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Abstract. A main focus of statistical shape analysis is the description of vari-
ability of a population of geometric objects. In this paper, we present work in
progress towards modeling the shape and pose variability of sets of multiple ob-
jects. Principal geodesic analysis (PGA) is the extension of the standard technique
of principal component analysis (PCA) into the nonlinear Riemannian symmetric
space of pose and our medial m-rep shape description, a space in which use of
PCA would be incorrect. In this paper, we discuss the decoupling of pose and
shape in multi-object sets using different normalization settings. Further, we in-
troduce new methods of describing the statistics of object pose using a novel ex-
tension of PGA, which previously has been used for global shape statistics. These
new pose statistics are then combined with shape statistics to form a more com-
plete description of multi-object complexes. We demonstrate our methods in an
application to a longitudinal pediatric autism study with object sets of 10 subcor-
tical structures in a population of 20 subjects. The results show that global scale
accounts for most of the major mode of variation across time. Furthermore, the
PGA components and the corresponding distribution of different subject groups
vary significantly depending on the choice of normalization, which illustrates the
importance of global and local pose alignment in multi-object shape analysis.

1 Introduction

Statistical shape modeling and analysis [1, 2] is emerging as an important tool for under-
standing anatomical structures from medical images. Statistical shape modeling’s goal
is to construct a compact and stable description of the mean and variability of a popula-
tion. Principal Component Analysis (PCA) is probably the most widely used procedure
for generating shape models of variability. These models can provide understanding for
processes of growth and disease observed in neuroimaging [3].

Clinical applications favor a statistical shape modeling of multi-object sets rather
than one of single structures outside of their multi-object context. Neuroimaging stud-
ies of mental illness and neurolocal disease, for example, are interested in describing
group differences and changes due to neurodevelopment or neurodegeneration. These
processes most likely affect multiple structures rather than a single one. A description of
the change of the object set might help to explain underlying neurobiological processes
affecting brain circuits. Whereas Tsai et al. [4] and Yang et al. [5] describe statistical
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object modeling by level-sets, we propose explicit deformable shape modeling with a
sampled medial mesh representation called m-rep, introduced by Pizer et al [6].

Deformable shape models represent the underlying geometry of the anatomy and
then use a statistical analysis to describe the variability of that geometry. Several dif-
ferent geometric representations other than m-reps have been used to model anatomy,
such as landmarks [7], dense collection of boundary points [8], or spherical harmonic
decompositions [9]. Another shape variability approach focuses on the analysis of de-
formation maps [10, 3, 11, 12]. A fundamental difficulty in statistical shape modeling
is the high dimensionality of the set of features with a relatively small sample size,
typically in the range of 20 to 50 in neuroimaging studies. This problem is even more
evident for modeling sets of multiple objects. The analysis of transformation fields has
to cope with the high dimensionality of the transformation, which renders the computa-
tion of the PCA basically unstable in respect to the training set. Adding or removing a
single subject from the training set results in strikingly different principal components.

In most shape modeling approaches, the underlying geometry is parameterized as an
Euclidean feature space. As Davis and Joshi [13] note, the space of diffeomorphism is a
curvilinear space. Treating it as an Euclidean space is a linear simplification of a higher-
dimensional, curvilinear problem. For medial descriptions, as well as for descriptions of
pose, the feature space clearly contains elements of a non-Euclidean vector space. These
features need to be parameterized in a nonlinear Riemannian symmetric space. We will
use curved statistics for these parameters with modeling major modes of deformations
via principle geodesic analysis (PGA) [14], a nonlinear extension of PCA.

This paper summarizes work in progress towards an efficient and compact represen-
tation and statistical analysis of sets of objects. We choose the sampled medial m-rep
representation and a statistical framework based on Riemannian metrics. The driving
application is a longitudinal pediatric neuroimaging study.

2 Methodology

This research is driven by the challenge to describe the shape statistics of a set of 3-D
objects. Whereas analysis of single shapes is well advanced and has been described ex-
tensively using a variety of shape parametrization techniques, the research community
does not yet have access to tools for statistical modeling and analysis of sets of objects.

