variety of microscale 

systems that could be examined utilizing ICE only, was somewhat limited. 
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Several general conclusions based on the second set of studies, the evaluation of FSI 

in the slip flow regime, are as follows. 

• With the modified slip flow momentum and energy exchange models, the MPM-ICE 

FSI algorithm is capable of modeling both steady and unsteady FSI with rarefaction 

effects, with accuracy approximately equivalent to the first-order slip velocity and 

temperature jump boundary conditions. 

• The MPM-ICE algorithm, with the slip flow momentum and energy exchange 

modifications, is uniquely capable of evaluating FSI in the slip flow regime, where other 

FSI algorithms cannot. Because there are many microscale systems for which both 

rarefaction and FSI effects are important, and these systems may be impossible to isolate 

and study experimentally, and too complex to study analytically, this numerical 

capability presents significant possibilities for microsystem design and evaluation.  

• MPM-ICE is explicit with time, and consequently requires considerable 

computational resources, which may be a deterrent to the use of the MPM-ICE algorithm 

for further microsystem evaluations. With this said, however, it should be noted that the 

verifications completed for this research were of a preliminary nature, and not optimized 

in any way. It is likely that optimization of the physical system (Re, Pr, E/ρ, etc.), 

optimization of the computational parameters (CPUs, patches, cfl, etc.), and, most 

significantly, use of the algorithm’s more advance features, such as adaptive-mesh-

refinement and implicit pressure calculation will considerably reduce the required 

computational resources. 

 

 



 113

7.3. Recommendations 

Based on the data and advancement of microscale modeling capabilities obtained 

with the present research, as well as the current lack, or nonexistence, of design data for 

many microfluidic systems, several studies may logically continue and advance those 

presented in this work.  

• ICE is a compressible flow algorithm, however, for the purpose of verification, the 

majority of the frictional and convective heat transfer data reported in these studies are 

for nearly incompressible flow. There are, however, many microfluidic systems for which 

the assumption of incompressible flow is not applicable, and therefore the combined 

effects of rarefaction and compressibility on microchannel Po and Nu should be 

evaluated. 

• For the current research, many of the microscale effects, such as creep flow, axial 

conduction, and viscous dissipation, are considered individually with rarefaction effects, 

and the secondary effect of temperature dependent fluid properties is not considered. In 

an actual microsystem, however, each of these effects will act collectively and may 

interact to amplify or decrease one another, and consequently these possible interactions 

should be investigated. 

• Microfluidic systems, just as their macroscale counterparts, are often comprised of 

channels that have bends, branches, expansions, contractions, etc. However, currently no 

systematic studies are available that report data and/or correlations for pressure loss 

coefficients through any microgeometry as a function of all of the relevant 

nondimensional parameters (Kn, Re, geometry ratios, etc.). Numerical prediction of these 
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data may be used to improve the function of many microfluidic systems, and due to 

current experimental and analytical limitations, such data may otherwise be unattainable. 

• When experimental measurements for local microchannel velocities, pressures, and 

temperatures become available, the numerical and analytical results and methods utilized 

in the present research should be validated by comparison to these data. The usefulness 

and applicability of second-order boundary conditions models, in particular, should be 

assessed. 

• The research presented in Chapter 6 indicates that the MPM-ICE algorithm with the 

slip flow momentum and thermal energy exchange modifications, accurately predicts the 

combined effects of fluid-structure-interaction and rarefaction within the slip flow 

regime. However, these models may potentially be improved with more precise fluid-

surface identification and approximation of the fluid-surface area, and possibly the 

incorporation of creep flow at the fluid-solid surface. 

• The slip flow momentum and energy exchange models and their implementation in 

the MPM-ICE algorithm should be further verified. These models have not yet been 

verified in conjunction with many of the algorithm’s more advanced capabilities, such as, 

adaptive-mesh-refinement, implicit pressure calculation, variable fluid properties, viscous 

dissipation, chemical reaction, and an increased number of materials. Verification and 

subsequent utilization of these combined capabilities will significantly increase the 

applicability of the code for the many microscale FSI systems, such as micro valves, 

pumps, actuators, particulate flows, porous flows, two-phase flows, micro-air-vehicles, 

combustion, and heat exchangers. 
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• Currently, experimental measurements of local velocities, pressures, and 

temperatures within microsystems are generally unattainable. Consequently, there are 

many experimental microchannel friction and heat transfer rate studies that are based on 

measurements of the overall mass flow rate, pressure drop, and temperature difference. 

