
CS 7690, Advanced Image Processing
Project2 Anisotropic Diffusion

Xiang Hao

Implement the PDE of the anisotropic diffusion

For one dimension:
The PDE of the anisotropic diffusion is I_t = d(c(x, t) I_x)/dx

d(c(x,t)I_x/dx = (c_r * I_r - c_l * I_l)/∆x (1)
c_r * I_r - c_l * I_l = c_r * (I(x + ∆x) - I(x))/∆x - c_l * (I(x) - I(x-∆x))/∆x (2)
From (1) and (2), we can get:
d(c(x,t)I_x/dx = (1/∆x)^2 * (c_r * (I(x + ∆x) - I(x)) - c_l * (I(x) - I(x-∆x)))

Since I_t = (I(t+∆t) - I(t))/∆t, so
I(t+∆t) = I(t) + ∆t((1/∆x)^2 * (c_r * (I(x + ∆x) - I(x)) - c_l * (I(x) - I(x-∆x)))) (a)

From the above equation, we know that, we can compute I(t) by an iteration.
At t = 0, I(0) = I , I is the original image.
At t = 0 + ∆t), we compute I(t + ∆t) by using the above equation.
We do the above step over and over again, the number of the iteration is decided by the user.
At each step, before we compute I(t + ∆t), we need to compute c and the gradient at each point.

For two dimension:
The equation (a) becomes:
I(t+∆t) = I(t) + ∆t((1/∆x)^2 * (c_x_r * (I(x + ∆x) - I(x)) - c_x_l * (I(x) - I(x-∆x))) + (1/∆y)^2 *
(c_y_r * (I(y + ∆y) - I(y)) - c_y_l * (I(y) - I(y-∆y))))

We compute I(t) in the same way as the was we compute I(t) in one dimension.

Description of the conductivity function

Usually, the conductivity function is exp-(|I_x|/K)^2 or 1/(1 + |I_x|^2/K).

If we treat I_x as a variable, K as a constant:
Both of the functions are monotone decreasing, which means:
If a region of a image has a higher gradient, it will suffer a smaller diffusion. On there other hand, if
the region has a lower gradient, it will suffer a higher diffusion.
So, use these conductivity function will preserve the features with high gradients.

In a different view point, if we treat K as a variable, the diffusion degree of each pixel will increase
as the increase of K.

Here I choose the function 1/(1 + |I_x|^2/K) since it is much faster than the first one.

Application

The diffusion image:
Kappa = 20 Iteration1 Iteration5 Iteration10 Iteration15 Iteration20

Noisy MRI

MRI

Text

From the above pictures, we can see in the anisotropic diffusion, the edges are preserved and the
flat area and noises are blurred.

The gradient images:
Kappa = 20 Iteration1 Iteration5 Iteration10 Iteration15 Iteration20

Noisy MRI

MRI

Text

From the gradient images, we can see the area with high gradients will not change two much. The
area with low gradients will become darker and darker. This also explains why the anisotropic
diffusion can preserve the edges.

Performance under different k-values

Iteration1 Iteration5 Iteration10 Iteration15 Iteration20
Kappa = 20

Kappa = 35

Kappa = 50

Kappa =300

Kappa = 3000

Kappa =
300000

Compare the above two results:

When Kappa = 30, we preserve more edges since the larger the gradient is, the less diffusion it will
suffer.

When Kappa is very large, the whole image suffer the similar diffusion, so it is similar a linear
diffusion in this case.

In addition, the images, especially the CSF boundary, do not change too much from kappa = 300 to
kappa = 300000. Even form kappa = 50 to kappa = 300, the changes are not very significant. The
reasons are:

1) The diffusion degree is increasing as the increases of the kappa.
2) As kappa is increasing. For some features(For example, the csf edges in the above pictures),

before kappa goes to certain value(for the edges of the above picture, I guess the value is
around 25), the features will have few diffusion, since their gradients are large enough. But,
as the kappa increases larger and larger, the features' gradients are not big enough to get few
diffusion, so these features will be blurred.

I plot the conductivity functions here:
Kappa Conductivity function

20

35

50

300

3000

300000

Histogram of the gradient(Itertaion #1)

From the above pictures,
1)We can see that when kappa = 300000, the range of the y axis(the amount of the diffusion) is
0.82~1, when the gradient is less than 255. That's why the anisotropic diffusion is similar with
isotropic diffusion when kappa is very large

2)From the histogram of the gradients, we know that most of the gradients are less than 100.
When kappa is larger 300, the c(I_x > 100) we get from the conductivity function is become larger
and larger, which means most of the image will be blurred. This also explains why the images does
not change too much from kappa = 300 to kappa = 300000.

3)Base on the histogram of the gradients, we can come up a way to automatically choose the kappa
parameter.

Performance under different iteration numbers

Kappa = 20 Iteration1 Iteration5 Iteration10 Iteration15 Iteration20
Noisy MRI

Gradient

In the Noisy MRI images, as the number of iteration increases, the boundary does not change too
much, but the noise is blurred as the number of iteration increases.
In the gradient images, the boundary, which is the very bright, does not change too much either.
The dark areas become darker and darker.

So, when kappa is equal to 20, as the number of iteration increases, the edges(boundaries) will be
preserved and the noises and flat areas will be blurred.

However, I am wondering if the edges will also be blurred when the number of the iteration goes to
infinite. So I increased the maximum of the number of the iteration from 20 to 200.

Kappa = 20 Iteration50 Iteration80 Iteration120 Iteration150 Iteration200
Noisy MRI

Gradient

From the above results, obviously everything is blurred as the number of iteration goes to a very
larger number.
We can also guess that as the number of iteration goes to infinite, every pixel of the image will have
the same intensity.

Discussion of preservation of details

Iteration1 Iteration5 Iteration10 Iteration15 Iteration20

Kappa = 20

Kappa = 40

Kappa = 80

Kappa = 150

As the kappa increases, the overall diffusion is increasing. We may use this property to segment the
region of the each word first by using large kappa and then segment the words into characters.

In order to segment the text into words, we can also use a lot of iteration.

The conductivity function I choose here is a monotone decreasing function. This kind of functions
preserve pixels with high gradient and blur pixels with low gradient. It is kind of a “high pass
filter”.

Similarly, we can also construct some “low pass filter” and “band pass filter” if we need.
For example, by band pass filter, I mean we can set the conductivity function to be a Gaussian(mu,
sigma) function. In this case, the pixels with the gradient as mu will be preserved.

