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Tuna Can Sensitivity Analysis – Runs Design 

 

The design of the computational runs needed to perform the sensitivity analysis on the Tuna Can 

Case has been carried out according to Pavelic and Saxena (1969). They propose a factorial design 

approach which is very useful when the results of a computation are affected by a large number of 

variables and, then, studying the effect of each variable at a time would require too many, expensive 

and time consuming, runs. According to the factorial design approach a fixed number of levels for 

each variable is chosen and computations are run at all possible combinations of those levels.  

In our case the attention is focused on the sensitivity of computations on four main variables: pool 

fire diameter, DPF, wind speed, vW, container position in the fire, P1, and regression rate, RR. For 

DPF, vW and RR, we chose two levels of variation, denoted by subscripts min and max, while P was 

determined both on an absolute and relative (to DPF) basis, i.e. subscripts min, min_rel, max and 

max_rel respectively. Then we have: 

• Pool fire diameter: DPF, min = 0.5 m and DPF, max = 1 m; 

• Wind speed: vW, min = 0 m/s and vW, max = 4 m/s; 

• Position: Pmin = (0, 1), Pmin_rel = (0, DPF), Pmax = (RPF, 0.5) and Pmax_rel = (RPF, 0.5 DPF). 

• Fuel evaporation rate, RR: RRmin = 1.6 mm/min and RRmax = 6.4 mm/min 

The total number of runs required to investigate the effects of all the variables simultaneously would 

be equal to ∏
i

l
i

i
nvar , where 

il
n  is the number of levels chosen for each set i of variables, ivar . In our 

case 
il

n  equals 2 for DPF, vW and MF ( 2var =i ) and 4 for P ( 1var =i ). Then, the required tests 

would be 3242 13
=⋅ . However, being the maximum diameter, DPF, equal to 1 m, the levels (Pmin, 

Pmin_rel) and (Pmax, Pmax_rel) are exactly the same, thus reducing the total number of runs to 28.  

To reduce the number of runs further, the original runs has been divided into 3 metrics, thus 

allowing to analyze the effects of 3 variables, varying between two levels, at a time. 

A first subsystem is chosen by keeping the regression rate constant (RR = 1.6 mm/min). Then the 

effect of DPF, P (relative basis) and vW can been investigated using the metric showed in Table 1: 

 

 

 
                                                
1 To reduce the number of variables and, then, the number of required runs, the position of the container in the fire can 

be described by a point P defined by a radius, R, and a height, H. The position can be varied only along the direction 

identified by Pmin= (Rmin, Hmin) and Pmax = (Rmax, Hmax). 
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Test No. DPF vW P 
13 0.5 0 Pmin,rel 
14 0.5 0 Pmax_rel 
3 1 0 Pmin_rel 
9 1 0 Pmax,rel 
15 0.5 4 Pmin_rel 
16 0.5 4 Pmax,rell 
6 1 4 Pmin,rel 
12 1 4 Pmax_rel 

Table 1 – Metric I for the investigation of the effect of DPF, P (relative basis) and vW on the results. RR = 1.6 mm/min. 
 

Then, keeping the diameter constant (DPF = 0.5 m), the effect of P (relative basis), vW and RR can 

be addressed with the metric showed in Table 2: 

 

Test No. vW P RR 
13 0 Pmin,rel 1.6 
14 0 Pmax,rel 1.6 
15 4 Pmin,rel 1.6 
16 4 Pmax,rel 1.6 
2 0 Pmin,rel 6.4 
8 0 Pmax,rel 6.4 
5 4 Pmin,rel 6.4 
11 4 Pmax,rel 6.4 

Table 2 - Metric II for the investigation of the effect of P (relative basis), vW and RR on the results. DPF = 0.5 m. 
 

Finally, keeping constant the diameter (DPF = 0.5 m) and the regression rate (RR = 6.4 mm/min), 

it’s possible to study the effect of P (absolute and relative basis) and vW on the results (Table 3): 

 

Test No. vW P 
1 0 Pmin 
2 0 Pmin,rel 
7 0 Pmax 
8 0 Pmax,rel 
4 4 Pmin 
5 4 Pmin,rel 
10 4 Pmax 
11 4 Pmax,rel 

Table 3 - Metric III for the investigation of the effect of P (absolute and relative basis) and vW on the results. DPF = 0.5 
m and RR = 6.4 mm/min. 

