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QUALITATIVE DESCRIPTION AND THE PROBLEM OF SCALE

The waveform depicted in Figure 1 typifies a broad class of intricate, ill-behaved
physical signals—this one happens to be an intensity profile from a natural image.
In what primitive terms shall we talk about, reason about, learn about, and inter-
pret signals like this one? It is universally agreed that the raw numerical signal
values are the wrong terms to use for tasks of any sophistication. Plainly, our in-
itial description ought to be as compact as possible, and its elements should
correspond closely to meaningful objects or events in the signal-forming process.
Unstructured numerical descriptions are inadequate on both counts.

In the case of one-dimensional signals, local extrema in the signal and its
derivatives—and intervals bounded by extrema—have frequently proven to be
useful descriptiive primitives: although local and closely tied to the signal data,
these events often have direct semantic interpretations, for example, as edges in
images. A description that characterizes 4 signal by its extrema and those of its
first few derivatives is a qualitative description of exactly the kind we were
taught to use in elementary caleulus to “sketch™ a function (Figure 2). Analogous
topographic features for two-dimensional functions have been catalogued
in Haralick, Watson, and Laffey (1982). Although this paper treats the one-
dimensional case only, an extension of the methods presented here to two di-
mensions is under development.

*1 thank Richard Duda and Peter Hart, as well as J, Babaud of Schlumberger, Ltd.,
for their help and encouragement. Marty Tenenbaum, Harry Barrow, and John Mohammed
provided useful comments on earlier versions of this paper.

79




80 Witkin

Figure 1 A typically complicated natural waveform (an intensity profile drawn
from an image).

Figure 2 A function characterized by its extrema and those of its first derivative.

A great deal of effort has been expended to obtain this kind of primitive
qualitative description, both in one dimension and two (for overviews of this
literature, see Ballard & Brown, 1982, Pavlidis, 1977; Rosenfeld & Kak, 1976)
and the problem has proved extremely difficult. The problem of scale has
emerged consistently as a fundamental source of difficulty. Any non-trivial local
measurement—including a derivative operator—has to depend on the value of the
signal at two or more points, situated on some neighborhood around the nominal
point of measurement. The measurement thus depends not only on the signal it-
selt but on the spatial extent of this neighborhood, that is, on a parameter of
scale. Since the scale parameter influences the measured derivatives, it also in-
fluences the qualitative description obtained from the derivatives’ extrema. In
short, we cannot get any description without specifying the scale of measure-
ment, and different scales yield different descriptions.

How shall we decide which scale, and therefore which description, is correct?
The answer, it appears, is that no single scale is categorically correct: the physical
processes that generate signals such as images act at a variety of scales, and none
is intrinsically more interesting or important than another. The problem is less
to distinguish meaningful events from meaningless noise, than to distinguish one
process from another, and to organize what we see in a manner that as nearly as
possible reflects the physical and causal structure of the world. This and similar
lines of thinking have sparked considerable interest in the scale problem and in
multi-scale descriptions (see Ballard & Brown, 1982; Hong, Shneier, & Rosenfeld,
1981 Marr & Hildreth, 1979; Marr & Poggio, 1979; Rosenfeld & Thurston,
1971).
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Related Work

A radical view of the scale problem is put forward by Mandelbrot (1977), who
argues that many physical processes and structures are best modeled by a class of
non-differentiable functions called fractals. Mandelbrot takes the stance that
familiar notions such as length, surface area, slope, and surface orientation,
ought to be abandoned entirely in favor of global measures of the processes’
behavior over scale (e.g., rate of change of measured arc length.) Fractal models
often capture striking regularities in seemingly chaotic processes, as evidenced by
their utility in computer graphics. Pentland (1983) has recently argued convinc-
ingly for their usefulness in perception as well. However, fractal models cannot
supplant the more usual representation of shape: to the mountain climber,
knowing what kind of mountain he’s on is of little help, He needs to know
where next to place his hands and feet.