Within these studies, there are, however, many contradictory results, and without local 

measurements it is difficult to definitively attribute discrepancies to any one particular 

effect. Using the MPM-ICE algorithm (with viscous dissipation, variable fluid properties, 

axial and wall conduction, developing and unsteady flow, and microchannel wall 

deformations) to ‘fill-in’ data that are not obtainable experimentally, may considerably 

advance the general understanding of microfluidic behavior and the significance of the 

various physical effects on the overall flow characteristics. 

• A principle application of microfluidics is to cool high heat flux electrical 

components. Although air-cooling is often advantageous for reasons of simplicity and 

economics, the heat removal requirements of many current electrical components are 

beyond the limits of conventional air-cooling technology. Consequently, the studies 

presented in Chapter 6 should be advanced, and a microscale array of flexible heat 

exchanger fins should be numerically designed and optimized, with the intent of 

increasing the effectiveness of air-cooling for high heat flux applications. With the 

implementation of this scheme, it is expected that flow induced vibrations of the flexible 

fins will increase the hydrodynamic mixing, and as a result increase the convective heat 

transfer rate beyond that of typical microscale laminar flow. The numerical investigation 

of this particular application, will first require verification/validation of the ability of the 

MPM-ICE algorithm to predict the vortex shedding frequency of flow around an object, 
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such as an infinite circular cylinder, as a function of Re. Utilizing the MPM-ICE 

algorithm, with the slip flow modifications presented in the current research, to evaluate 

the combined effects of rarefaction and FSI for this application will provide valuable data 

concerning the effectiveness of such a system with respect to the resulting increases in 

heat transfer and pressure losses, which would be difficult to obtain otherwise, i.e., 

analytically, experimentally, or by a commercial FSI code. 

 
7.4. Nomenclature 

AR aspect ratio 

Br Brinkman number, ( )h
"
wmH DquBr 2

2 µ= , ( )( )wimT TTkuBr −= 2µ  

CD drag coefficient, ( )LDuF hD
22 ∞∞ρ  

cfl Courant–Friedrichs–Lewy number 

cp specific heat at constant pressure 

cυ specific heat at constant volume 

Dh hydraulic diameter or characteristic length  

E Young’s modulus of elasticity 

F friction factor, ( )28 mm,w uρτ  

FD drag force 

H heat transfer coefficient 

K thermal conductivity 

Kn Knudsen number, hDλ  

L length 

Nu Nusselt number, khDh  
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Pe Peclet number,  RePr

Po Poiseuille number,    Ref

Pr Prandtl number, kc pµ  

q” heat flux 

R gas constant 

Re Reynolds number, µρ huD  

T temperature  

Tb fin base temperature 

t time 

u velocity in the x-direction  

x, y, z Cartesian coordinate directions 

 
7.4.1. Greek symbols 

β gas-wall interaction parameter, 11 vt ββ   

βt1 first-order temperature jump coefficient, ( )( ) ( )( )( )Prtt 1122 γγσσ +−  

βt2 second-order temperature jump coefficient 

βν1 first-order velocity slip coefficient, ( ) vv σσ−2  

βν1Kn rarefaction parameter 

βν2 second-order velocity slip coefficient 

γ ratio of specific heats, pccυ   

δ fin deflection  

Θ nondimensional temperature, ( ) ( )∞∞ −− TTTT b  

λ mean free path, πρµ RT2  
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µ viscosity 

ρ density 

σt thermal accommodation coefficient 

σν momentum accommodation coefficient 

τ shear stress 

 
7.4.2. Subscripts 

∞ free stream value 

c creep value 

H2 constant wall heat flux boundary condition 

i inlet value 

m mean value   

T constant wall temperature boundary condition 

w wall value 
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