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• Year 1:    Proof-of-concept design for solving the RTE
using RMCRT within ARCHES

• Year 2:    Demonstration of a fully-coupled problem using
RMCRT within ARCHES.

    Scalability demonstration.

• Year 3:    Full burner scale V&V/UQ demonstration using
RMCRT.

DeliverablesDeliverables



BackgroundBackground

• Reverse Monte-Carlo Ray Tracing is an all-to-all method.

• All geometry information and radiative properties for the entire
domain must reside in each processor’s memory*.
Very restrictive

* Xiaojing Sun. Reverse Monte Carlo Ray-Tracing For Radiative Heat Transfer in Combustion Systems. PhD
Dissertation, University of Utah, 2009.



ApproachApproach

•    Utilize AMR infrastructure.

•    Multiple levels at different grid resolutions.

•   RMCRT calculations on the coarse regions or levels.

    (3 double precision arrays on a
             2503 domain = 375 Mbytes
             500^3 domain = 3 Gbytes)



ApproachApproach

CFD:   Always computed on the finest level,uniform cell spacing

      RMCRT:
2 Level:         RMCRT on a coarse level, CFD on a fine level.

            “Data Onion”: RMCRT & CFD on fine level, data accessed
                                   from other coarse levels.



2 Levels2 Levels

2 Levels



2 Levels2 Levels

Advantages:
•    Simple

•    Multi-level infrastructure already exists.

•    Previous work suggests that this may be sufficient accurate
for pool fires*.

Disadvantages:
•    Accuracy (maybe).

Gautham Krishnamoorthy. Predicting Radiative Heat Transfer in Parallel Computations of Combustion. PhD
Dissertation, University of Utah, 2005.



Data OnionData Onion

3-Levels



Data OnionData Onion

1D

User inputs:
• Number of levels
• Refinement ratio between levels
• Step size
• Size of fine level patch



Data OnionData Onion

Advantages:

•    Increased accuracy over 2 levels

Disadvantages:

•    Increased complexity

•    Coarsening data multiple times

•     More expensive (maybe?).



ImplementationImplementation  PlanPlan

Develop in a light weight testbed component.

Advantages

•  Rapid testing of 2-level and data onion schemes.

•  Scalability/performance studies focus on RMCRT tasks.

•  Encapsulate verification code, no pollution in ARCHES

•  Forces RMCRT tasks to be portable.



Status: CompletedStatus: Completed

    RMCRT tasks within the test-bed  (single level, multipatch patch)

    90% Complete:   Implementation of coarsening & refining code

   Improved portability of RMCRT tasks.

    95% Complete:  Integration of RMCRT tasks within ARCHES (single

level, multipatch)



Status: Work in ProgressStatus: Work in Progress

•  Verification

•  Serial performance

•  Scalability studies

•  New: Testing hybrid MPI-threaded task scheduler.

RMCRT: Single Level



Benchmark ProblemBenchmark Problem

S. P. Burns and M.A Christon. Spatial domain-based parallelism in large-scale, participating-media, radiative transport
applications. Numerical Heat Transfer, Part B, 31(4):401-421, 1997.

Initial Conditions:

  - Uniform temperature field

  - Analytical function for absorption coefficient



VerificationVerification

S. P. Burns and M.A Christon. Spatial domain-based parallelism in large-scale, participating-media, radiative transport
applications. Numerical Heat Transfer, Part B, 31(4):401-421, 1997.



VerificationVerification



Serial Performance 1 LevelSerial Performance 1 Level

•  Cost = f( #rays, Grid Cells1.4-1.5 communication….)

•  Linear with number of rays, as expected.

•  Doubling the grid resolution (8 X grid cells) = 20ish X increase in cost.



Serial Performance 1 LevelSerial Performance 1 Level
Benchmark: 25 Rays/cell



Scaling 1LevelScaling 1Level

Benchmark: 2563 cells



Hybrid MPI‐threaded Task SchedulerHybrid MPI‐threaded Task Scheduler

Leverage the scalability work of Dr. Berzin’s team*.

Default MPI Task Scheduler:

   Data duplication on each MPI process.
           (neighboring patches, neighboring tasks and ghost data)

  1 MPI process per core.

*Q. Meng, M. Berzins, and J. Schmidt, Using hybrid parallelism to
improve memory use in uintah, Proceeding of the Teragrid 2011.



Hybrid MPI‐threaded Task SchedulerHybrid MPI‐threaded Task Scheduler

Hybrid MPI-threaded Task Scheduler*:

•   MPI and threads.

•  1 MPI process per node.

•  1 thread/core and threads can share data.

•  Meng et al., showed a memory reduction of

      13.5Gb -> 1GB per node (12 cores/node).

       2 material CFD problem, 20483 cells, on 110592 cores of Jaguar

•  Interconnect drivers and MPI software must be threadsafe.

*Q. Meng, M. Berzins, and J. Schmidt, Using hybrid parallelism to
improve memory use in uintah.  In Proceeding of the Teragrid 2011.



Status: PendingStatus: Pending

•  Head to head comparison of RMCRT with Discrete Ordinates Method.

        Accuracy versus computational cost.

•  Grid convergence study.

•  Implement 2-L RMCRT in test-bed component (easy)

 Accuracy versus refinement ratio studies

 Scalability Studies



Status: PendingStatus: Pending

•  Implement 2-L RMCRT in ARCHES.

•  Implement RMCRT with a data onion in the test-bed.

Accuracy versus number of levels, refinement ratio, size of fine patch.

Scalability Studies



SummarySummary

Year 1:    Proof-of-concept design for solving the RTE using
RMCRT within ARCHES/Uintah framework.

Year 2:    Demonstration of a fully-coupled problem using
RMCRT within ARCHES.
    Scalability demonstration.

SummarySummary