Marr (1982) argued that physical processes act at their own intrinsic scales—
for example. a regular patchwork of wheatfields, a stalk of wheat, and the grains
on a stalk of wheat—and that each should be described separately. He described
the image by the zero-crossings in its convolution with the laplacian of a gaussian,
at several fixed scales, apparently in the expectation that these channels would
cleanly separate physically distinct processes. Unfortunately, in our experience,
they generally fail to do so. Indeed, given that the channels’ scales are fixed glo-
bally and without regard to the structure of the data, it would be astonishing if
they succeeded. One isleft with a collection of apparently unrelated descriptions,
none of which is quite right. The prospect of deciding which description to use
when—or worse still, of picking and choosing among the various channels to
build meaningful descriptions—is unappealing. Additionally, Marr proposed the
“coincidence assumption” stating that only features that spatially coincide at
all scales are physically significant, although no justification was offered for this
idea.

Hoffman (forthcoming) recently undertook to replace the fixed-scale se-
quence of descriptions by descriptions at one or more “natural” scales: measuring
the tangent to a curve as a function of scale, he selected as natural scales those
points at which the tangent varied least with respect to scale. This approach may
offer a significant improvement over fixed channels.

The Scale-Space Approach

Scale-space filtering addresses two distinct problems (drawing a distinction that
Marr and others failed to draw clearly). First, we observe different extrema at
different scales, any of which might prove meaningful. How then shall we fully
characterize the extrema over a broad range of scales? Must we find and describe
them independently in each channel, as did Marr, or is it possible to construct a
more organized and unified description?
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Second, how shall these primitives, whatever they turn out to be, be grouped
or organized to best reflect the organization of the generating process? Scale is
just one among many bases for grouping—along with symmetries. repetitions,
and so forth. Where processes really are cleanly separated by scale, we might
hope to use scale to group their constituent events; however, scale cannot do the
whole job. (For an extended discussion of perceptual organization, see Witkin,
1983 Witkin & Tenenbaum, 1983).

The scale-space description. Our solution to the first problem—that of build-
ing a unified description encompassing a broad range of scales—begins with the
observation that the descriptions we obtain at nearby scales appear to have a
great deal in common: we often see extrema in nearly the same locations, al-
though we are liable to see a number of extrema in the finer channel with no
counterparts in the coarser one. (Presumably the same observation motivated
Marr’s “coincidence assumption.”) Is there any well-defined sense in which ex-
trema observed at different scales can be said to correspond, to manifest the
same event seen through different filters rather than two unrelated events? We
will answer this question by treating scale as a continuous parameter, consider-
ing the effect of a very small scale change in scale. (We take as a scale parameter
the standard deviation, o, of a gaussian convolved with the signal.) As we de-
crease o continuously, beginning at a coarse scale, we observe two distinct effects
on the extrema: (a) existing extrema move continuously along the signal axis,
and (b) new extrema occasionally appear at singular points. These effects are
best visualized in terms of the surface swept out on the (x,¢) plane by varying
o. We call the (x,0) plane scale space, and the surface, the scale-space image of
the signal. The extrema, viewed on the scale-space image, form contours. The
tops of these contours are the singularities, the points above which a continu-
ously moving extremum vanishes (look ahead to Figure 6).

On the assumption that each of these contours, in general, reflects a single
physical event, we take the contour, rather than its constituent points, as the
unit of description. The scale of the event is the scale at which the contour
vanishes, and its location in the signal domain is its location at the finest observ-
able scale. The raw qualitative description thus produced consists of a single se-
quence of extrema, each observable on a definite range of scales, and each re-
ferred to a definite signal-domain location. This unified representation exhaus-
tively describes the qualitative structure of the signal over all observed scales.
Each element of the description has a scale associated with it (the vanishing scale)
but the description itself is not partitioned into arbitrary channels or levels. The
description makes the scale of each event available as a basis for organization,
but does not prematurely impose a rigid organization.

Organization and scale, We next consider the role of scale as a means of
organizing the raw description. A scale-structured representation, called the
interval tree, is introduced. Building on the raw scale-space description, and in par-
ticular on the singular points at which new extrema appear, the interval tree
captures the coarse-to-fine unfolding of finer and finer detail. The tree is used to
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generate a set of descriptions, varying the scale in local, discrete steps that reflect
the qualitative structure of the signal. Although highly constrained, this family
of descriptions appears to capture perceptually salient organizations.

Additionally, a stability criterion is applied to produce “top-level sketches™
of signals, as a starting point for matching and interpretation.