 

Given this partition, the total number of runs required reduces to 16. A complete summary of the 

runs is reported in Table 4. 
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Test No. DPF vW P RR HF MV Time  Location 
1 0.5 0 Pmin 6.4 Yes yes 5.86* /scratch/da/alessand/Dmin_Pmin 

2 0.5 0 Pmin_rel 6.4 No no 1.76** /scratch/da/alessand/Dmin_Pmin_rel_new 

3 1 0 Pmin_rel 1.6 Yes yes ? ALC 

4 0.5 4 Pmin 6.4 Yes no 6 /scratch/serial-old/alessand/Dmin_Pmin_Wmax 

5 0.5 4 Pmin_rel 6.4 yes no 7.5 /scratch/serial-old/alessand/Dmin_Pmin_rel_Wmax 

6 1 4 Pmin,rel 1.6 no no < 1 ALC 
7 0.5 0 Pmax 6.4 Yes yes 7.47* /scratch/da/alessand/Dmin_Pmax 

8 0.5 0 Pmax_rel 6.4 Yes no 5.11* /scratch/da/alessand/Dmin_Pmax_rel 

9 1 0 Pmax,rel 1.6 Yes no 6.34 ALC 
10 0.5 4 Pmax 6.4 Yes no 7.4 /scratch/serial-old/alessand/Dmin_Pmax_Wmax 

11 0.5 4 Pmax_rel 6.4 No no 5.4 /scratch/serial-old/alessand/Dmin_Pmax_rel_Wmax 

12 1 4 Pmax_rel 1.6 No no ~ ALC 
13 0.5 0 Pmin,rel 1.6 No no ~ ARCHES CLUSTER 

14 0.5 0 Pmax_rel 1.6 No no ~ ARCHES CLUSTER 

15 0.5 4 Pmin_rel 1.6 No no ~ ARCHES CLUSTER 

16 0.5 4 Pmax,rel 1.6 No no ~ ARCHES CLUSTER 
Table 4 – Factorial design for Tuna Can Sensitivity Analysis. HF = Heat Flux, MV = Movie, *After this time 

instabilities were observed, ** Domain extended to prevent instabilities. 
 

To simplify writing all the possible combinations of the variables levels we can use a coding system 

so that the max and min conditions for each variable can be represented by +1 and -1 respectively 

(the max_rel and min_rel cases will be denoted by +1_rel and -1_rel). If x1 represents the coded 

value of the pool fire diameter, DPF, the relation between z1 and DPF is given by: 
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which equals +1 if DPF = DPF,max, -1 if DPF = DPF,min and 0 if PFPF DD = . We can proceed similarly 

for the other variables. Then x2, x3 and x4 will represent the coded values of vW, P ad RR, 

respectively. The metrics expressed in terms of coded values are reported in Table 5 - Table 7. 

 

Test No. x1 x2 x3 
13 -1 -1 -1_rel 
14 -1 -1 +1_rel 
3 +1 -1 -1_rel 
9 +1 -1 +1_rel 
15 -1 +1 -1_rel 
16 -1 +1 +1_rel 
6 +1 +1 -1_rel 
12 +1 +1 +1_rel 

Table 5 – Metric I in terms of coded values. 
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Test No. x2 x3 x4 
13 -1 -1_rel -1 
14 -1 +1_rel -1 
15 +1 -1_rel -1 
16 +1 +1_rel -1 
2 -1 -1_rel +1 
8 -1 +1_rel +1 
5 +1 -1_rel +1 
11 +1 +1_rel +1 

Table 6 – Metric II in terms of coded values. 
 

Test No. x2 x3 
1 -1 -1 
2 -1 -1_rel 
7 -1 +1 
8 -1 +1_rel 
4 +1 -1 
5 +1 -1_rel 
10 +1 +1 
11 +1 +1_rel 

Table 7 – Metric III in terms of coded values. 
 

For each of the three metrics, a graphical representation can be provided. If we consider our coded 

variables as mutually perpendicular coordinate axes, each factorial deign can be represented by a 

cube (Figure 1). The eight corner points of the cube represent the eight test conditions listed in 

coded values in Table 5, Table 6 and Table 7. For metric III, the cubic representation is obtained 

considering the relative and absolute position as different variables. The center of the cube 

represents physically the midvalue conditions for the three variables of interest. 

 

 
Figure 1 - Geometrical representation of factorial design. 
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