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Abstract. Diffusion Tensor MRI has become the preferred imaging
modality to explore white matter structure and brain connectivity in
vivo. Conventional region of interest analysis and voxel-based comparison
does not make use of the geometric properties of fiber tracts. This pa-
per explores shape modelling of major fiber bundles. We describe tracts,
represented as clustered sets of curves of similar shape, by a shape proto-
type swept along a space trajectory. This approach can naturally describe
white matter structures observed either as bundles dispersing towards the
cortex or tracts defined as dense patterns of parallel fibers. Sets of stream-
line curves obtained from tractography are clustered, parametrized and
aligned with a similarity transform. An average curve and eigenmodes of
shape variation describe a compact statistical shape model. Reconstruc-
tion by sweeping the template along the trajectory results in a simplified
model of a tract. Feasibility is demonstrated by modelling callosal and
cortico-spinal fasciculi of two different subjects.
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1 Introduction

Diffusion Tensor Imaging (DTI) of brain structures measures diffusion proper-
ties by the local probability of self-motion of water molecules. A tensor field
characterizes amount and locally preferred directions of local diffusivity. While
diffusion can be considered isotropic in fluid it appears highly anisotropic along
neural fiber tracts due to inhibition of free diffusion of intra- and extra-cellular
fluid. DTI has become the preferred modality to explore white matter proper-
ties associated with brain connectivity in vivo. Most research work has been
dedicated to the calculation of the tensor field, its regularization, its visualiza-
tion and subsequently to the design of fiber tracking algorithms [2], [3], [6], [7],
[10], [12]. A few groups have investigated ways towards quantitative analysis of
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DT images. Alexander et al. discuss matching of tensor fields to characterize
variations in white matter structure within subject populations [1]. Xu et al.
combine tractography and spatial normalization to produce statistical maps of
fiber occurrence [11] while Fillard et al. perform statistical analysis of diffusion
properties along fibers [8].

In this paper, we continue preliminary work in which we extracted fibers
by tractography, clustered them into anatomical bundles and analyzed the vari-
ability of local shape properties (e.g. curvature and torsion) within bundles [5].
Here, we focus on the statistical shape modelling of individual white matter fiber
tracts. Our approach estimates a prototype shape of the considered fiber tract,
e.g. a mean shape, and characterizes statistical shape deviations from this tem-
plate shape within the fiber tract. Ultimately, we aim at modelling fiber tracts
not only by template shapes and statistical variation but also by a prototype
and its space trajectory. This model would be particularly appropriate for fasci-
culi like dense callosal fibers which are observed as a “sweeping” of a U-shaped
template. Such a model provides a simplified representation of a fiber tract and
could be used in a wider framework handling inter-individual comparison or
pathological changes, for example.

2 Preprocessing: Fiber Extraction and Filtering

The extraction of fiber tracts is performed with the fiber tracking tool described
in [7]. The tensor field is computed from DTI data by solving the Stejskal-
Tanner’s diffusion equation system as described in [10]. Streamlines following
the principal diffusion tensor directions between source and target regions of in-
terest are then extracted by tractography under local continuity constraints [11].
Except at branching or crossing points, these 3D curves are assumed to represent
the most likely pathways through the tensor field. Note that the term “fibers”
is used for streamlines in the vector field which do not represent real anatom-
ical fibers. The tracking is performed backwards and with sub-voxel precision.
Since the robustness of fiber tracking remains limited at junctions and in noisy
low-contrast regions, the extracted fiber set contains outlier curves. Also, the
set of reconstructed fibers might contain curves that are part of other anatomi-
cal tracts. We developed an iterative algorithm to reject outliers and to cluster
curves to fiber bundles based on pairwise distance metrics measuring position
and shape similarity of pairs of fibers [5].