THE SCALE-SPACE IMAGE: DEFINITION

We must begin by introducing a parameter of scale, to define what we mean, for
example, by “the slope at point x and scale 0.” We have chosen to convolve the
signal with a gaussian, taking the gaussian’s standard deviation as t.he scale
parameter. Although scale-dependent descriptions may be computed in many
ways, the gaussian convolution is attractive for a number of its properties,
amounting to “well-behavedness™: the gaussian is symmetric and strictly de-
creasing about the mean, and therefore the weighting assigned to signal values
decreases smoothly with distance. The gaussian convolution behaves well near
the limits of the scale parameter, o, approaching the unsmoothed signal for small
o, and approaching the signal’s mean for large 0. The gaussian is also readily

differentiated and integrated. '
While the gaussian is not the only convolution kernel that meets these cri-

teria, a more specific motivation for our choice is a property of the gaussian con-
volution’s zero-crossings (and those of its derivatives): as o decreases, additional
zeroes may appear, but existing ones cannot, in general, disappear; moreover,
of convolution kernels satisfying “well behavedness” criteria (roughly those
enumerated above,) the gaussian is the only one guaranteed to satisfy this con-
dition (Babaud, Witkin, & Duda, 1983). This is an important property because it
means that all the extrema observed at any scale are observable at the finest
scale, which, as we shall see, greatly simplifies the description.

The gaussian convolution of a signal f(x) depends both on x, the signal’s
independent variable, and on o, the gaussian’s standard deviation. The convolu-

tion is given by

o (x=u)
Fx,0)=10) » g(x,0)=f ) e (1)

—00

where “#’" denotes convolution with respect to x.

F defines a surface on the (x, o) plane, the surface swept out as the gaussian’s
standard deviation is smoothly varied. We call the (x, 0)-plane scale space, and
the surface, F, defined in (1), the scale-space image of f.! Figure 3 graphs a se-

! 1t is actually convenitent to treat log o as the scale parameter, as uniform expansion
or contraction of the signal in the x-direction will cause a translation of the scale-space

image along the log o axis. All illustrations portray ¢ on a log scale.
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quence of gaussian smoothings at increasing o, which are constant-o profiles | THE SCALE-SPACE IMAGE: QUALITATIVE STRUCTURE
from the scale-space image. Figure 4 portrays the scale-space image as a surface
in perspective. An extremum in the nth derivative is a zero-crossing in the (n + 1)th. Although,

conceptually, we are interested in extrema, working with the zero-crossings is
more convenient. The nth order zero-crossings in F are the points that satisfy

T ) n n (n+1)
e canl gxf = f*gxg = 0, gxfm-g # 0 (2)
U
W
—_— ——————— where the derivatives of the gaussian are readily obtained.* These points are ex-
——— trema in the (n — 1)th derivative. Thus, evaluating the partials at any fixed o,
—— the zero-crossings in 8F/dx are local minima and maxima in the smoothed sig-
——— nal at that o, those in 8% F/0x? are extrema of slope (inflections), and those in
e L N L 32 F/ax? are extrema of (unnormalized) curvature.
— N — N Sampling F along several lines of constant o yields a filter-bank of the sort
. P D used by Marr and others. Were we to compute qualitative descriptions separately
SN A for each slice, we would face the basic scale problem discussed earlier: we would
S A TN AN be confronted with a different description at each scale, having no clear basis for
relating one to another, or deciding which to use when. This chaotic state of
Figure 3 A sequence of gaussian smoothings of a waveform, with o decreasing affairs is exactly what we wish to avoid.
from top to bottom. Each graph is a constant-o profile from the scale-space The scale-space image, because it treats o as a continuous variable, offers

i 0 the means to do this. Figure 5 shows a typical waveform with the zero-crossings

in 8%F/ax? (inflection points) taken at several values of 0. Some of the inflec-
tions appear to correspond over scale, although they aren’t exactly aligned.

Figure 5 A typical waveform, with the locations of its second-order Zero-crossings
taken at several scales.

? We are interested only in the partials with respect to x, not o, because only the

Figure 4 The same sequence of Figure 3 portrayed as a surface in perspective. former correspond to zero-crossings in the smoothed signal at some scale.
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Others seem to have no correspondence, or ambiguous correspondence. Is there
any meaningful sense in which certain extrema correspond over scale? Figure 6
shows what happens when we fill in the gaps: the fixed-scale zeroes in fact lie
on zero-crossing contours through scale-space. Some of the isolated zeroes we
observed in Figure 5 do correspond, in the sense that they lie on the same con-
tour, while others do not.

