June 2016 ONR-MURI Monthly Update
PAR-10021867-1516.08 v1 Saturday 25”‘ June, 2016

D Implementing parameter variability

The probability density function of random variable x that is Weibull distributed can be expressed as
We(x) = Bax"exp(-px%) for x >0. (18)

The expression used in the C++11 standard implementation is

w3 (3] "on[()]

The relationship between these two expressions is
1
a=a and f=— = b=p7%, (20)
The shape parameter is a = « > 0 and the scale parameter is b > 0. The shape parameter a is also called

the Weibull modulus in the content of material strength distribution.

The mean of the distribution is
E(x)=bl’<1+l) =[>’_1/“F(1+ i) (21)
a o

where I' is the gamma function. If we assume that the expected value is better represented by the
median, we have
E(x) = b[In(2)]7* . (22)

The generate the Weibull distribution for a random variable, we typically use a transformation from a
uniformly distributed random variable. To find the transformation between two probability distribu-
tions f(y) and g(x), we use the fundamental relation

dx
) = () ‘5 (3)

where the absolute value of the Jacobian of the transformation is used to make sure that probabilities
sum to 1. For the special case where the distribution g(x),x € U ~ [0,1] is uniform, we have

(24)

f(y) =

dx
dy '
Therefore,

x=[0yf(z)dz. (25)

For the Weibull distribution, the right hand side is the cumulative distribution function,

X = foy We(z) dz = foy Baz" exp(-Pz%)dz =1-exp(-By*) =1-exp [— (%)a] . (26)

This relation can be inverted to give the transformed uniformly distributed random number between
oand 1:

1/«
= —lnl—x =v|-In(1—-x l/a. 2
y[ﬁu)] b[-In(1-x)] -

For a random variable that has the mean E(y) » ¥, from (21), the scale parameter is

b E(x) N y ‘
ra+g) T(+3)

© Parresia Research Limited Page 53 of 55
PAR-10021867-1516: 2016_06_30_ONR_MURI_Monthly_Update.pdf

(28)

June 2016 ONR-MURI Monthly Update
PAR-10021867-1516.08 v1 Saturday 25th June, 2016

Therefore, the Weibull-transformed uniformly distributed random variable can be written as
y= oty PG -0 (29)
T (1 + ;)
At this stage one typically invokes the fact that if x is uniformly distributed then so is 1 — x and we can
simplify the computation by using

y=—2—[~In(x)]"". (30)

[Grd)

Alternatively, we can assume that the sample median is a better approximation of the expected value
and use equation (22) to compute the scale parameter:

D (31)
[In(2)]"*

In that case we have

- _M 1/a:_[ln(x) :|1/a .
¢ y[1n<z)] |Gy 6

The existing implementation of the Weibull generator in Uintah uses the following approach. A uni-
formly distributed random number x is generated. This number is used to compute the quantity

F = [-1In(x)]/* (33)

where a is the Weibull modulus. Two other quantities are computed:

1/m =
C= [veth] and 7= —r (34)
Velem r (1 + é)

where Veypt is a reference volume, veler, is the particle volume, m is an exponent, and y is the mean
value of the parameter (y) that is Weibull distributed. The value of y is computed using the product of
F, C, and 7, giving

Vexpt]1/m y 1/a
= —In(x
y [Velem (s i)[(x)] (35)
The code typically uses m = a to get
y Vexpt Ya
e R L3]I (36)
r (1 = Z) Velem

This expression is identical to equation (30) except for a size-effect factor. Note that (32) is the form
used in Scott Swan’s thesis (previously implemented in Uintah):

1/a 1 1/a
_ Vexpt _ nx
Y= [Velem:| y|:ln(1/2):| . (37)

For our purposes, if we use the C++11 Weibull distribution generator, we can incorporate the volume
scaling by just multiplying the scaling factor to the number generated, i.e.,

© Parresia Research Limited Page 54 of 55
PAR-10021867-1516: 2016_06_30_ONR_MURI_Monthly_Update.pdf

June 2016 ONR-MURI Monthly Update
PAR-10021867-1516.08 v1 Saturday 25th June, 2016

1/m
y=[222 We(z.a.6,R) (38)

Velem

where R is the uniformly distributed pseudorandom number in [0,1] generated by the Mersenne
twister algorithm.

© Parresia Research Limited Page 55 of 55
PAR-10021867-1516: 2016_06_30_ONR_MURI_Monthly_Update.pdf

