
June 2016 ONR-MURI Monthly Update
PAR-10021867-1516.08 v1 Saturday 25th June, 2016

D Implementing parameter variability

¿e probability density function of random variable x that is Weibull distributed can be expressed as

We(x) = βαxα−1 exp(−βxα) for x ≥ 0 . (18)

¿e expression used in the C++11 standard implementation is

We(x) = a
b
(x
b
)
a−1

exp [−(x
b
)
a
] . (19)

¿e relationship between these two expressions is

α ≡ a and β ≡ 1
ba
Ô⇒ b = β−1/α . (20)

¿e shape parameter is a = α > 0 and the scale parameter is b > 0. ¿e shape parameter a is also called
theWeibull modulus in the content of material strength distribution.

¿e mean of the distribution is

E(x) = bΓ (1 + 1
a
) = β−1/αΓ (1 + 1

α
) (21)

where Γ is the gamma function. If we assume that the expected value is better represented by the
median, we have

E(x) = b [ln(2)]1/a . (22)

¿e generate the Weibull distribution for a random variable, we typically use a transformation from a
uniformly distributed random variable. To �nd the transformation between two probability distribu-
tions f (y) and g(x), we use the fundamental relation

f (y) = g(x) ∣
dx
dy

∣ (23)

where the absolute value of the Jacobian of the transformation is used to make sure that probabilities
sum to 1. For the special case where the distribution g(x), x ∈ U ∼ [0, 1] is uniform, we have

f (y) = ∣
dx
dy

∣ . (24)

¿erefore,
x = ∫

y

0
f (z) dz . (25)

For the Weibull distribution, the right hand side is the cumulative distribution function,

x = ∫
y

0
We(z) dz = ∫

y

0
βαzα−1 exp(−βzα) dz = 1 − exp(−βyα) = 1 − exp [−(y

b
)
a
] . (26)

¿is relation can be inverted to give the transformed uniformly distributed random number between
0 and 1:

y = [− 1
β
ln(1 − x)]

1/α

= b [− ln(1 − x)]1/a . (27)

For a random variable that has the mean E(y) ≈ y, from (21), the scale parameter is

b = E(x)
Γ (1 + 1

a)
≈ y
Γ (1 + 1

a)
. (28)

© Parresia Research Limited
PAR-10021867-1516: 2016_06_30_ONR_MURI_Monthly_Update.pdf

Page 53 of 55

June 2016 ONR-MURI Monthly Update
PAR-10021867-1516.08 v1 Saturday 25th June, 2016

¿erefore, the Weibull-transformed uniformly distributed random variable can be written as

y = y
Γ (1 + 1

a)
[− ln(1 − x)]1/a . (29)

At this stage one typically invokes the fact that if x is uniformly distributed then so is 1− x and we can
simplify the computation by using

y = y
Γ (1 + 1

a)
[− ln(x)]1/a . (30)

Alternatively, we can assume that the sample median is a better approximation of the expected value
and use equation (22) to compute the scale parameter:

b = y
[ln(2)]1/a

. (31)

In that case we have

y = y [− ln(x)
ln(2)]

1/a

= y [ln(x)
ln(1/2)]

1/a

. (32)

¿e existing implementation of the Weibull generator in Uintah uses the following approach. A uni-
formly distributed random number x is generated. ¿is number is used to compute the quantity

F = [− ln(x)]1/a (33)

where a is the Weibull modulus. Two other quantities are computed:

C = [
vexpt
velem

]
1/m

and η = y
Γ (1 + 1

a)
(34)

where vexpt is a reference volume, velem is the particle volume, m is an exponent, and y is the mean
value of the parameter (y) that is Weibull distributed. ¿e value of y is computed using the product of
F, C, and η, giving

y = [
vexpt
velem

]
1/m y

Γ (1 + 1
a)

[− ln(x)]1/a (35)

¿e code typically uses m = a to get

y = y
Γ (1 + 1

a)
[−

vexpt
velem

ln(x)]
1/a

. (36)

¿is expression is identical to equation (30) except for a size-e�ect factor. Note that (32) is the form
used in Scott Swan’s thesis (previously implemented in Uintah):

y = [
vexpt
velem

]
1/a

y [ln x
ln(1/2)]

1/a

. (37)

For our purposes, if we use the C++11 Weibull distribution generator, we can incorporate the volume
scaling by just multiplying the scaling factor to the number generated, i.e.,

© Parresia Research Limited
PAR-10021867-1516: 2016_06_30_ONR_MURI_Monthly_Update.pdf

Page 54 of 55

June 2016 ONR-MURI Monthly Update
PAR-10021867-1516.08 v1 Saturday 25th June, 2016

y = [
vexpt
velem

]
1/m

We(y, a, b, R) (38)

where R is the uniformly distributed pseudorandom number in [0, 1] generated by the Mersenne
twister algorithm.

© Parresia Research Limited
PAR-10021867-1516: 2016_06_30_ONR_MURI_Monthly_Update.pdf

Page 55 of 55