Observe that these contours form arches, closed above but open below. At
the apex of each arch, F satisfies

artF Bn+lF an +1F
ax" ax

0, A" O 0,

axﬂ Eh:r #: 09 (3)
which is not a zero-crossing point by the definition in (2). Thus, by a “contour,™
we really mean a single arm of an arch, with the apex deleted. Each contour may

be viewed as a zero-crossing that moves continuously on the x-axis as o is varied,
with instantaneous “velocity™

"1 Flax"00 (4)
B au+1Ff}axrl +1

The denominator in (4) is the slope at which 8"F/9x" crosses zero (the “strength™
of the zero-crossing,) and the numerator responds to features entering or leaving
the mask’s effective receptive field. Thus, the location of strong zero-crossings

[
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Figure 6 Contours of F,, =0 in the scale-space image. The x-axis is horizontal;
the coarsest scale is on top. To simulate the effect of a continuous scale-change
on the qualitative description, hole a straight-edge (or better still, a slit) hori-
zontally. The intersections of the edge with the zero-contours are the zero-

crossings at some single value of o. Moving the edge up or down increases or de-
creases .
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tends to be more stable over scale than that of weak ones, but any zero-crossing
may be “pulled” by sufficiently large surrounding features. Also, as the strength
of a zero-crossing approaches zero, its velocity may become arbitrarily large.

The two arms of each arch form a complementary pair, crossing zero with
opposite sense. As we sweep across the apex of an arch, with o increasing, the
pair approach each other with increasing velocity, then collide and are annihilated.
The proof of Babaud et al. (1983), mentioned above, assures us that the comple-
mentary singularity—a pair of zeroes vanishing as we move to a finer scale—can
never occur,

THE “RAW’” SCALE-SPACE DESCRIPTION

Thus, a decrement in o has two effects on the zero-crossings: the continuous mo-
tion of existing zero-crossings, according to (4), and the appearance of new ones,
in complementary pairs, at the singular points described in (3). A zero crossing
observed at any scale may always be tracked continuously across all finer scales.

What do these properties imply for qualitative description? Suppose we
qualitatively describe f at a particular scale by the sequence of zero-crossings
at that scale, noting for each zero-crossing the sense with which it crosses zero,
and the order of the extremum it represents (if more than one order is being
used). Each of these fixed-scale zeroes lies on a zero-crossing contour in scale-
space. The contours, once they appear, cannot disappear at finer scales, nor, in
general, change their sense, nor cross each other. Therefore, the initial sequence
must always be embedded, in its entirety, in the sequence obtained at any finer
scale. The only changes in the qualitative description as o decreases occur at the
“apex” singularities, where a new pair of zero-crossings must be spliced into the
sequence.

Therefore, we may capture the qualitative description at all scales just by
recording the sequence of zero-crossing contours intersecting the finest observ-
able scale, and for each, the value of o at which the contour vanishes. The quali-
tative description at any scale is then obtained by deleting from the full sequence
the zero-crossings that vanish at a finer scale. Rather than a collection of inde-
pendent single-scale descriptions, this affords a unified one, each of whose ele-
ments exists over a definite range of scales. Complete quantitative information
may be attached to the qualitative description by recording the contours’ tra-
jectories through scale space, and relevant properties of F' along the trajectory.

|dentity, Scale, and Localization Assumptions

We have defined the scale-space description, showing that it captures the qualita-
tive structure of the signal at all scales. But what physical interpretation shall we
place on the events comprising the description? What does a scale-space contour
mean, what does the geometry of its trajectory tell us, and so forth?
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We first assume that each contour reflects a single physical event. When we
eventually say, for example, that “this inflection exists because . ..”" we must
complete the sentence in the same way for every point on the contour, This
amounts to an assumption that the organization of the scale-space image is
physically meaningful, that when we change o a small amount we are almost
always seeing the same broad-band events at a different scale rather than a whole
new set of narrow-band events. This “identity’ assumption allows us to treat
each contour as an indivisible unit for the purpose of interpretation.