Estimating Variability of Multi-object Sets: In linear space, variability of param-
eterized objects can be described by principle component analysis (PCA) of spherical
harmonics [9] or point distribution models (PDM) [8]. However, a linear PCA can-
not describe object rotations and the modeling cannot be extended to model points
and normals. Non-linear modeling is achieved by principle geodesic analysis (PGA),
developed by Fletcher et al. [14]. PGA extends linear PCA into nonlinear space using
“curved statistics” and is a natural generalization of PCA for data that are parameterized
as curved manifolds. To recall, the intrinsic mean of a collection of pointsx1, · · · , xN

on a Riemannian manifoldM is the Fŕechet meanµ = argmin
∑N

i=1 d(x, xi)2, where
d(., .) denotes Riemannian distance onM . Whereas PCA inR3 generates linear sub-
spaces that maximize the variance of projected data, geodesic manifolds are images
of linear subspaces under the exponential map and are defined as the manifolds that



maximize projected variance. Principle geodesics can be found by a recursive gradient
descent or with an approximation by the log map and a linear PCA in the tangent space
of the map (please see [15] for details). An important fact is that PGA can be used with
parametrization schemes that include point locations, scale, and angle parameters.

Fig. 1.Visualization of the 10 selected deep brain structures. Left: Binary voxel objects (top) and
implied solid surface of medial atoms (bottom). Right (with lateral ventricles): Left side view
(top row), Top view (bottom row). The inter-subject shape differences clearly are larger than the
longitudinal differences, which seem quite small.

Object Representation by a Mesh of Medial Samples:Medial representations
represent an alternative to parametrization of 3-D objects via surfaces. Changes in
terms of local translation, bending and widening can be more naturally expressed by
medial, rather than surface, representations. Pizer et al. [6, 16] developed an object rep-
resentation by a mesh of medial atoms. The shape and structure of the skeletal sheet
of atoms, as well as a local width function, define the object. Each atom is char-
acterized as a tuple with position, radius, and the normal vectors to the boundary:
m = {x, r,n0,n1} ∈ M, with M = R3 × R+ × S2 × S2. The object surface can
be interpolated from endpoints of the sets of medial atoms, but this representation also
allows a continuous interpolation of the whole object interior and a rim exterior to the
object boundary. Since the parameter vector of medial atoms includes position, length
and angle (between normals), mean and variability of a population of object shapes is
calculated via the Fréchet mean and PGA framework as discussed before.

Anatomical structures of interest, including left and right hippocampus, amygdala,
putamen, caudate, and globus pallidus, have been segmented by well-trained1 experts
using semi-automated procedures. The segmented objects are represented as binary
voxel objects (see Fig. 1). We constructed sampled medial models from populations
of objects, using the modeling scheme developed by Styner et al. [17] to determine the
minimum sampling of each medial mesh model. The m-rep models are deformed to
optimally fit the original segmentations of each anatomical object [16]. This process
is applied individually to each of the 10 anatomical objects in each of the 20 image
datasets. Correspondence across datasets is established by deformable m-rep modeling.

Normalization and Statistics of Pose:The normalization of the m-rep pose is
based on a procedure similar to Procrustes analysis. In the m-rep pose normalization,

1 See http://www.psychiatry.unc.edu/autismresearch/mri/roiprotocols.htm .



the sum-of-squared geodesic distances, instead of Euclidean distances, between corre-
sponding medial atoms is minimized, as described in [14]. In this paper we discuss two
types of pose normalization in the context of multiple object sets. The first one applies
the above procedure to all objects jointly. We call this the global pose normalization of
the objects. After this global pose normalization, the individual objects will likely have
residual pose variation relative to the global pose (see Fig. 2a,b). Thus, we also perform
an object-specific normalization called local pose normalization.