3 Shape Modelling of Individual Fiber Tracts

The individual fiber tract previously extracted and filtered acts as a training set
from which we estimate a template shape, the mean shape, and statistical devia-
tions by learning its inherent shape variability. The resulting model is related to
what is commonly called a Point Distribution Model (PDM) [4]. Representation
and matching of the training set relies on a data reparametrization and on the
definition of a common origin from which we establish correspondences. Pose



parameters are then estimated by a Procrustes analysis [9]. A principal compo-
nent analysis is subsequently applied to characterize statistical shape variation.
A simplified fiber tract model can finally be obtained by reconstruction based
on the template shape and the set of individual pose parameters.

3.1 Parameterization and Correspondences

First, fibers represented as polylines are reparametrized by cubic B-spline curves.
This ensures an equidistant sampling along each fiber as well as a consistent sam-
pling for all fibers. We slightly oversample the observations in order to prevent
any loss of shape information but also to avoid any undesirable increase of di-
mensionality. Second, for each fiber tract under analysis, we define a common
origin which can be reliable identified across subject. This is either a geomet-
ric criterion, e.g. a cross-section with minimal area, or anatomical information
like intersection with the midsagittal plane. Points with the same curvilinear
abscissæ along the fiber tract are defined as homologuous. This correspondence
scheme handles fibers with different overall lengths in a simplified way. Only
points with common curvilinear abscissae are matched; extreme pieces of indi-
vidual fibers like the ones dispersing into various cortical regions for instance,
are discarded. This explicit point to point matching has been proven relevant
in [5] where we demonstrated that it properly aligns local shape features like
curvature and torsion across all curves in a fiber bundle.

3.2 Pose Parameter Estimation: Procrustes Analysis

After establishing correspondence, we align all curves in a bundle by estimating
pose parameters by Procrustes analysis.

Let F = {Fn, 1 ≤ n ≤ N , Fn ∈ Mk,m} be a set of N fibers, each defined by
a set of k corresponding points in m = 3 dimensions, and represented by a k×m
matrix. For N = 2, an Ordinary Procrustes Analysis (OPA) gives the optimal
similarity transformation parameters in a least squares sense by minimizing

d2
OPA(F1,F2) =‖ F2 − (sF1R + 1ktt) ‖2, (1)

where s ∈ R+∗ is a scaling parameter, R ∈ SO(m) is a rotation, t is a m × 1
translation vector and 1k is a k× 1 vector of ones. Minimization of (1) over the
similarity group has an algebraic solution when shapes are centered, i.e 1t

kF = 0,
and normalized to unit size, i.e. ‖ F ‖=

√
trace(FtF) = 1: t = 0, R = UVt,

s = trace(D) where VDUt = Ft
2F1 is the singular value decomposition of

Ft
2F1. In the actual case where N > 2, a Generalized Procrustes Analysis (GPA)

estimates the similarity transformation parameters which minimize the sum of
squared norms of pairwise differences

d2
GPA(F1, . . . ,FN ) =

1
N

N∑
n=1

N∑
p=n+1

‖(snFnRn+1ktt
n)−(spFpRp+1ktt

p) ‖2 . (2)

The optimization is performed iteratively:



1. Translation. Fibers are centered with respect to their center of mass, gn:
Fc

n = Fn − gn.
2. Scaling. Centered data is normalized to unit size: Fcs

n = Fc
n/ ‖ Fc

n ‖.
3. Rotation. Let Fold

n = Fcs
n . The N shapes are rotated in turn. For each n,

1 ≤ n ≤ N :
(a) F̄n = 1

N−1

∑
p6=n Fold

p ,
(b) sn = 1, tn = 0, Rn = arg minR d2

OPA(Fold
n , F̄n),

(c) Fnew
n = Fold

n Rn and Fold
n = Fnew

n .

Step 3 is iterated until the Generalized Procrustes distance d2
GPA(Fold

1 , . . . ,Fold
N )

can not be reduced further. The alignment of the training set is achieved by ap-
plying the estimated rotations to the centered but non unit-scaled initial shapes
Fc

n, resulting in the set of aligned fibers FA = {FAn , 1 ≤ n ≤ N}. Indeed, the
scaling is needed to optimally estimate the rotation but a size normalization is
not desirable since the training fibers belong to the same individual fiber tract.