We next assume that the scale of each event, for the purpose of grouping
and organization, is given by the “apex” singularity, the scale above which the
contour vanishes. Thus, by a “large-scale event” we mean one that is observable
at a large o and all smaller ones. Finally, we assume that the true location of a
zero-crossing contour on the x axis is its location at the finest observable scale.
This assumption is motivated by the observation that linear smoothing has two
effects: qualitative simplification—the removal of fine-scale features—and spatial
distortion—dislocation, broadening, and flattening of the features that survive,
The latter effect is undesirable, because a big event is not necessarily a fuzzy
one. Because each event in the scale-space description extends over a range of
scales, there is no difficulty in assigning a fine-scale location to a coarse-scale
event. Collectively, these assumptions characterize each scale-space contour as
denoting a single physical event, whose scale is the contour’s vanishing scale, and
whose location is the contour’s fine-scale location.

Figure 7 illustrates the effectiveness of this interpretation: We select the
events whose scale exceeds a threshold, then draw a “sketch™ of the signal by
fitting parabolic arcs between the distinguished points. This description is
qualitatively isomorphic to the gaussian-smoothed signal at the same scale, but
it much better preserves the locations of the distinguished points.

o

Figure 7 Above is shown a waveform with a superimposed approximation. The
approximation was produced by identifying inflections at a coarse scale, and re-
solving their fine-scale locations. Parabolae were then fit independently between
each pair of localized inflections. Below is shown the corresponding (qualitatively
isomorphic) gaussian smoothing.
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ORGANIZATION AND SCALE

We began by distinguishing the problem of characterizing primitive events over
scale from the problem of grouping or organizing them in a meaningful way. The
raw scale-space description, by design, is noncommittal with respect to organi-
zation: it concisely lists the primitive events observable at all scales, each with its
scale and location, as well as other qualitative and quantitative information.
Given the raw description, one is free to use the events’ scale, as well as the rest,
in whatever manner one likes. In this section, we will introduce a representation,
derived from the raw scale-space description, that is organized by scale. This
representation, called the interval tree, describes the division of intervals
bounded by extrema into finer and finer sub-intervals, as o decreases. The scale
channels proposed by Marr and others produce poor organizations because
events are structured by a series of arbitrary global scale thresholds. In contrast,
the interval tree permits the scale of description to be controlled in local discrete
steps, determined by the qualitative structure of the signal.

The Interval Tree

The scale-space extrema whose scales exceed a given threshold, o, partition the
x axis into intervals. As we decrease o, starting from a coarse scale, new events
appear in pairs (each associated with an “apex™ singularity in the scale-space
image), dividing the enclosing interval into a triple of sub-intervals (see Figure 8).
As o4 decreases further, these new intervals in turn subdivide, and so on down
to the finest observable scale.

Each of these intervals defines a rectangle in scale-space, bounded above by
the scale at which the interval emerges out of an enclosing one, bounded below
by the scale at which it splits into sub intervals, and bounded on either side by
the x-locations of the events that define it. Thus each interval has a definite

LILLRL, -| i

Figure 8 The vertical lines represent a sequence of distinguished points, with the
height of each line representing the scale at which the event vanishes, The events
whose scale exceeds a threshold, o, partition the x-axis into intervals. As we
decrease o, new events appear in pairs, dividing the enclosing interval into a
triple of sub-intervals.
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width and location on the signal axis, and exists over a definite range of scales.
Collectively, the rectangles tesselate the (x, 0) plane.

The intervals also correspond to nodes in a ternary-branching tree: an inter-
val’s parent is the larger interval from which it emerged, and its offspring are the
sub-intervals into which it divides. This interval tree is illustrated in Figure 9,
(For convenience, we take as the root of the tree a dummy interval including the
whole signal).

Using the Interval Tree

The coverings of the x-axis by the interval tree® each segment the signal into a
set of intervals. From any starting point, we may generate a new segmentation
either by splitting an interval into its offspring, or merging some intervals into
their common parent. We may thus explore the space of descriptions, changing
the scale of description in local, discrete steps (see Figure 10). We have, in effect.
collapsed the (x,0) plane into a discrete set, taking advantage of the singular
points at which extrema appear to do so.

The set of segmentations generated by the interval tree is a small fraction of
the segmentations one could generate by collecting arbitrary subsets of all the
scale-space extrema. In particular, a segmentation is excluded if any of its inter-
vals contains an extremum of larger scale than either of the two bounding ones.
This “interval constraint™ is in fact a useful and conservative one, because it dis-
cards the myriad of meaningless groupings—constructed, for example, by joining
pairs of widely separated fine-scale extrema, or skipping an arbitrary number of
large-scale ones along the way—while preserving “smooth” intervals that are
broken only by extrema of much finer scales than the bounding ones. We found,
by extensive but informal testing, that people are nearly always able to duplicate
the segmentations they find perceptually salient within this constraint, by
moving interactively through the tree. Figure 11 shows a few signals with
“sketches™ that have been obtained in this way.