The resulting global-to-local pose change parameters are the features we use to
create new statistics of the object pose with a novel PGA extension. As with atoms,
the PGA is approximated by mapping the pose parameters to the tangent space and
running linear PCA. The mapping is accomplished by taking the log of rotations and
scales. The log map of a unit-length quaternionq = (w, v) is defined as: θ

sin(θ/2) · v,
whereθ = 2arccos(w). The extension of PGA beyond describing statistics of medial
atoms into pose changes allows us to analyze pose and shape simultaneously. This is
done by concatenating the pose parameters to the feature vectors of the atoms. Due to
their greater magnitude, the pose parameters will tend to dominate the PGA. Therefore,
a prewhitening is done to make each feature have standard deviation 1.0 across all
samples in the tangent space.

3 Results

Motivation and Clinical Data: The driving clinical problem of this research is the
need for a joint analysis of the set of subcortical brain structures, over and above that of
individual structures. The image data used in this paper is taken from an ongoing clini-
cal longitudinal pediatric autism study. This study includes autistic subjects (AUT) and
typically developing, healthy controls (TYP) with baseline at age 2 and follow-up at age
4. Through this longitudinal design, we can study growth (see Fig. 1), cross-sectional
differences between groups and even group growth patterns. For the preliminary anal-
ysis shown here, we have selected 5 subjects each from the TYP and AUT groups. For
eight of these subjects, we had longitudinal data with successful scans at ages 2 and
4. Our main goal is to systematically study the effect of different pose normalization
settings on the analysis of longitudinal and cross-sectional shape changes.

Principle Geodesic Analysis:PGA performs a compression of the multi-object
shape variability to a small set of major eigenmodes of deformation. We assume that
the first few modes describe most of the shape variability, the rest representing mostly
noise. The quality of this compression can be evaluated with the criteria compactness,
sensitivity and specificity as discussed in [17]. As a preliminary test, we followed the
standard procedure of projecting the multi-object sets into the shape space of the eigen-
modesλi. This leads to a set of weights in the shape space that describe the deviation
of individual shapes from the mean. In our case, each weight vector represents a multi-
object shape set. We applied PGA to the whole set of objects for the four subject groups,
which ensures projection into the same geometric domain for all subjects.

Shape: Differences in Normalization:First, the sets of objects are aligned purely
by a global process, including global translation, rotation and scaling (see Fig. 2b). The
resulting PGA captures variability in shape and in residual local pose.



a) b) c) d)

Fig. 2.Normalization examples: a) Global rotation and translation (R/T) normalization; b) global
R/T/S; c) global R/T/S plus local R/T normalization; d) global R/T plus local R/T/S

In a second step, we varied the global normalization procedure by disabling scaling
normalization and again applied PGA. All objects were thus left in their original size
and only rotation and translation were normalized (see Fig. 2a). In order to compare the
differences in the two global PGA’s (with and without scaling normalization), we plot-
ted the values of the first two major eigenmodes (λ1, λ2) of deformation (see Fig. 3a,b).
The arrows connect corresponding longitudinal pairs, which allows qualitative evalua-
tion of the correlation between PGA modes and longitudinal changes.

Theλ1 axis in the PGA without global scaling normalization seems to characterize
mainly differences between age 2 and 4 (Fig. 3a), as indicated by the parallel alignment
of the connecting arrows to theλ1 axis. After scaling normalization (Fig. 3b) no coher-
ent alignment of the arrows is visible. This suggests that the main effect of longitudinal
change is reflected in the scaling normalization and thus the overall size of the object
sets. Also, corresponding longitudinal pairs cluster quite well in the plot including scal-
ing normalization, which supports our hypothesis that shape changes due to growth are
considerably smaller than shape differences between subjects (see Fig. 1).

As seen in Fig. 2, the individual objects still have relative pose differences after
global pose normalization. Therefore, we proceeded by calculating the PGA shape
space of objects after a global, then local pose normalization. The top row of Fig.
4 shows theλ1 vs. λ2 plot in the global plus local normalization settings. The left
plot shows global normalization followed by local normalization including scaling. It is
noteworthy that the use of scaling in the global normalization is irrelevant, as the local
scaling operation supersedes the global one. This pose normalization setting is similar
to the one commonly used in shape analysis of single objects with full Procrustes align-
ment. The top right plot of Fig. 4 shows the objects with global scaling normalization
but no local scaling normalization, which is similar to another common technique of
scaling normalization with brain volume.