3.3 Estimation of the Mean Shape

Given the set of aligned shapes FA, the estimated mean shape ˆ̄F is given by

ˆ̄F =
1
N

N∑
n=1

FAn . (3)

3.4 Characterization of Shape Statistical Variability

We now perform a principal components analysis (PCA) on FA. This linear
analysis characterizes the variations within a given training population and ex-
tracts the principal modes of deformation relative to the mean shape. Briefly,
PCA expresses the observations in a new orthogonal basis, with the mean fiber
as the origin and eigenvectors or modes of the observations covariance matrix C
as axes. In our case, an observation f is represented by the concatenation vector
of the 3D fiber coordinates f = (x1, y1, z1, . . . , xk, yk, zk)t and the correspond-
ing estimated mean fiber is denoted f̄ . An approximation of these observations
can be obtained by truncating a certain number of modes. The reconstructed
observation is then written as f = f̄ + Φmbm where m is the number of re-
maining modes, Φm the matrix of truncated modes and bm = (bi)i=1,...,m the
m−dimensional vector representing the original observation in the truncated
modal basis. Reconstruction quality can be measured by τ =

∑m
i=1 λi/λT where

λi is the i th eigenvalue, in decreasing order, of matrix C and corresponds to
the variance explained by the i th mode, and where λT is the total variance.

Under the assumption that the distribution of the elements of FA is Gaus-
sian, the variation of bi,i=1,...,m in an interval such as [−3

√
λi, 3

√
λi] explains the

variability of the set of objects. Calculating these statistics with a sufficient num-
ber of representative instances of shapes, these variations will cover the major
variability of the population.



3.5 Fiber Tract Reconstruction

Qualitative views of 3D rendering suggest that sets of fibers might be described
as a replication of a prototype curve along a space trajectory, simulating the
sweeping of a space curve to form a manifold. In an initial attempt to test this
hypothesis, we reconstruct an approximation to the initial fiber tract by applying
the inverse rigid body transform per fiber to the template.

Let T be the set of transformations computed from the Procrustes analysis to
align the training set, T = {(−gn,Γn), 1 ≤ n ≤ N} with gn the translation vector
defined by the center of mass of the nth fiber and Γn the resulting rotation for
fiber n: Γn = ΠiR

(i)
n , R(i)

n being the rotation computed in the ith step 3 iteration
of the Generalized Procrustes Analysis. The reconstructed fiber tract F̃ is given
by

F̃ = {F̃n = ˆ̄FΓt
n + gn, 1 ≤ n ≤ N} (4)

where ˆ̄F is the estimated mean fiber. The fiber set F̃ is a simplified represen-
tation of the inital fiber tract defined as the template shape ˆ̄F and the set
T −1 = {(gn,Γt

n), 1 ≤ n ≤ N} of inverse transformations. This model might have
advantages for inter-subject matching and comparison since the template rep-
resents a robust estimate of the core shape whereas individual variability is
encoded in the shape eigenmodes.

4 Experiments and Results

We selected two cases out of a 3Tesla high resolution (2× 2× 2 mm3) DT MRI
database of healthy controls and extracted three major fiber tracts. The first
two represent the major projection tracts between the internal capsule and the
upper cortex of the left and right hemisphere (see Fig. 2, left and 4, top left)
while the third corresponds to a dense set of callosal fibers (see Fig. 3, top
left and 4, bottom left). The common origin of all fibers for the cortico-spinal
tracts is chosen as the location of minimal area cross-section between pons and
internal capsule. For the callosal fiber bundle, a natural choice is the intersection
with the midsagittal plane. For each tract, Figures 2, 3 and 4 present the set
of aligned shapes and the estimated mean shape which defines the core shape
of the tract. In addition to Fig. 1 which presents the percentage of cumulative
variance as a function of the number of modes, Figures 2, 3 and 4 illustrate the
variations around the mean fiber for the the first two modes. For all tracts and
all subjects, less than 10 modes are needed to explain more than 90% of the
variance. The figures also show the reconstructed fiber tract associated to each
of the original data sets. The reconstructed tracts visually appear to be a very
good approximation to the original data, representing the major characteristics
of the bundle without small scale variability. This observation is corroborated
by computing the average point to point distance normalized by the number
of fibers between original and reconstructed fiber tracts (see Table 1). We also
observe that the results are quite consistent for both subjects, which suggests
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Fig. 1. Percentage τp of cumulative variance as a function of the number of modes for
three fiber tracts (left and right cortico-spinal tract, callosal fiber tract) of two subjects
(a and b); τp =