The Stability Criterion

Although the interval tree generates descriptions in an organized way. it would
be useful to establish a preference ordering on those descriptions, to obtain “top
level” sketches as starting points for matching and interpretation. The interval
tree initially requires that all extrema within each interval be of finer scale than
the bounding ones. A natural extension to this useful constraint would be to
favor intervals for which the difference between the scale of the bounding ex-
trema, and that of the largest extremum between them, is large. In the interval
tree, this difference is just a node’s extent in the scale domain—its persistence or

¥ That is, all the sets of nodes for which every point on the x-axis is covered by exactly
one node.
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stability. A very stable node is one bounded by very large-scale extrema, but
containing only very small ones—intuitively, a “smooth™ interval.

We obtain maximum stability descriptions by starting from the root of the
tree, and moving down recursively whenever a node’s stability is less than the
mean stability of its offspring. These are local maxima, which may be layered at
successively finer scales. (Several variants on this procedure achieved similar re-
sults.) Figure 12 shows several signals with their top-level maximum stability de-
scriptions. The reader should compare these with their own percepts, and also
observe that they closely resemble the interactively obtained descriptions of
Figure 11.

L T I L

Figure 9 A signal with its interval tree, represented as a rectangular tesselation
of scale-space. Each rectangle is a node, indicating an interval on the signal, and
the scale range over which the signal interval exists.
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Figure 10 An approximation derived from a particular covering of the signal by
the interval tree. The “active” nodes (i.e., those that determined the segmenta-

tion) appear in black.
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Figure 11 Descriptions obtained by interactively traversing the interval tree to
match perceptually salient segmentations.
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Figure 12 Several signals, with their maximum-stability descriptions. These are
“top-level” descriptions, generated automatically, and without thresholds. The
reader should compare the descriptions to their own first-glance “top-level”
percepts.

CONCLUSIONS

We set out with two objectives: first, to obtain a unified description of the ex-
trema in a signal over a wide range of scales; and second, to use the scale of
extrema to constraint and guide their organization and grouping. Both objectives
were attained.

Description: The extrema observed at a particular scale move continuously as
the scale is varied. vanishing in pairs at singular points as the scale becomes
coarser. These continuously moving extrema form contours on the scale-space
image, the surface swept out by smoothly varying the scale. We take these con-
tours as the units of description, on the assumption that each in general denotes
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a single physical event. The qualitative structure over all observed scales is cap-
tured in a single sequence of extrema, each extending over a range of scales, and
each characterized by its fine-scale location and the scale above which it vanishes.

Organization: The least unit of organization is an interval bounded by a pair of
extrema. A criterion for meaningful groupings is the difference in scale between
the bounding extrema and the ones within the interval: where the bounding ex-
trema are much larger, the interval is a strong candidate for treatment as an “un-
distinguished interval™ (i.e., monotonic in the derivatives in which extrema were
found). This grouping criterion is captured in the interval tree, a ternary-branching
structure, simply derived from the bare description that describes the coarse-to-
fine subdivision of intervals. The structure of the tree itself excludes intervals
containing larger-scale extrema than the bounding ones. Within this constraint,
the persistence or stability over scale of an interval in the tree measures the scale
difference. Using this measure, maximum stability groupings were constructed
to provide “top-level sketches” of the signal.

The bare scale-space description, and the organization provided by the interval
tree, constitute a sound basis for further organization, by discovering regularities
such as symmetry, repetition, and inter-signal correspondence; for the construc-
tion of larger morphological structures expressed as sequences of extrema: and
for graphic communication between man and machine. We are currently investi-
gating all of these topics, as well as applying the basic methods to signal under-
standing problems in geology, vision, and speech.

An extension of these methods to two-dimensional images is also under
way. The two-dimensional world is richer and more complex—the primitive
events are not points but contours, and their extensions in scale-space are sur-
faces in a volume. Nevertheless, the elements of the one-dimensional method
carry over quite directly.
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