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« Year 1: Proof-of-concept design for solving the RTE
using RMCRT within ARCHES

« Year 2: Demonstration of a fully-coupled problem using
RMCRT within ARCHES.

Scalability demonstration.

* Year 3: Full burner scale V&V/UQ demonstration using
RMCRT.
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- Reverse Monte-Carlo Ray Tracing is an all-to-all method.

- All geometry information and radiative properties for the entire
domain must reside in each processor's memory*.
Very restrictive

* Xiaojing Sun. Reverse Monte Carlo Ray-Tracing For Radiative Heat Transfer in Combustion Systems. PhD
Dissertation, University of Utah, 2009.
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Utilize AMR infrastructure.

Multiple levels at different grid resolutions.

RMCRT calculations on the coarse regions or levels.
(3 double precision arrays on a

2503 domain = 375 Mbytes
50073 domain = 3 Gbytes)
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CFD: Always computed on the finest level,uniform cell spacing

RMCRT:
2 Level: RMCRT on a coarse level, CFD on a fine level.

“Data Onion”: RMCRT & CFD on fine level, data accessed
from other coarse levels.
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Advantages:
- Simple

- Multi-level infrastructure already exists.

- Previous work suggests that this may be sufficient accurate
for pool fires™.

Disadvantages:
- Accuracy (maybe).

Gautham Krishnamoorthy. Predicting Radiative Heat Transfer in Parallel Computations of Combustion. PhD
Dissertation, University of Utah, 2005.
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User inputs:

* Number of levels

- Refinement ratio between levels
- Step size

» Size of fine level patch
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Advantages:

Increased accuracy over 2 levels

Disadvantages:

Increased complexity
Coarsening data multiple times

More expensive (maybe?).
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Develop in a light weight testbed component.

Advantages

- Rapid testing of 2-level and data onion schemes.
+ Scalability/performance studies focus on RMCRT tasks.
* Encapsulate verification code, no pollution in ARCHES

* Forces RMCRT tasks to be portable.
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Status: Cornoletad
v RMCRT tasks within the test-bed (single level, multipatch patch)
v 90% Complete: Implementation of coarsening & refining code
v Improved portability of RMCRT tasks.

v' 95% Complete: Integration of RMCRT tasks within ARCHES (single

level, multipatch)
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Status: Woriin Prograss

RMCRT: Single Level

Verification

Serial performance

Scalability studies

New: Testing hybrid MPI-threaded task scheduler.
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Benchmark Test: Initial Condition, Absorption Coefficient, 4143
Initial Conditions:

- Uniform temperature field

- Analytical function for absorption coefficient

S. P. Burns and M.A Christon. Spatial domain-based parallelism in large-scale, participating-media, radiative transport
applications. Numerical Heat Transfer, Part B, 31(4):401-421, 1997.
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1D Compgrison of Flux Divergence
(417, 128 Rays per cell)
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| S. P. Burns and M.A Christon. Spatial domain-based parallelism in large-scale, participating-media, radiative transport
applications. Numerical Heat Transfer, Part B, 31(4):401-421, 1997.
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* Cost = f( #rays, Grid CeIIs1 415 communication....)

- Linear with number of rays, as expected.

* Doubling the grid resolution (8 X grid cells) = 20ish X increase in cost.
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Benchmark: 25 Rays/cell
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Leverage the scalability work of Dr. Berzin’s team™.

Default MPI Task Scheduler:

Data duplication on each MPI process.
(neighboring patches, neighboring tasks and ghost data)

1 MPI process per core.

*Q. Meng, M. Berzins, and J. Schmidt, Using hybrid parallelism to
improve memory use in uintah, Proceeding of the Teragrid 2011.
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Hybrid MPI-threaded Task Scheduler”:
 MPI and threads.

1 MPI process per node.

1 thread/core and threads can share data.

Meng et al., showed a memory reduction of
13.5Gb -> 1GB per node (12 cores/node).
2 material CFD problem, 20483 cells, on 110592 cores of Jaguar

Interconnect drivers and MPI software must be threadsafe.

*Q. Meng, M. Berzins, and J. Schmidt, Using hybrid parallelism to
improve memory use in uintah. In Proceeding of the Teragrid 2011.
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* Head to head comparison of RMCRT with Discrete Ordinates Method.

Accuracy versus computational cost.

 Grid convergence study.

* Implement 2-L RMCRT in test-bed component (easy)

Accuracy versus refinement ratio studies

Scalability Studies
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* Implement 2-L RMCRT in ARCHES.

+ Implement RMCRT with a data onion in the test-bed.
Accuracy versus number of levels, refinement ratio, size of fine patch.

Scalability Studies
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Year 1:  Proof-of-concept design for solving the RTE using
RMCRT within ARCHES/Uintah framework.

Year 2: Demonstration of a fully-coupled problem using
RMCRT within ARCHES.

Scalability demonstration.
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