∑m
i=1 λi/λT × 100.

Table 1. Average point to point distance (in voxels) normalized by the number of
fibers between original and reconstructed tracts for the three tracts of each subject.
Voxel size is 2× 2× 2 mm3.

Tract Subject 1 Subject 2

Left cortico-spinal tract 0.60 0.71

Right cortico-spinal tract 0.66 0.63

Callosal tract 0.53 0.64

the processing scheme might achieve a good reproducibility of tract extraction
and tract modelling. A quantitative validation of reproducibility and validity in
10 controls, including anatomical landmarking by clinical experts, is in progress.

5 Discussion and Perspectives

We propose a statistical shape model of individual white matter fiber tracts ex-
tracted from Diffusion Tensor MRI. Correspondences are derived from a reparametriza-
tion of the streamline curves and the definition of a common origin, and align-
ment is achieved by a Procrustes fit. Results obtained from two healthy control
subjects seem consistent and suggest that these models might be reproducibly
obtained for each subject. We currently test the new processing scheme on 10
healthy controls which got imaged with the best available DTI protocol on a
new 3Tesla MRI scanner (Siemens Allegra head-only).

This paper focuses on the discussion of the calculation of the template and
its major shape variation. Reconstructed bundles using the template ˆ̄F and the
inverse set of pose transformations T −1 closely represent the original bundle and
suggest that this type of modelling might be a viable concept for the modelling
of various major fiber tracts. The set of transformations T −1 is still unstructured
with arbitrary ordering. The major focus of future research will be devoted to
develop a concept for ordering the set of fibers and hence the transformations



within the shape manifold and for describing this set as a continuous sweeping
curve. Ultimately, each fiber tract would be characterized by the prototype and
its sweeping along this curve. Preliminary results and our analysis of the major
large and small tracts of interest (cortico-spinal, callosum, cingulum, uncinate,
splenium and genu) suggest that modelling by “ribbon-cables” indeed might be
an appropriate representation.

Modelling will potentially serve for improved inter-individual registration and
comparison of diffusion tensor properties along and across fiber tracts. Clinical
research is interested in a quantitative analysis which finally might lead to answer
questions in regard to fiber integrity or fiber disruption and its effect on brain
connectivity. Moreover, modelling of fiber tracts in healthy controls will help to
study geometric and diffusion changes of white matter tracts in the presence of
pathology, e.g. tumor and edema or white matter lesions.
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Fig. 2. Left (top) and right (bottom) cortico-spinal tracts of Subject 1. From left
to right: original data sets (more than 600 fibers each); data sets after alignment;
estimated mean fiber; variations around the mean shape according to first and second
mode; reconstructed fiber tract.

Fig. 3. Callosal fibers of Subject 1. From top left to bottom right: original data sets
(363 fibers); data sets after alignment; estimated mean fiber; variations around the
mean shape according to first and second mode; reconstructed fiber tract.

Fig. 4. Results for Subject 2. Top: left cortico-spinal tract with original data sets (more
than 250 fibers); data sets after alignment; estimated mean fiber; variations around
the mean shape according to first and second mode; reconstructed fiber tract. Bottom:
callosal fiber tract with original data sets (128 fibers); estimated mean fiber; variations
around the mean shape according to first mode; reconstructed fiber tract.
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