The high degree of difference between the PGA values in the two different local
scaling settings can be due to two different factors: a) inter-subject variability of the
residual scaling factors after global normalization or b) instability in the computation of
the PGA directions. We are currently working in evaluating the stability of the PGA, but
our earlier studies indicate that this cannot be the sole reason for the discrepancy. Also,
the arrangement of the groups look quite different in the two plots. In neither plot does
there seem to be a clustering according to age, but clustering according to diagnosis is
different. Although it is premature to draw any conclusions due to the small sample size
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Fig. 3.Top row:λ1 vsλ2 plot in pure global normalization settings. a) Global rotation and trans-
lation normalization; b) Global R/T/S normalization. The arrows indicate corresponding subject
pairs. The range of (a) is larger than (b). Bottom row: c) M-reps deformed to -3 standard devi-
ations of the first eigenmode of PGA with global R/T; d) +3 standard deviations; e) Euclidean
distance map between mean of global R/T aligned m-reps at age 2 and age 4. The colormap
ranges from red (Age 2> Age 4) over green (Age 2 = Age 4) to blue (Age 2< Age 4).

and limited knowledge about the PGA stability, the preliminary results demonstrate the
potential of multi-object shape analysis.

Pose and Shape: Local Pose Change Parameters:The purpose of the normaliza-
tion discussed previously is to decouple pose and shape differences in order to study
only shape in the PGA. In a multi-object setting, however, the pose changes may be of
interest. Therefore, we ran PGA on the local translation, rotation, and scale pose pa-
rameters as seen in Fig. 4, lower left. These represent the local residual pose changes
after a global translation and rotation alignment. An advantage of this PGA calculation
is that it suffers less from the high dimensionality, low sample size problem of the PGA
on the medial atoms. Here, each subject is represented by a feature vector of length
70 (10 objects, each with translation, rotation, scale) as opposed to about 1900 for the
medial atoms (210 atoms, each with 9 parameters). By analyzing only pose, we see a
somewhat similar separation according to diagnosis as in the upper right of Fig. 4.

Having analyzed pose and shape separately, our final step was to run PGA on both
simultaneously. The lower right plot of Fig. 4 shows that the prewhitening discussed ear-
lier has a large effect on the eigenmodes as compared with the upper left. A prewhitened
PGA on only the medial atoms is not altered significantly by including the pose param-
eters, meaning the prewhitening itself accounts for the changes between the two plots
and that including the pose does not destabilize the computation.



Fig. 4.λ1 vsλ2 plots of different PGA’s. Top row: The left plot shows global rotation and trans-
lation normalization followed by local rotation, translation and scaling. The right plot has global
scaling normalization, but no local scaling normalization. Bottom row: The left plot includes only
the local pose change parameters. The right uses both medial atoms and pose parameters.

4 Discussion

We have discussed work in progress towards extending statistical analysis of anatomical
shape from single structures to multi-object sets. Key issues addressed are the extraction
of a small set of key features representing both the shape and pose of object sets and
calculation of mean and variability via Riemannian metrics. The current results suggest
that after removing global scale, longitudinal data of the same subject cluster closely in
the PGA space and thus that longitudinal shape change is smaller than shape variability
across subjects, a driving hypothesis shown in Fig. 1. Also, projections of subject groups
into PGA components vary significantly depending on choice of normalization.

Several open issues remain and need to be addressed by our group and the inter-
national research community. In regard to the m-rep object parametrization used here,
we still need to demonstrate the quality and stability of correspondence, as well as the
robustness, sensitivity and specificity of PGA-based compression of features. Although
our results indicate a possible separation between groups, it is important to note that
PGA, similar to PCA, selects a subspace based on maximum common variability, not
maximum separation. An extension of independent component analysis (ICA) to curved
space or supervised training of a subspace of maximum separation will be explored in
our future research. Applications in neuroimaging further require hypothesis testing
schemes that combine shape and pose features with clinical variables, and that have to
properly address the problems of nonlinear modeling and multiple comparison testing.
Encouraging progress is shown by recent work of Terriberry et al. [18].
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